
This is a repository copy of Energy performance of diaphragm walls used as heat 
exchangers.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/107213/

Version: Accepted Version

Article:

Di Donna, A, Cecinato, F, Loveridge, F orcid.org/0000-0002-6688-6305 et al. (1 more 
author) (2017) Energy performance of diaphragm walls used as heat exchangers. 
Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 170 (3). pp. 
232-245. ISSN 1353-2618 

https://doi.org/10.1680/jgeen.16.00092

© ICE Publishing. This is an author produced version of a paper published in the 
Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, published by 
ICE Publishing and available at: https://doi.org/10.1680/jgeen.16.00092. Uploaded in 
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

Energy performance of diaphragm walls used as heat exchangers

Alice Di Donna Politecnico di Torino, Department of Structural, Building and Geotechnical Engineering,

Torino, Italy

Francesco Cecinato University of Trento, Department of Civil, Environmental and Mechanical Engineering,

Trento, Italy

Fleur Loveridge*University of Leeds, School of Civil Engineering, UK (formally University of Southampton,

UK)

MarcoBarla Politecnico di Torino, Department of Structural, Building and Geotechnical Engineering, Torino,

Italy

* corresponding author – F.A.Loveridge@leeds.ac.uk; University of Leeds, School of Civil Engineering,

Woodhouse Lane, Leeds, UK; 0044 (0)7773346203

Date of revision: 22nd September 2016

Number of words in revised main text: 5119

12 Tables and 7 Figures



2

Energy performance of diaphragm walls used as heat exchangers

Abstract

The possibility of equipping diaphragm walls as ground heat exchangers to meet the full or partial heating and

cooling demands of overlying or adjacent buildings has been explored in recent years. In this paper, the factors

affecting the energy performance of diaphragm walls equipped as heat exchangers are investigated through

finite element modelling. The numerical approach employed is first validated using available experimental

data and then applied to perform parametric analyses. Parameters considered in the analysis include panel

width, the ratio between the wall and excavation depths, heat transfer pipe spacing, concrete cover, heat-carrier

fluid velocity, concrete thermal properties and the temperature difference between the air within the excavation

and the soil behind the wall. The results indicate that increasing the number of pipes by reducing their spacing

is the primary route to increasing energy efficiency in the short term. However, the thermal properties of the

wall concrete and the temperature excess within the excavation space are also important, with the latter

becoming the most significant in the medium to long term. This confirms the benefits of exploiting the

retaining walls installed for railway tunnels and metro stations where additional sources of heat are available.
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Energy performance of diaphragm walls used as heat exchangers

1. Introduction

Energy geostructures are an interesting and promising technology to tackle the increasing energy demand for

heating and cooling of buildings and other infrastructure, through use of a local and sustainable source.

However, a correct and optimised design is of fundamental importance to deliver an energy efficient solution.

Several authors have already studied the efficiency of energy geostructures. However, this has mainly

concerned energy piles, for example see Cecinato & Loveridge (2015); Loveridge & Cecinato (2016); Batini

et al. (2015). Parametric analyses performed to investigate the relative influence of different parameters on the

heat exchange potential of energy geostructures have also been carried out by the authors. In particular,

Cecinato and Loveridge (2015) studied the influence of a number of engineering parameters on the energy

efficiency of thermoactive piles, while Di Donna & Barla (2015) studied the influence of underground

conditions on the heat exchange capacity of energy tunnels. Both these aspects are essential to define the

efficiency of energy geostructures in each specific case.

Despite the increasing interest for such applications, relative little work has been carried out on the study of

diaphragm walls converted to energy geostructures (Bourne-Webb et al. 2016; Bourne-Webb et al. 2015;

ICConsulten 2005; Sterpi et al. 2014; Di Donna 2016). Certainly, there has been no rigorous parametric

assessment of the capability of energy diaphragm walls, and few attempts to fully justify design choices and

assumptions.

The aim of this paper is to apply statistically based parametric analysis techniques to the energy assessment of

diaphragm walls, and draw conclusions related to the optimisation of their energy efficiency. To do this a

numerical technique has been employed in conjunction with a statistical analysis, to limit the number of

simulations required and rationally interpret the results. Before outlining the statistical analysis and the

numerical approach adopted, this paper first reviews constructed energy diaphragm wall case studies and

previous relevant analyses to permit appropriate design of the numerical study.

2. Past Experience of Energy Diaphragm Walls

Records of constructed energy diaphragm walls are available from the UK, Austria and China (Table 1). In

addition, some studies that provide details of the energy that may be available from the inside spaces of

underground infrastructure, e.g. tunnels, metro stations are shown in Table 2 and Table 3. Using this data and

typical construction conditions for diaphragmwalls more generally, sections 2.1 and 2.2 review the appropriate

geometry and boundary conditions to be used in the numerical and statistical studies.

2.1. Geometry

Diaphragmwalls are often used for the support of deep excavations where other techniques may be unsuitable.

These include cases at greater depths and where cut off functions are important. A large number of case studies

are presented by Gaba et al. (2003), as well as general indications of typical practice by Burland et al. (2012).

These suggest that walls are typically 0.8 m to 1.2 m in width (W in Figure 1), with depths typically between

10 m and 40 m (D in Figure 1). Previous work (Cecinato & Loveridge 2015) suggests that the length of the

wall will be of great influence in the energy efficiency of the geostructure. However, with diaphragm walls

there is the additional consideration of how much of the wall is embedded within the soil and how much is

open on one side to the excavation (H in Figure 1). These two parts of the wall would be expected to experience
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different rates of heat transfer due to the differing boundary conditions. Other geometric factors that may affect

the energy exchanged include the number (and/or spacing, sp in Figure 1) of installed heat transfer pipes,

whether these are fixed to both sides of the walls and what distance they are from the wall edge (the concrete

cover, C in Figure 1). Where possible, constructed values for these parameters have been extracted from the

literature and are summarised in Table 1. It can be seen that typical Austrian construction includes pipes on

both sides of the walls. However, the pipes on the excavation side are only included in the embedment section

of the wall. This has been possible in these cases as the steel cage to which the pipes are fixed is constructed

in one piece. This means that pipes can all be placed on the steel in advance. This type of construction is not

possible where constraints mean that the cage must be spliced on site. In such cases, the pipes are typically

placed only on the soil side of the wall and are restricted to vertical arrangements.

2.2. Boundary conditions

A key difference between diaphragm walls and more traditional types of ground heat exchanger is their

exposure to the air on one side for some proportion of their depth. The space within the excavation that the

wall supports may be used for a number of different functions, the most common being basements,

underground car parks, metro stations or shallow light rail tunnels. Those applications where there is

potentially a source of heat, e.g. rail tunnels and metro stations, may be more suitable for efficient heat

extraction, but potentially less suitable for applications in heat disposal.

There are few case studies in the literature, for which a thorough assessment of the internal boundary condition

for energy diaphragm walls is made. Those where analysis of energy exchange has been carried out, either use

a constant temperature boundary or assume a convective heat flux (q, W/m2) determined by a heat transfer

coefficient (h, W/m2K) and the temperature difference between the wall, ௪ܶ௔௟௟, and the space, ௘ܶ௫௖:ݍ = ݄( ௘ܶ௫௖ െ ௪ܶ௔௟௟) (1)

Bourne Webb et al. (2016) investigated the effect of applying the two different types of boundary condition.

For the long term they concluded that imposing constant temperature could be non-conservative with respect

to heating capacity, although if airflow in the excavation is faster than 3 to 5 m/s (as it might occur for instance

in tunnels), this assumption will not be too far in error. Studies that considered a constant temperature boundary

condition include Kurten et al. (2015), Kurten (2014), Rui (2014), Soga et al. (2014) and Sterpi et al. (2014)

who all conducted numerical analysis. Kurten considered basement applications, whereas Rui and Soga et al

were considering metro stations. The analysis of Sterpi et al. is more generic. None of the above authors

provides a comprehensive rationale for use of this type of boundary condition, although Kurten was validating

large-scale laboratory experiments so there is some justification for the considered approach.

Studies where a heat-transfer coefficient approach is adopted are summarised in Table 2. Some justification

for this approach can be found in ISO 6946 (BS EN ISO 6946:2007 2007) where surface heat transfer

coefficients are quoted for internal and external spaces in the built environment. Depending on the direction

of heat flow and the case, general values between 6 W/m2K and 20 W/m2K are suggested. ISO 6949 also

provides guidance on linking wind speeds to heat transfer coefficients, suggesting that values in excess of 50

W/m2K could be achieved with speeds of 10 m/s. However, caution should be applied when using such high

values. While Ampofo et al. (2004) suggest that wind speeds of 10 m/s could be achieved in the London

underground system, heat transfer estimates from the current Crossrail constructions suggest that much lower

values would be achieved in reality (Nicholson et al. 2014). Data related to the tunnel internal temperature are

also available in the literature and summarised in Table 3. These vary seasonally, generally in response to the

external air temperature, and are usually higher than the original undisturbed ground temperature.

3. Parametric analysis design

3.1. Choice of parameters
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The choice of the design parameters to be investigated and their range of variability was based on the literature

review presented above and the experience gained from existing engineering projects and previous works

carried out by the authors and other researchers on energy geostructures. From previous studies on energy piles

(Cecinato & Loveridge 2015), it appeared that the wall length would be one of the most important parameters

affecting energy performance. This was therefore taken as an implicit assumption of the study and instead the

ratio R between the panel height D and the excavation depth H was chosen for investigation, together with the

panel width W (Figure 1). The former was expected to be significant since it controls the proportion of the

wall area exchanging heat with the excavation.

Two other important parameters, which will be considered in the parametric analysis, are the velocity of the

heat carrier fluid, hereafter referred to as v, and the number of pipes. Here the latter is characterised by the

pipes spacing, sp. Previous analyses showed that the pipes diameter does not significantly affect the energy

efficiency, thus it was not considered in the parametric analysis (Cecinato & Loveridge 2015; Loveridge &

Cecinato 2016). Also the panel length, L, being quite standard in geotechnical projects and unlikely to be

engineered based on thermal considerations, was kept fixed in all the numerical simulations. The thermal

properties of the materials clearly play an important role. However, assuming that the heat transfer in the

ground is mainly governed by conduction while ground water flow is negligible, the parameters that will be

most influential are the thermal conductivity and diffusivity of concrete and soil and the undisturbed ground

temperature (Cecinato & Loveridge 2015; Di Donna & Barla 2015). Given that the properties of the ground

cannot be engineered at a given site, the study focused on the influence of the concrete thermal conductivity,

hereafter referred to as Ȝcon. Considering that also the air temperature inside the excavation is expected to

influence the results significantly for diaphragm walls, the difference between the soil and excavation air

temperature, T, was also included in the parametric analysis.

For the sake of simplicity, and based on the conclusions outlined by Bourne Webb et al. (2016) and Bourne-

Webb et al. (2015), a constant temperature boundary condition was imposed on the excavation side, neglecting

the heat transfer convective component. In the long term this assumption is more representative of tunnels, and

other applications where high airflow persists (Bourne-Webb et al. 2016). However, in contrast to Bourne

Webb et al. (2016), which applied steady state thermal analysis, this study will be transient and consider the

changing impact of the different parameters with time. The full list of parameters considered in this study and

their range of variability are summarised in Table 4.

3.2. Statistical method

Reference was made to the concepts of Engineering Statistics, in particular to the so-called Experimental

design method, that deals with deliberately changing one or more variables in a process, to observe the effect

that the changes have on a response variable. Among the available experimental design techniques, the Taguchi

method was selected for its robustness, simplicity and adaptability to engineering problems (Taguchi et al.

1989; Peace 1993; Cecinato & Zervos 2012; Cecinato 2009; Cecinato et al. 2015). A fundamental step in

Taguchi analysis is the definition of a suitable ‘orthogonal array’, i.e., a 2-dimensional matrix defining the

variable settings for each of the experiments (i.e., numerical simulations in this case) needed. Table 5a shows

the Taguchi orthogonal array used in this case. Each row of the matrix contains the list of settings for all

parameters in one experiment. Each column of the array corresponds to one of the variables, and contains all

the values that this variable will be assigned during the numerical experiments. Hence the values in the columns

for each row refer to the level of the parameters used in each experiment. Since only two levels are contained

in Table 5a (level 1 and level 2), these represent the lower and upper bounds of the chosen parameters given

in Table 4.

The essential property of the orthogonal array is ‘statistical independence’. Within each column an equal

number of occurrences for each level is present. For example, in



6

a, in each column both level 1 and level 2 occur four times. Additionally, the columns are mutually orthogonal,

i.e. for each level within one column, each level within any other column will occur an equal number of times.

For example, in the first column of Table 5a, level 1 occurs in the first four rows, in correspondence of which

levels 1 and 2 occur twice in all other columns. A given parameter has a strong impact on the output variable

if the results associated with one of its levels are very different from the results associated with another one of

its levels. Since, due to orthogonality, the levels of all other parameters occur an equal number of times for

each level of this given parameter, their effect will be cancelled out in the computation of the given parameter's

effect. The estimation of the effect of any one particular parameter will then tend to be accurate and

reproducible (Peace 1993).

With the above settings, a Taguchi analysis will need only eight simulations (experiments) to be completed,

followed by some basic statistical analysis of the results (so-called level average analysis, see section 5.1). In

contrast, with the “full factorial” method (i.e., running a simulation for each one of the possible combinations

of parameters) the number of simulations needed would be 72=49. The advantage of adopting the Taguchi

method is thus apparent, as it allows substantial time saving whilst ensuring the significance of results. In fact,

not only does the fundamental property of statistical independence warrant representativeness of results, but it

is also possible to double-check the reliability of the analysis by performing confirmation runs (refer to section

5.1 and Peace 1993; Cecinato 2009; Cecinato & Zervos 2012).

An “L8” seven parameters set with two levels each was chosen to be the most suitable for the considered

situation. The corresponding “L8” orthogonal array is readily available in the literature (e.g. Peace 1993) and

reported in Table 5a. In the array, the seven parameters to be investigated correspond to the seven columns,

while the eight simulations required are reported in the eight rows. For each parameter, the two levels (lower-

and upper-bound values) are referred to as 1 and 2, respectively. The array can thus be filled in with the

parameters' settings from Table 4 to finalise the parametric study design, leading to the array presented in

Table 5b.

4. Numerical approach

To perform the eight runs defined in Table 5b and simulate the thermal exchange between the fluid circulating

in the pipes, the concrete wall and the surrounding saturated soil, numerical modelling was carried out by

means of the finite element software FEFLOW© (Diersch 2009). The convection-diffusion problem is

governed by the following equations, written in the Eulerian coordinate system for a saturated medium

composed by a solid and a liquid (water) phase:

 Mass conservation equation:ܵ ή ߲௧݌ + ׏ ή ൫݊ݒ௪,௜൯ = 0 (2)

where ߲௧ and ׏ ή denote the time derivative and the divergence operator , ܵ = [݊ȯ௪ + (ͳ െ ݊)ȯ௦] is
the specific storage coefficient, n the porosity, ȯ௪ and ȯ௦ the water and solid compressibility, p the

pressure and ௪,௜ݒ the vector of water velocity with respect to the solid skeleton.

 The Darcy’s fluid velocity (௙,௜ݒ) law:
௙,௜ݒ = ௪,௜ݒ݊ = െ ݇௜௝ߩ௪݃௜ߤ ݄׏ = െܭ௜௝݄׏ (3)

where ݇௜௝ is the intrinsic hydraulic conductivity tensor (expressed in m2), ௪ߩ the water density, ݃௜ the
gravity vector, ߤ the water dynamic viscosity, Kij the hydraulic conductivity (expressed in m/s) and h

the hydraulic head defined as:
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݄ = ௪݃௜ߩ݌ + ݕ
where y is the vertical coordinate.

(4)

 The energy conservation equation:

௪ܿ௪ߩ݊] + (1െ ௦ܿ௦]߲௧ܶߩ(݊ + Tെ׏௪,௜ݒ௪ܿ௪ߩ݊ ׏ ή ൫ߣ௜௝׏T൯ = 0 (5)

where ׏ denotes the gradient operator, ܿ௪ and ܿ௦ are the water and solid phase heat capacities, ௦ߩ is
the solid phase density and T is the temperature. The term ௜௝ߣ includes the heat conduction and the

dispersion components, as:ߣ௜௝ = ௪ߣ݊] + (1െ ௜௝ߜ[௦ߣ(݊ + ௪ܿ௪ߩ ቈ்ߙඥݒ௪,௜ݒ௪,௝ߜ௜௝ + ௅ߙ) െ (்ߙ ௪,௝቉ݒ௪,௜ݒ௪,௝ඥݒ௪,௜ݒ (6)

where ௪ߣ and ௦ߣ are the water and solid phase thermal conductivities, ௜௝ߜ the Kronecker delta, ்ߙ andߙ௅ the longitudinal and transverse thermal dispersivity.

In the analyses presented, the absorber pipes were reproduced by special 1D elements built into the software

FEFLOW©. In these elements the thermal resistance of the plastic pipes is neglected. This could lead to a very

small temperature error in the calculations presented. However, the use of the 1D pipe elements has been

validated for similar systems and showed good agreement when compared to analytical solutions (Diersch

2009). Additional energy wall specific validation is included below.

It should be also remarked that despite the above model being capable of dealing with flowing groundwater

conditions, in this work the convective component of heat exchange due to flowing groundwater has been

neglected for simplicity.

4.1. Numerical model validation

The numerical approach was first validated against experimental data provided by Xia et al. (2012) and Sun et

al. (2013). A 38 m depth energy diaphragm wall with a 18.5 m excavation was tested in situ by circulating

fluid through heat transfer pipes embedded in the wall. The wall panel was 2.25 m wide and 1.0 m thick. A

single U-pipe arrangement was used with a spacing of 75 cm between the pipes and a concrete cover of 10 cm

(Figure 2a). The geometry of the numerical model is illustrated in Figure 2b. The pipes had an external diameter

of 25 mm and thickness of 2.3 mm. The heat carrier fluid velocity was set equal to 0.6 m/s, its inlet temperature

was kept constant to 35 °C for a test duration of 2 days. The soil temperature was initially measured equal to

16.3 °C, the external air temperature equal to 10.6 °C and the wall temperature equal to 23 °C. Accordingly,

constant external air temperature was applied on the top boundary, excavation plane and wall side towards the

excavation, while constant soil temperature was imposed to the bottom, right and left boundaries of the model.

The thermal and physical properties of the concrete and the soil are reported in Table 6, as indicated by Xia et

al. (2012) and Sun et al. (2013). The numerical results in terms of exchanged heat per meter of pipes versus

time are compared with the experimental data in Figure 3. It can be concluded that the numerical approach

provides a good fit to the experimental data.

4.2. Parametric analysis

In the parametric analysis, the wall panel was considered 20 m high (D in Figure 1) and 1.5 m long (L in Figure

1), as represented in Figure 4. Accordingly, considering a depth to excavation ratio of 1.25 (lower bound of

parameter 2) means an excavation of 16 m, while a ratio of 2.0 (upper bound of parameter 2) an excavation of

10 m. Within the 1.5 m length, the 25 cm pipe spacing (lower bound of parameter 3) implied the embedment

of 6 pipes in a Triple-U configuration, while the 75 cm spacing (upper bound of parameter 3) resulted in 2
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pipes only in a Single-U configuration (Figure 4b and c). The pipes went down to 19.5 m depth and had a

diameter of 25 mm. They were positioned on the soil side of the wall only. The soil initial temperature was set

equal to 12°C. The thermal and physical properties of concrete and soil are summarised in Table 7. A constant

temperature, equal to the initial soil temperature, was set on the left, right and bottom boundaries of the model.

The boundaries of the model were checked to be far enough not to influence the results in terms of heat

exchange. Constant external air temperature was set on the excavation plane, wall side and top boundary, with

a value depending on the run, i.e. equal to 14°C or 18 °C depending on the value of T (Table 5). The panel

width W, depth of excavation H, concrete cover C and heat-carrier fluid velocity v are also varied depending

on the run as per Table 5b. The inlet temperature was imposed equal to 20°C for a simulation duration of 60

days, with an initial ramp going from 12 to 20°C lasting 5 minutes. While real systems often operate within

varying and complex thermal demand (and hence inlet temperature) patterns, a constant temperature has been

used to provide i) a simpler and controlled conditions comparison of the parameters under consideration and

ii) a more generally applicable approach within the wide range of thermal demand scenarios relevant to

different building typologies. In this case heat injection has been applied throughout. While different rates of

absolute heat exchange would be obtained for heat extraction due to the temperature excess in the excavation

space, only one scenario was considered, again for simplicity. This is because similar parameter rankings are

to be expected from the statistical analysis regardless of the direction of heat transfer.

5. Results and discussion

The results of the eight runs are presented in Figure 5a in a semi-logarithmic plane, in terms of outlet

temperature. From the difference between the inlet and outlet temperature, the exchanged power Q (measured

in W) was computed as:ܳ = ݉ ή ܿ ή ( ௢ܶ௨௧ െ ௜ܶ௡) (7)

where m is the mass flow rate in the pipes (measured in kg/s), c the specific heat capacity of the circulating

fluid (measured in J/kg/K) and Tout and Tin the outlet and inlet fluid temperature. The resulting exchanged

power per square meter of wall surface is plotted in Figure 5b.

In Figure 5b, a family of four curves (runs 2, 4, 5 and 7) showing a high initial peak can be easily distinguished.

These curves result from the simulations that assume the upper bound value of fluid velocity. The initial peak

is representative of the very initial phase of the simulations, during which the system is activated (imposed

inlet temperature), but the heated fluid has not yet reached the outlet node. During this transient phase, the

difference in temperature between the outlet and the inlet is the same for all the runs and the exchanged heat

only depends on the mass flow rate in the pipes, namely on the fluid velocity (equation 7). Once the heated

fluid reaches the outlet node, the amount of exchanged heat starts to be governed not only by the mass flow

rate but also by the outlet temperature, which depends on the heat exchange capacity of each configuration.

This occurs earlier in the simulations that consider the single-U pipe setting, explaining the different post-peak

response between runs 4 & 5 and runs 2 &7.

Consequently, the high peak heat transfer rates at small simulation times are not particularly representative of

longer term realistic operating conditions. By the end of the numerical simulation the heat transfer rates drop

to <20W/m2. These values are comparable to those presented by BourneWebb et al. (2016) and slightly lower

than those suggested by Brandl (2006) as pre design values.

In the longer term, the simulations which show the highest exchange rates at 60 days are those showing the

lowest temperature difference between the wall and the air in the excavation. This is more clearly shown in

Figure 6, which is a zoom of Figure 5b at the long term. This is to be expected, since the simulations are

injecting heat into the wall and the ground and an additional source of heat from the air inside the excavation
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will be detrimental to efficiency. On the other hand, if heat was being extracted from the systems then this

additional source of heat would be beneficial.

5.1. Statistical analysis

Four different time frames were considered, namely the heat transfer rate q (W/m2) was computed at 3, 5, 30

and 60 days after the activation of the geothermal system. The obtained response table is presented in Table 8.

The values contained in this table constitute the ‘raw data’ of the Taguchi parametric study, to which some

statistical post-processing needs to be applied to extract the combination of factors (i.e. parameters) affecting

the target variable (ie the heat transfer rate, q) the most. This was done interpreting the results with a level

average analysis (e.g. see Peace 1993; Cecinato 2009; Cecinato & Zervos 2012). It consists of (1) calculating

the average simulation result for each level of each factor, (2) quantifying the effect of each factor by taking

the absolute difference between the highest and lowest average results and (3) identifying the strong effects,

by ranking the factors from the largest to the smallest absolute difference. The results of the level average

analyses performed for the four time frames are reported in Table 9 to Table 12, where the “Min” and “Max”

values were obtained by calculating the average simulation result respectively for level 1 (low) and level 2

(high) for each factor (cf. Peace 1993, Cecinato 2009), and the “Effect” was calculated by taking the difference

between “Min” and “Max” for each parameter.

Due to the statistical nature of this type of analyses, the influence of the bottom-ranked parameters cannot be

assessed with confidence; hence, in the subsequent discussion attention will be principally focused on the top-

five ranked parameters.

Additionally, to validate the statistical approach adopted, a so-called confirmation run (e.g. Peace 1993) was

also performed. It consists of running a simulation adopting the most influential settings of the involved

parameters, and comparing the result with an estimate (through statistical methods, based on positive

fluctuations from the average response) of the predicted response with optimal parameter settings (in this case,

parameters that maximise the heat exchange). To confirm the reliability of the statistical analysis, the outcome

of the confirmation simulation qcon was checked to be similar to the predicted average response qavg, and both

values were checked to be larger than any of the responses from runs 1 to 8. As an example, after 30 days, the

confirmation run resulted in qcon=20.6 W/m2, with qave=18.9 W/m2.

5.2. Discussion

As for other ground heat exchangers, the results show that the energy efficiency improves significantly if the

pipe spacing is reduced, which means that increasing the number of pipes is the primary route to be considered

in order to optimize the design. Indeed, spacing is among the top three parameters independently of the

simulation time considered. Also increasing the concrete thermal conductivity has a positive effect, although

this parameter is more difficult to engineer compared to pipe spacing. Among the three most important

parameters, the other one is the temperature excess within the excavation space, which confirms in particular

the benefits of exploiting the retaining walls installed for railway tunnels and metro stations. The embedment

ratio, as well as concrete cover, seem to have a minor effect on the energy efficiency, as they are always ranked

in the lowest positions, independently of the time frame considered. The panel width is the third most

influential parameter in the short term (Table 9), but its influence decreases in the long term.

Figure 7 better illustrates the results obtained after 3, 5, 30 and 60 days of system operation, comparing the

effect, as defined above, of each parameter normalized by the largest effect (i.e. the effect of the most

influential parameter) in the same time frame. The rankings of each parameter for each time frame are also

reported for completeness. Interesting observations can be drawn regarding the trends of the parameters’

influence with time, distinguishing those that play a major role in the short or in the long term.
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In the very short term, the four most influential parameters are pipe spacing, concrete conductivity, panel width

and fluid velocity. However, as the heat exchange process proceeds from the initial transient condition towards

a steady state condition, the difference in temperature between the air inside the excavation and the soil

becomes the predominant factor, to the detriment mainly of the panel width. This is consistent with the long

term steady state analysis carried out by BourneWebb et al. (2016) which showed heat transfer to be dominated

by the interface with the inside of the excavation. The effect of pipe spacing correspondingly decreases as time

progresses, but always remains among the top three parameters. Given the importance of both the temperature

excess between the wall and the excavation and the pipe spacing the results of this new analysis suggests that

equipping both sides of the wall with pipes over its full depth would therefore be beneficial for energy

efficiency. The results of the analysis with respect to pipe spacing can be also compared with the analysis

carried out by ICConsulten (2005) which suggested an optimal pipe spacing of between 40 cm and 60 cm

when also considering long term pay back periods and a balance between heating and cooling applications.

The third important parameter identified in Figure 7 is concrete conductivity. Its ranking varies but it always

remains in the top three. This suggest that where possible seeking to actively engineer the concrete mix for

thermal effectiveness would be beneficial. Measures could include using high silica content aggregate and

minimising the use of admixtures. None of panel width, concrete cover or fluid velocity are consistently

important parameters in the analysis. The latter is in accordance with other studies on energy piles (Cecinato

& Loveridge 2015; Loveridge & Cecinato 2016; Sterpi et al. 2014). Finally, the ratio of the excavation depth

to the wall depth is also seen to be of limited importance. This result was not expected given the effect the

excavation air temperature is seen to have on the energy exchanged. However, it is possible that this could be

more important at steady state which was not considered in this set of simulations.

6. Conclusions and Recommendations

The possibility of coupling the structural function of diaphragm walls with their exploitation as ground heat

exchangers has been explored in recent years resulting in a number of successfully implemented case studies.

However, there has remained a lack of systematic analysis to consider the parameters which govern the energy

efficiency of this technology. Using numerical simulation and statistical analysis this study has shown that:

1. For short term considerations the pipe spacing is the most important factor affecting energy efficiency

and this suggests that maximising the number of pipes installed is one route to optimisation. However,

it is also observed that the pipe spacing influence reduces with time and hence other factors including

long term payback periods need to be considered for finalising of design spacings.

2. In the long term the temperature excess between the wall and the excavation is the single most

important factor governing energy efficiency. This illustrates the point that “hot excavations” like

metro stations and shallow rail tunnels are particularly well suited for energy extraction, but poorly

suited for waste heat disposal. To take advantage of this additional renewable heat source then it is

suggested that the pipes be installed on both sides of the diaphragm wall in addition to optimisation of

spacing as indicated above.

3. The thermal properties of the concrete forming the wall are also of importance in energy efficiency.

Consequently, where possible it is recommended to engineer the concrete mix for maximum thermal

conductivity through use of silica rich aggregates and reduced application of admixtures.

This study represents a first high level study on an efficiency framework for diaphragm walls used for heat

exchange. Further work is required to consider other aspects in more detail, for example the effect of a

convective boundary condition inside a shallow tunnel should be accurately investigated. More detailed

analysis assessing the added efficiency of equipping both sides of the energy wall as a ground heat exchanger

would also be beneficial.
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Table 1 - Geometric Information from Constructed Energy DiaphragmWalls

Case &

References

Wall

Depth

D

Embedment

Depth1

D-H

Panel

Width

W

Panel

Length

L

Pipes spacing

(Ground

Side)

sp

Pipes on

Excavation

Side?

Pipe

cover

C

Pipe Size

(O.D.)

U2

Taborstrasse

Station,

Vienna

(Brandl et al.

2010;

Markiewicz

2004)

31m 10.45m 0.8m 0.53m Yes

60mm

(to steel,

pipes

inside

steel)

25mm

Shanghai

Museum of

Nature History

(Xia et al.

2012; Sun et

al. 2013)

30 –

38m
12m – 20m 1.0m 3.7m

1 U-loop per

panel
Yes 87.5mm 25mm

Bulgari Hotel

(formerly

Knightsbridge

Palace Hotel)

(Amis et al.

2010)

Up to

36m
11.65m 0.8m 0.84 (average) No 75mm

Dean Street

Station,

London (Rui

2014)

41m 12m 1.0m

Tottenham

Court Road

Station,

London

1.2m 3m 0.5m No

40mm

(pipes in

75mm

cover

zone)

35mm

Moorgate

Shaft, London

48.5m

to

52.4m

1.2m
0.5m

(average)
No 62.5mm 25mm

Arts Centre,

Bregenz,

Austria

(Brandl 1998)

Up to

28m
Up to 17m

0.5m

to

1.2m

A wavy or

slinky type

arrangement

was used

1 Including any slab thickness
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Table 2 - Heat Transfer Coefficients Adopted in Energy Geostructure Analysis.

Case & Source Scenario

Heat Transfer

Coefficient, h

(W/m2K)

Comments

Lainzer Tunnel, Austria.

Sensitivity analysis (ICConsulten 2005)

Metro tunnels &

stations
10 - 15

Generic Case.

General sensitivity analysis only (Bourne-

Webb et al. 2016; Bourne-Webb et al. 2015)

Not specified 2.5 - 25
Depending on wind

speed

Mongolian Road Tunnel.

Field study and analytical model (Zhang et

al. 2013; Nicholson et al. 2014);

Road tunnel 15

Not diaphragm wall,

but comparable

analysis

Bored Tunnel, London.

Analysis only (Nicholson et al. 2014)
Rail tunnel 5

Not diaphragm wall,

but comparable

analysis

Laboratory experiment.

Analytical and numerical studies (Kurten

2014)

Basements 7.7 Based on ISO 6946

Table 3 – Tunnel air temperatures.

Case & Source Scenario
Annual temperature

(°C)
Comments

Section LT24 Lainzer

tunnel (Brandl 1998)

Metro tunnels &

stations
5 to 15 In line with seasonal changes

U2 Vienna Metro line

(Brandl 1998)
Metro tunnel 10 to 20

Equal to outside air temperature in

summer, up to 20 °C higher than

outside temperature in winter

Tunnel in Czech Republic

(Duris et al. 2013)
Road tunnel

18 to 28 (summer)

and -5 to -15

(winter)

In phase with outside temperature

Budapest Metro (Ordody

2000)
Deep metro 15 to 20

Small lag compared with outside air

temperature

Victoria Line, London

Underground (Ampofo et

al. 2011)

Deep metro 22 - 31 Summer platform air temperature

Torino metro tunnel

(Barla & Perino 2015;

Barla et al. 2016)

Metro tunnel 12 - 27 In line with seasonal changes
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Table 4 - Parameters investigated in the parametric analysis.

Parameter number Parameters Lower value Upper value

1 Panel width, W (m) 0.8 1.2

2 Depth/excavation ratio, R (-) 1.25 2.0

3 Spacing of pipes, sp (cm) 25 75

4 Concrete cover to pipes, C (mm) 50 100

5 Fluid velocity, v (m/s) 0.2 1.2

6
Difference between soil and excavation air

temperature, T (°C)
2 6

7 Concrete conductivity, Ȝconc (W/mK) 1.5 3.0

Table 5 – Taguchi “L8” seven parameter set: (a) standard array and (b) application to the specific case study.

Parameter number

1 2 3 4 5 6 7

R
u
n
n
u
m
b
er

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Parameter

W

[m]

R

[-]

sp

[cm]

C

[mm]

v

[m/s]

T
[°C]

Ȝconc
[W/m/K]

R
u
n
n
u
m
b
er

1 0.8 1.25 25 50 0.2 2.0 1.5

2 0.8 1.25 25 100 1.2 6.0 3.0

3 0.8 2.0 75 50 0.2 6.0 3.0

4 0.8 2.0 75 100 1.2 2.0 1.5

5 1.2 1.25 75 50 1.2 2.0 3.0

6 1.2 1.25 75 100 0.2 6.0 1.5

7 1.2 2.0 25 50 1.2 6.0 1.5

8 1.2 2.0 25 100 0.2 2.0 3.0

(a) (b)

Table 6 - Properties of the materials involved in the validation analysis (Xia et al., 2012 and Sun et al., 2013).

Property Concrete Soil
Heat carrier

fluid

Bulk thermal conductivity, Ȝ [W/m/K] 2.34 1.74 0.58 
Bulk specific heat capacity, c [J/kg/K] 1046 1690 4200

Bulk density, ȡ [kg/m3] 2500 1800 1000

Porosity, n [-] 0 0.25 -

Specific storage, S [1/m] 10-4 10-4 -

Hydraulic conductivity, Kij [m/s] 0 10-4 -

Longitudinal dispersivity, ĮL [m] 5 5 -

Transversal dispersivity, ĮT [m] 0.5 0.5 -
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Table 7 - Thermal properties of the materials in the parametric analyses.

Property Concrete Soil

Heat

carrier

fluid

Bulk thermal conductivity, Ȝ (W/m/K) Depends

on the run
2.0 0.6

Bulk specific heat capacity, c (J/kg/K) 1600 1600 4200

Bulk density, ȡ (kg/m3) 2210 1900 1000

Porosity, n (-) 0 0.3 -

Specific storage, S [1/m] 10-4 10-4 -

Hydraulic conductivity, Kij [m/s] 0 10-4 -

Longitudinal dispersivity, ĮL [m] 5 5 -

Transversal dispersivity, ĮT [m] 0.5 0.5 -

Table 8 - Response table

Factors Results

R
u
n
n
u
m
b
er

W

[m]

R

[-]

sp

[cm]

C

[mm]

v

[m/s]
T
[°C]

Ȝc
[W/m/K]

q - 3 days q - 5 days q - 30 days q - 60 days

(W/m2) (W/m2) (W/m2) (W/m2)

1 0.8 1.25 25 50 0.2 2 1.5 30.8 24.6 15.1 13.3

2 0.8 1.25 25 100 1.2 6 3 33.5 24.8 13.9 11.8

3 0.8 2 75 50 0.2 6 3 23.2 19.0 9.8 7.7

4 0.8 2 75 100 1.2 2 1.5 22.0 19.3 11.7 9.8

5 1.2 1.25 75 50 1.2 2 3 31.8 26.8 15.7 14.0

6 1.2 1.25 75 100 0.2 6 1.5 18.8 15.9 7.2 5.5

7 1.2 2 25 50 1.2 6 1.5 37.2 27.6 10.9 8.1

8 1.2 2 25 100 0.2 2 3 38.8 30.7 16.8 18.4

Table 9 - Results of level average analysis after 3 days.

W

[m]

R

[-]

Sp

[cm]

C

[mm]

v

[m/s]
T
[°C]

Ȝc
[W/m/K]

Min 27.41 28.75 35.09 30.75 27.93 30.87 27.22

Max 31.65 30.31 23.97 28.31 31.13 28.19 31.84

Effect 4.23 1.56 11.12 2.45 3.20 2.68 4.62

Ranking 3 7 1 6 4 5 2

Table 10 - Results of level average analysis after 5 days.

W

[m]

R

[-]

Sp

[cm]

C

[mm]

v

[m/s]
T
[°C]

Ȝc
[W/m/K]

Min 21.94 23.04 26.94 24.52 22.58 25.36 21.85

Max 25.25 24.16 20.26 22.68 24.62 21.84 25.35

Effect 3.31 1.11 6.68 1.83 2.05 3.52 3.50

Ranking 4 7 1 6 5 2 3
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Table 11 - Results of level average analysis after 30 days.

W

[m]

R

[-]

Sp

[cm]

C

[mm]

v

[m/s]
T
[°C]

Ȝc
[W/m/K]

Min 12.63 12.97 14.17 12.86 12.21 14.81 11.21

Max 12.64 12.30 11.10 12.41 13.06 10.46 14.05

Effect 0.01 0.67 3.07 0.46 0.85 4.35 2.84

Ranking 7 5 2 6 4 1 3

Table 12 - Results of level average analysis after 60 days.

W

[m]

R

[-]

Sp

[cm]

C

[mm]

v

[m/s]
T
[°C]

Ȝc
[W/m/K]

Min 10.65 11.14 12.91 10.77 11.22 13.88 9.19

Max 11.49 11.01 9.24 11.37 10.93 8.26 12.96

Effect 0.84 0.14 3.68 0.60 0.29 5.62 3.77

Ranking 4 7 3 5 6 1 2

Figure 1 - Geometry parameters.
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Figure 2 – (a) Geometry of the wall (soil neglected for clarity) and (b) FE model of the validation test.

Figure 3 - Validation of the numerical approach (experimental data from Xia et al. (2012)) showing heat transfer

per unit pipe length against time.
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Figure 4 – Problem geometry for the parametric analysis: (a) vertical cut of the FE model, (b) vertical cut and (c)

horizontal cut of the wall panel assuming upper and lower values of pipe spacing.

Figure 5 - Results of the parametric analysis: (a) outlet temperature and (b) exchanged power per square meter

of wall surface.
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Figure 6 – Exchanged power per square meter of wall surface in the long term.

Figure 7 – Normalised effect of each parameter in terms of heat exchanged.


