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On the Analytical Formulation of Excess Noise in

Avalanche Photodiodes with Dead Space
Erum Jamil, Member, IEEE, J. S. Cheong, Member, IEEE, John P. R. David, Fellow, IEEE and Majeed M. Hayat,

Fellow, IEEE

Abstract—Simple, approximate formulas are developed to
calculate the mean gain and excess noise factor for avalanche
photodiodes (APDs) using the dead-space multiplication theory
(DSMT) assuming equal ionization coefficients for electrons and
holes. The accuracy of the approximation is investigated by
comparing it to the exact numerical method using recursive
coupled integral equations and it is found that it works for dead
spaces up to 15% of the multiplication width. The approximation
is also tested for real materials such as GaAs, InP and Si
for various multiplication widths, and the results found are
accurate within ∼15% of the actual noise, which is a significant
improvement over the local-theory noise formula. The results
obtained for the mean gain also confirm the recently reported
relationship between experimentally determined local ionization
coefficients and the enabled non-local ionization coefficients.

Index Terms—avalanche photodiode, ionization coeffecients,
gain, mean gain, excess noise factor, dead-space

I. INTRODUCTION

A
VALANCHE photodiodes (APDs) play an important role

in detecting low-level light due to their greater sensitivity

as compared to PIN diodes, and for this reason they are used

extensively in many optical systems [1], [2]. The increased

sensitivity comes from the APD’s gain that is the outcome of

the chain of electron/hole impact ionizations in a high-field

depletion (multiplication) region. Although the APD’s high

gain is an advantage, the accompanying excess noise, which

results from the stochastic nature of the impact ionization

process, is an undesirable effect that undermines the benefits

of the gain. For an APD, the dead space is defined as

the minimum distance that a newly-generated carrier must

travel in order to attain enough energy to be able to impact

ionize [3]. When the APD multiplication-region dimension is

in submicrons, the dead space becomes an important factor and

needs to be included in the calculation of the excess noise [4],

[5].

One of the first analytical models to calculate the multipli-

cation gain and the excess noise for APDs was developed

by McIntyre [6] without taking the dead-space effect into

account. This model, also known as the local ionization model,

assumed that an electron (hole) at position x will impact ionize

regardless of its ionization history. Consider a multiplication

region extending from x = 0 to x = w, with an electric

field applied in the negative x-direction and a photo-generated

electron-hole pair at x inside the multiplication region. This

electron-hole pair will start a chain of ionizations inside the

multiplication region, and all electrons [holes] will undergo,

on average, α(x′)dx [β(x′)dx] impact ionizations per unit

distance, dx, where 0 ≤ x′ ≤ w. The multiplication factor,

M(x), for this device is the average total number of electron-

hole pairs generated in the depletion layer from a single

electron-hole pair at x. The formula for the multiplication

factor was derived by McIntyre [6] as

M(x) =
exp(−

∫ w

x
[β(x′)− α(x′)]dx′)

1−
∫ w

0
[β(x′)exp(−

∫ w

x′
[β(x′′)− α(x′′)]dx′′)]dx′

.

(1)

Here, M(0) is the overall mean gain, labeled 〈G〉, for a device

with electron injection at location x = 0. In the special case

when the electric field is constant across the multiplication

region and the ionization coefficients are equal, we obtain

〈G〉 =
1

1− αw
.

The excess noise factor, used as a measure of APD’s gain

fluctuation [7], is denoted as F and was found to be [6]

F = k〈G〉+ (1− k)
(

2−
1

〈G〉

)

, (2)

where k is the ionization ratio, β/α. Since this model lacked

the inclusion of the dead space, it failed to give an accurate

representation of excess noise factor for devices with smaller

multiplication regions [4], [8], [9].

To account for the dead-space effect in APDs, Hayat et al.

developed the dead-space multiplication theory (DSMT) where

they derived pairs of recurrent coupled integral equations to

find the mean gain and excess noise factor. This model, called

the non-local model, incorporated the carrier history in its

calculations. Once the carriers have traversed the dead space,

they are called enabled, with enabled ionization coefficients,

α∗ and β∗, for electrons and holes [8], respectively. These

recursive integral equations were solved numerically [3], [9],

using an iterative approach, referred to in this paper as

the exact numerical method (ENM), with results confirmed

subsequently by both Monte Carlo simulations [10] as well as

experimental data [4], [8], [9]. Unlike McIntyre’s local-theory

model, however, there was a lack of closed-form formulas

for the mean gain and excess noise factor using the DSMT.

Analytical expressions for mean gain and excess noise factor

are useful in calculating other characteristics of the APD such

as the signal-to-noise ratio and the error probability in optical

receivers [11].

To address the need for analytical expressions for avalanche

multiplication in the presence of dead space, Spinelli et al.

solved the DSMT equations analytically using the first-order
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expansion of the recursive integral equations. Although their

work included the analytical solution for the mean gain [12],

it did not handle any excess noise calculations. Hayat et al.

found an approximate solution to the DSMT equations and

obtained closed-form approximate formulas for the mean gain

and excess noise factor for the case of unequal ionization

coefficients (k 6= 1) [13]. This approach has been termed as

the characteristic method (CM) [13] and although the formula

for the mean gain is relatively simple, the expression for excess

noise factor involves the inversion of 9 by 9 matrix.

In this paper, we extend the CM approach and obtain the

formulas for the mean gain and excess noise factor from [13]

by assuming k = 1. This is a valid assumption for APDs

where the multiplication width is small and the applied electric

field is high. This phenomenon is depicted in Fig. 1, where

the ionization parameters for Si, InP and GaAs have been

plotted as a function of the electric field. It can be seen that

as the applied electric field increases to the order of ∼106

V/cm, the ionization ratio, k, can be approximated as 1. This

approximation is useful in providing us with a simple analytic

expression to estimate the mean gain and the excess noise

factor in APDs.

We will also use the formulas derived in this work to

confirm the relationship between the enabled electron and

hole ionization coefficients, α∗ and β∗, and the experimental

electron and hole ionization coefficients, α and β. This rela-

tionship was initially found by Spinelli et al. [12] and recently

refined by Cheong et al. [14] with the inclusion of a physical

interpretation. This connection is useful in extracting enabled

ionization parameters, which cannot be measured directly,

from the experimental ionization parameters, which are readily

available in literature [14].

II. FORMULA FOR MEAN GAIN

We consider an electron (hole), born at location x inside

a multiplication region, with a constant electric field applied

in the negative x-direction. The electron can impact ionize

after traveling the dead space, de (dh in case of a parent

hole), with enabled ionization coefficients, α∗ and β∗, as

given in [3]. After the ionization event happens, both the

parent electron and secondary electron and hole must travel

a dead space de (dh) before they may impact ionize. By

applying the CM technique, Hayat et al. determined the first

and second moments of the random counts Z(x) and Y (x),
the total number of carriers generated by an initial electron

or hole, respectively, at position x in the multiplication

region [13]. The random gain is then G = 0.5(Z(0) + Y (0)),
which can be simplified to G = 0.5(Z(0) + 1) using the

initial condition, Y (0) = 1 [3]. After determining the first

and second moments of the random counts, z(x) = 〈Z(x)〉,
y(x) = 〈Y (x)〉, z2(x) = 〈Z2(x)〉 and y2(x) = 〈Y 2(x)〉, the

mean gain and the excess noise factor can be expressed as

〈G〉 = 0.5(z(0) + 1) (3)

and

F =
〈G2〉

〈G〉2
=

(z2(0) + 4〈G〉 − 1)

4〈G〉2
. (4)

Fig. 1: The enabled ionization parameters, α∗ and β∗, as a

function of the applied electric field for Si, InP and GaAs [14].

The encircled area highlights the ionization coefficients and

electric field across the APD devices where the assumption

k ≈ 1 is valid. As an example, for a GaAs APD with the

multiplication width = 0.05-0.1µm [4], which has k = 0.86

and mean gain = 8, the assumption of k ≈ 1 may be used to

get an estimation of the mean gain and the excess noise.

To find the mean gain for the case, α∗ = β∗, we will solve

the DSMT recursive integral equations using a method similar

to that used in [13]. We find the mean of the random counts by

starting with the differential form of the recurrence equations

(1) and (3) from [13],

z′(x)− α∗[z(x)− 2z(x+ de)− y(x+ de)] = 0 (5)

and

y′(x) + β∗[y(x)− 2y(x− dh)− z(x− dh)] = 0, (6)

with the boundary conditions z(x) = 1 if w−de ≤ x ≤ w and

y(x) = 1 if 0 ≤ x ≤ dh. Replacing β∗ with α∗ and assuming

that the electron and hole dead spaces are equal (de = dh =

d), we obtain

z′(x)− α∗[z(x)− 2z(x+ d)− y(x+ d)] = 0 (7)

and

y′(x) + α∗[y(x)− 2y(x− d)− z(x− d)] = 0. (8)

Here, to be able to find an analytical solution, we enforce the

boundary conditions only at x = w− d for z(x) and at x = d
for y(x). This simplification is the reason why, for the CM

technique, the formulas obtained are approximate in nature.

By applying this assumption, we can now take the general

solutions to be z(x) = c1e
rx and y(x) = c2e

rx, and solve for

c1 and c2. For a non-zero solution to c1 and c2, we arrive at

the following characteristic equation:

(r − α∗ + 2α∗erd)(r + α∗ − 2α∗e−rd) + α∗2 = 0. (9)

The solution to this equation gives a double root at r = 0,

which leads to solutions of the form, z(x) = c1 + xc′1 and

y(x) = c2 + xc′2. By inserting this solution into (5) and (6)
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Fig. 2: Mean gain, found from ENM and CM techniques, is

shown as a function of the ionization parameter, α∗w, for

d′ = 0, 0.1 and 0.15. These results hold for any avalanche

region for which the assumption, k = 1 is justified. The mean

gain found from Spinelli analytical formulation is also shown

for the case of d′ = 0.1 for comparison.

and comparing coefficients, we obtain α∗c′1 + α∗c′2 = 0 and

c′1+α∗c1+α∗c2+2α∗c′1d+α∗c′2d = 0. Next, by applying the

boundary conditions, z(w−d) = 1 and y(d) = 1, and solving

for the unknown coefficients, we find z(0). By substituting

z(0) in (3), we finally arrive at the expression for mean gain:

〈G〉 =
1 + 2α∗d

1 + 3α∗d− α∗w
,

which can be rewritten as

〈G〉 =
1 + 2α̃∗d′

1 + 3α̃∗d′ − α̃∗

, (10)

where α̃∗ = α∗w is the normalized enabled ionization co-

efficient and d′ = d/w is the normalized dead space. This

formulation for the mean gain also follows directly from the

mean gain expression using CM in [13] by applying the

limit, limα∗→β∗〈G〉, where 〈G〉 = ρ+erd

ρer(w−d)+erd
and ρ =

−α∗erd

(r−α∗+2α∗erd)
. On the other hand, by applying the same limit

to the analytical mean gain developed by Spinelli et al. [12],

obtained from applying the first order approximation to the

recursive equations, we get

〈G〉 =
1

1 + 2α̃∗d′ − α̃∗

, (11)

which differs in form and is less accurate than the expression

developed in (10), as can be seen in Fig. 2, even for d′ = 0.1.

We can isolate the effect of the dead space on the mean gain

by writing (10) in terms of McIntyre’s local-theory formula

and a correction term, which contains the dead-space effect,

and obtain

〈G〉 =
1

1− α̃∗
+

α̃∗d′(1 + 2α̃∗)

(α̃∗ − 1)(3α̃∗d′ − α̃∗ + 1)
. (12)

Fig. 3: The excess noise factor, F, as a function of the mean

gain, 〈G〉, is shown for both the ENM and CM techniques.

The normalized dead spaces of d′ = 0, 0.1 and 0.15 are con-

sidered for comparison and the effective McIntyre ionization

coefficient, keff is noted for each case and stated in the legend.

Clearly, for the special case of negligible normalized dead

space (d′ ≈ 0), the expressions for the mean gain from (11)

and (12) take the well-known form, shown in (13), and also

match the formula from [6]

〈G〉 =
1

1− α∗w
. (13)

III. FORMULA FOR EXCESS NOISE FACTOR

We now derive the expression for the excess noise factor

for the case, k = 1. To do this, we need the second moments

of Z(x) and Y (x), z2(x) and y2(x), respectively. We start by

taking the differential form of the recursive equations (2) and

(4) from [13] and substitute β∗ = α∗ to get

z′2(x)− α∗[z2(x)− 2z2(x+ d)− y2(x+ d)]

= −2α∗z(x+ d)(2y(x+ d) + z(x+ d))
(14)

and

y′2(x) + α∗[y2(x)− 2y2(x− d)− z2(x− d)]

= 2α∗y(x− d)(2z(x− d) + y(x− d)).
(15)

The general, homogeneous and particular, solution of such

a pair of inhomogeneous differential equations is a superpo-

sition of polynomials given by z2(x) = p1 + p2x + p3x
2 +

p4x
3 + p5x

4 and y2(x) = q1 + q2x + q3x
2 + q4x

3 + q5x
4.

By substituting these proposed solutions in (14) and (15),

comparing coefficients, and using the boundary conditions,

z2(w − d) = y2(d) = 1, we obtain twelve equations with

ten unknowns. By eliminating the redundant equations and

solving the remaining independent equations, we find that

the higher-order coefficients p4, p5, q4 and q5 are zero, which
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Fig. 4: The excess noise factor as a function of the mean gain is

shown for the ENM and traditional CM [13] method for k=0.9

and compared to the modified CM (k=1). The normalized dead

space, d′, is taken to be 0.15. It can be seen that the modified

CM gives a better approximation than the traditional method.

makes z2(x) = p1+p2x+p3x
2 and y2(x) = q1+q2x+q3x

2.

By solving for p1, p2 and p3, along with q1, q2 and q3, we

obtain

z2(0) =

3α∗3d3 + 5α∗3d2w + α∗3dw2 − α∗3w3 + 7α∗2d2

+ 6α∗2dw − α∗2w2 + α∗d+ 5α∗w + 1

(3α∗d− α∗w + 1)3
.

Next, by substituting z2(0) and the expression for the mean

gain (10) into (4), we finally arrive at the approximate form

of the excess noise factor:

F =
12α∗3d3 − 4wα∗3d2 + 16α∗2d2 − 4wα∗2d+ 6α∗d+ 1

(2α∗d+ 1)2(3α∗d− α∗w + 1)
,

which can be written in terms of the normalized quantities,

α̃∗ and d′, as

F =
12α̃∗3d′3 − 4α̃∗3d′2 + 16α̃∗2d′2 − 4α̃∗2d′ + 6α̃∗d′ + 1

(2α̃∗d′ + 1)2(3α̃∗d′ − α̃∗ + 1)
.

(16)

To isolate the effect of the dead space on the excess noise

factor, we rewrite (16) in terms of McIntyre’s local-theory

formula and a correction term, which contains the dead-space

effect, and obtain

F =
1

1− α̃∗
+ f(d′), (17)

where the correction term, f(d′), is

−12α̃∗4d′3 + 4α̃∗4d′2 − 16α̃∗3d′2 + 4α̃∗3d′ − 6α̃∗2d′ − α̃∗d′
[

d′3(−12α̃∗4 + 12α̃∗3) + d′2(4α̃∗4 − 20α̃∗3 + 16α̃∗2)

+ d′(4α̃∗3 − 11α̃∗2 + 7α̃∗) + 1− 2α̃∗ + α̃∗2
]

.

Again, for the special case of negligible normalized dead space

(d′≈ 0), the expressions for excess noise factor from (16) and

(17) take the familiar form (13), from [6], as expected.

Fig. 5: The excess noise factor, F , shown as a function of the

mean gain for various multiplication widths of GaAs. The CM

technique predicts the excess noise far better than McIntyre’s

local-theory (LT) model with equal ionization coefficients

assumption.

To check the accuracy of (17), we computed the excess

noise factor from both the CM and ENM techniques, as a

function of the mean gain for normalized dead spaces, d′ =

0, 0.1 and 0.15, as shown in Fig. 3. The effective McIntyre

ionization ratio, keff , stated in (2), is fitted to the data from the

different normalized dead spaces considered and also shown.

As the normalized dead space becomes non-negligible, error

is introduced in the excess noise factor obtained from the CM

technique. For example, for d′ = 0.15, we observe an error of

15% in the excess noise factor for a mean gain value of 20.

Therefore, we can say that there is good agreement between

the excess noise factor values found from the CM and ENM

techniques up to normalized dead spaces of d′ = 0.15.

We note here that not only is the formula for excess noise

factor found using the modified CM much simpler than solving

the 9 by 9 matrix in the traditional CM [13], it also matches the

ENM results better than the traditional method for cases when

k can be approximated as 1, as shown in Fig. 4 for k = 0.9.

The improvement in the approximation is because the k =

1 assumption in the modified CM formula tends to increase

F , which, in turn, compensates for the underestimation that

the traditional CM approach is known to exhibit. In addition,

there are two ways to enforce the k = 1 condition in practice:

by calculating the electron ionization coefficient and equating

it to the hole ionization coefficient, or vice versa. When the

ionization parameters for the dominant ionization parameters

are chosen, a reduction in the excess noise factor is seen (up

to 15%); hence we choose the ionization coefficients for the

dominant mechanism in the material.

To see how the formula for F , as shown in (16) or (17),

works for estimating the noise in real devices, we calculate

the excess noise factor as a function of the mean gain for

different materials. The methodology is as follows: we fix
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Fig. 6: Relative errors between the excess noise factors, found

by comparing the ENM to McIntyre’s local-theory model (with

k 6= 1) and the CM technique, are shown. The errors are

plotted as a function of various multiplication widths of GaAs,

InP and Si APD devices for a mean gain of 22. We use these

values to determine the multiplication widths for which the

CM approximation may be used practically.

the multiplication width of the device in consideration, use

the ionization coefficients of the dominant carrier and assume

k = 1. The dead spaces are calculated for the dominant

carrier as a function of the applied field and (10) and (16)

are then applied to obtain the approximate mean gain and

excess noise factor. This is done for different applied fields

and hence the approximate F vs. 〈G〉 graph for that particular

multiplication width is obtained. This methodology is then

repeated for different multiplication widths and we obtain

approximate curves for excess noise factor as a function of the

mean gain. For comparison, the mean gain and excess noise

factor are found for the k = 1 case of McIntyre’s local-theory

model, while for ENM technique we consider the scenario of

unequal ionization coefficients (k 6= 1). The results are shown

in Fig. 5 for the case of GaAs, using the enabled ionization

parameters and ionization threshold energies reported in [14],

for different multiplication widths.

For a more accurate analysis, we consider the k 6= 1 case

for both the ENM and McIntyre’s local-theory model and

document the relative errors in noise (defined as the difference

in the excess noise factor with respect to that from the ENM

technique divided by the excess noise factor from ENM) for

the CM technique and McIntyre’s local-theory model. We do

this for GaAs, InP and Si, with results shown in Fig. 6 for

a gain of 22. For smaller multiplication widths (≤ 700nm),

the relative error between the McIntyre’s local-theory model

as compared to the ENM is greater than or equal to 50%,

and hence it fails to predict the excess noise factor accurately

for smaller multiplication widths of these materials. The CM

technique, on the other hand, provides an excess noise value

within 15% of the ENM for a range of multiplication widths

for GaAs, InP and Si APDs, even though the normalized dead

space exceeds 15%.

The expectation, while calculating the mean gain and excess

noise, is that the approximation should work well for materials

with k ≈ 1 (such as GaAs), and that we should attain lower

multiplication widths using such materials. However, not only

are the mean gain and excess noise factor dependent on the

set of ionization parameters chosen from literature (and hence

differing k), they are also sensitive to the d′ value at which

the calculation is performed. For all materials considered, the

minimum multiplication width that gives excess noise within

15% of the ENM is found when d′ is no larger than 0.24.

The range of materials and multiplication widths for which

the CM approximation may be used to predict the mean gain

and excess noise factor are listed in Table I. The range of

widths listed here are reasonable for thin APD devices such

as the silicon CMOS-compatible pn devices developed in [15]

by Hossain et al.

Material Multiplication widths (nm) d′

GaAs[9] 220 – 475 0.107 – 0.180

GaAs[14] 400 – 680 0.135 – 0.195

InP[9] 137 – 200 0.176 – 0.210

InP[14] 230 – 400 0.142 – 0.200

Si[14] 110 – 140 0.210 – 0.240

TABLE I: Material widths for which the CM techniques

predicts noise within 15% of the ENM. The upper limit of d′

corresponds to the lower limit of the multiplication width and

vice versa. From [14], the second set of ionization parameters

are used for GaAs and Si whereas the third set is used for InP.

Next, for a particular device width, we look at the depen-

dence of the relative error in noise on the mean gain for the

CM technique as well as the McIntyre’s local-theory model.

The results for GaAs, InP and Si are shown in Fig. 7. For

the CM technique, the relative error becomes constant after a

mean gain of 20, and hence, it can predict the excess noise for

the APD devices listed in Table I for even higher gains without

increasing the relative error in the excess noise calculation.

Finally, we summarize the three main factors that govern

the accuracy of the reported simplified formula for the ex-

cess noise factor in real devices. First, any violation of the

k = 1 assumption causes the approximate CM formula to

overestimate the excess noise factor, F , assuming that the

dominant carrier, i.e., the carrier with the higher ionization

coefficient, initiates the avalanche process. Second, our choice

to set the ionization coefficient of the non-dominant carrier to

be equal to that of the dominant carrier makes the effect of

dead space more significant (since a smaller field is required

to achieve the same ionization coefficient value, which leads

to a larger dead space) and, in turn, forces F to decrease. Of

course, the opposite choice will lead to an overestimation of

F . Third, the increased value of the normalized dead space

(e.g., when the width of the multiplication region is reduced

by design) also helps underestimate F . Together, these inter-

playing factors limit the widths for which the excess noise
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(a)

(b)

(c)

Fig. 7: Relative errors in the excess noise calculated from

McIntyre’s local-theory (LT) model (k 6= 1) and the CM

technique, as compared to ENM technique for three different

widths of (a) GaAs, (b) InP and (c) Si [14]. As the gain

increases, the relative error associated with the CM technique

approaches a constant value.

factor approximation may be successfully used. Consequently,

for a given material there exists a range of multiplication-

region widths (e.g., as shown in Table I) over which all three

competing factors balance out and we obtain a good accuracy

in the approximation of the excess noise factor.

IV. RELATIONSHIP BETWEEN THE ENABLED AND

EXPERIMENTAL IONIZATION PARAMETERS

The first attempt at finding the relationship between the

enabled (α∗ and β∗) and experimental (α and β) ionization

coefficients was made by Spinelli et al. [12], where they

equated the multiplication factor found from the first-order

approximation of the DSMT and the experimental results.

However, they could not explain the physics behind the re-

lationship developed in their findings. Recently, Cheong et al.

have developed a similar relationship between the two kinds of

ionization coefficients by taking into account the physics of

the ionization events. This was done by equating the mean

ionizing lengths from the DSMT and the local model and

comparing them for the same electric field in identical p-i-

n structures [14]. Their results are confirmed here, for the

special case of k = 1. We start with the equation to evaluate

mean gain in an APD using the local ionization theory and

with the assumption of equal experimental coefficients [6]

〈G〉 =
1

1− αw
. (18)

Next, we equate (18) to the mean gain from (10), and simplify

the expression to obtain

α =
1− (d/w)

(α∗)−1 + 2d
. (19)

Here, α is called αdevice by Cheong et al. [14], and (19)

matches the relationship found in [14].

The device ionization coefficient in (19) can be used in

the traditional formula (18) to find a mean gain value that

matches the value found through the CM but it fails to

predict the excess noise factor correctly, which is as expected.

Therefore, to find the excess noise factor in thin APDs with

non-negligible normalized dead spaces, we must either use the

ENM technique to solve the DSMT recursive integral equa-

tions, or the formula given in (17) for a good approximation

for which we require the enabled ionization coefficients.

One way to find the enabled ionization coefficients is by

fitting the gain and noise data to the DSMT directly [8], [9].

Using this method, we can search for the values of α∗and β∗

(by solving for 〈G〉 and F after varying α∗ and β∗) that yield

specified gain and excess noise factor. A simpler way to find

the enabled ionization parameters is by using the relationship

between the enabled and experimental ionization coefficients,

found by Cheong et al. [14]. Once the enabled ionization

coefficients are known, we can easily predict the mean gain

and excess noise factor, using (10) and (16), respectively.

V. CONCLUSIONS

We have found simple approximate formulas to calculate the

mean gain and excess noise factor for APDs using the dead-

space multiplication theory under the assumption of equal
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ionization coefficients for electrons and holes. The electric

field was assumed to be constant across the multiplication

region and the formulas derived require the use of enabled

ionization coefficients. The formula for the excess noise factor,

shown in (16) or (17), performs very well for a range of

multiplication widths and materials (listed in Table I), yielding

errors that are below 15% when compared to the exact values

for the excess noise factor. By using the enabled ionization

coefficients in the approximate formulas derived in this work,

the mean gain and the excess noise factor in APDs can be

easily estimated.
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