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Abstract 

The ordering of words in category fluency lists is indicative of the semantic distance between 

items in conceptual memory.  Several studies have concluded from structural analyses of 

such data, using cluster analysis or multidimensional scaling, that the semantic memory of 

patients with schizophrenia is more disorganized than that of controls. Previous studies have 

based their analyses on a measure of average inter-item dissimilarity devised by Chan et al. 

(1993).  Here we derive a new and improved method of determining dissimilarity and show 

that when this measure is applied to the fluency lists of patients with schizophrenia the 

average pattern of organization for the animal category has similar structure to that of 

controls, but with greater variability between individuals. 

 

Keywords: category fluency, cluster analysis, multidimensional scaling, semantic memory, 

schizophrenia 
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A new dissimilarity measure for finding semantic structure in category fluency data with 

implications for understanding memory organization in schizophrenia 

 

In the category fluency task participants are asked to name as many exemplars as possible of 

a given semantic category in a short space of time.  Data from this task, typically using the 

category ‘animals’, have been the subject of many studies—with adults, children, and clinical 

populations—aimed at elucidating the structure of semantic memory (e.g. Gruenewald & 

Lockhead, 1980; Henley, 1969; Wixted & Rohrer, 1994), determining how this structure 

changes during normal development (see Crowe & Prescott, 2003), or becomes disorganized 

through mental illness (see below).   

A pioneering study into semantic memory deficits in clinical groups was performed 

by Chan and her co-workers (Chan et al., 1993) in patients with Alzheimer’s disease.  These 

researchers used the category fluency output of patients, and of age-matched normal controls, 

to construct representations of semantic memory organization using the statistical methods of 

hierarchical cluster analysis (HCA) and multi-dimensional scaling (MDS). A key 

contribution of that article was the development of an algorithm to derive a measure of the 

dissimilarity, or semantic distance, between pairs of concepts based on how frequently the 

two items appeared together in participant’s fluency lists, and the typical distance (i.e. 

number of intervening items) between the two items in those lists.  By calculating this 

measure for all possible pairs of a given set of category items the average pattern of 

conceptual organization for this set can be reconstructed, either as a hierarchical tree (using 

HCA), that links items into clusters and clusters into super-ordinate groups, or as a ‘cognitive 

map’ (using MDS) in which relationships between items are indicated by their relative 

positions in space. The Chan et al. dissimilarity measure, together with these statistical 

methods for finding structure in group data, were subsequently used to investigate memory 



 Semantic Structure 4 

organisation in various clinical populations, and, in particular, in several studies of patients 

with schizophrenia (Aloia, Gourovitch, Weinberger, & Goldberg, 1996; Moelter et al., 2001; 

Paulsen et al., 1996; Rossell, Rabe-Hesketh, Shapleske, & David, 1999; Sumiyoshi et al., 

2001; Sumiyoshi et al., 2005a, b).  All of these studies have argued that conceptual memory 

organization in patients suffering from schizophrenia is more disorganized than that of 

controls. For instance, Aloia et al. (1996) claimed that patients with schizophrenia “appear to 

lack organization and logical associations within their semantic network” (p. 271), while 

Sumiyoshi et al. (2001) claimed evidence for a “deterioration of the semantic structure […] 

that is specific to patients with schizophrenia, and is not affected by cultural backgrounds” (p. 

196).  This reported loss of organization has been variously argued to include the 

disintegration of super-ordinate categories, the breakdown of strong inter-item associations, 

the disappearance of organizing dimensions corresponding to concept properties, and the 

emergence of bizarre or unusual concept groupings. 

The goal of the current article is to re-assess the evidence for memory disorganization 

in schizophrenia as revealed by the category fluency task. Our starting point will be an 

analysis of the problem of inferring semantic distance from fluency data, leading to the 

derivation, from first principles, of a new measure of inter-item dissimilarity. On the basis of 

this analysis we will then review aspects of the methodology used in previous studies and 

identify two significant limitations affecting most prior research.  First, we will show that the 

prevailing measure of item dissimilarity, proposed by Chan et al. (1993), provides a sub-

optimal method for deriving estimates of semantic distance. We will demonstrate that this 

measure only partially corrects for differences in list length between participants, and is 

distorted, as a measure of semantic distance, by differences in item frequency.  Second, we 

will argue that by not controlling for differences in average list length between groups the 

data-sets used in some previous studies have over-sampled the fluency output of controls 
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relative to that of patients. This over-sampling may have resulted in reconstructions of 

memory organization in which the category structure of patients appears differently 

organized simply because it is based on less data.  

Following our analysis and review of methodological issues, we will present category 

fluency data from patients with schizophrenia and age-matched controls that are balanced to 

control for differences in list-length between groups.  We will then apply our newly-derived 

measure of inter-item distance to this data-set and generate structural (cluster and scaling) 

analyses of semantic memory organization that can be compared across groups and 

contrasted with analyses computed using the Chan et al. measure.  We will show, on the basis 

of these analyses, and of other statistical investigations of the dissimilarity data, that 

conceptual memory in schizophrenia, as revealed by the fluency task, is less disorganized 

than suggested in previous studies. 

Patients with schizophrenia reliably generate fewer items in the category fluency task 

than controls (see Bokat & Goldberg, 2003, for a meta-analysis of relevant studies).  

However, there is considerable controversy concerning the extent to which this result, and 

findings of other semantic memory impairments in schizophrenia, arise from a specific 

problem in memory organization or from a general cognitive impairment leading to 

difficulties in accessing or searching a lexical store that is more-or-less intact (for recent 

surveys of this literature see Bokat & Goldberg, 2003; Elvevåg, Weinstock, Akil, Kleinman, 

& Goldberg, 2001; Giovannetti, Goldstein, Schullery, Barr, & Bilder, 2003; Green, Done, 

Anthony, McKenna, & Ochocki, 2004; Vinogradov et al., 2003). Structural analyses of data 

from the category fluency task can contribute to this debate by helping to characterise the 

ways in which patient fluency data deviate from that of controls over and above these basic 

differences in fluency output. A re-assessment of the methodology used in such studies could 
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therefore have significant implications for the broader understanding of  semantic memory 

impairment in schizophrenia. 

 

Derivation of a Novel Measure of Inter-item Distance 

Verbal fluency data consist of lists of words generated, in production order, by each 

participant.  The serial nature of speech ensures that, to the extent that fluency data reflect 

conceptual organization, the high-dimensional structure of semantic memory is compressed 

to a one-dimensional sequence of words.  To recover useful information about the underlying 

semantic structure many sequences are therefore required, each providing a complementary 

sample of the underlying representation.  Although these multiple samples can be taken from 

single participants tested on successive occasions, the more usual practice is to acquire 

fluency lists from many participants and hope that similarities in memory organization will 

emerge when the data are pooled.   

The raw data in the fluency task, from which a measure of semantic distance can be 

derived, are the set of inter-item distance pairs. If we let a and b be the two items occurring 

at index positions (using the positive integers 1, 2, 3, …) i
al

 and i
bl

 in a given listing l then 

we can calculate the ‘raw’ inter-item distance d
abl

 as the absolute difference of these values 

d
abl

= i
al
− i

bl
.   The distance d

abl
 is zero between an item and itself, one between 

adjacent items, two for a pair separated by just one intervening item, and so forth. So, for 

example, in the list [dog cat rabbit] the pairs [dog cat] and [cat rabbit] will be at distance 

one, and [dog rabbit] at distance two. The task of extracting useful semantic distance 

estimates from such data is complicated, however, by the problem that different participants 

(or the same individual tested at different times) generate lists of varying length. In an 

appendix to this article provided on the Supplemental Data Web Page we show that these 

differences in list length are important, and derive a principled method for combining 
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measures of inter-item distance across multiple fluency lists that takes due account of them.  

This normalized distance measure, which is based on a calculation of cumulative frequency 

can be written as follows 

D(d
abl
,n

l
) = (2d

abl
n
l
− d

abl

2
− n

l
) n

l
(n

l
−1). (1) 

where n
l
 denotes the number of items in the list l.  

Participants in fluency tasks, and particularly those with memory difficulties, may 

also mention specific items more than once in their fluency lists. Therefore, we also derive 

(see Supplemental Data Web Page) a modified version of (1) to deal appropriately with lists 

containing repetitions. Specifically, we select our ‘raw’ measure of inter-item distance 

ˆ d 
abl

= min∀a,b∈l
d

abl
 to be the smallest of all such distances, define o

al
 and o

bl
 to be the 

number of occurrences in l of items a and b respectively, and define the weighted distance 

measure 

ˆ D 
abl
= D( ˆ d 

abl
,m

abl
)[ ]
λ

abl

 (2) 

where m
abl
= n

l
− (o

al
+ o

bl
− 2) and λ

abl
= o

al
o
bl( )

−2 3
.  Hence, for example, for the pair [dog 

cat] in the list [dog cat rabbit dog], d= 1 (minimum of 1 and 2),  m= 4 – (2 + 1 -2)= 3, 

andλ = 2( )
−2 3

= 0.63.  Note that when neither a or b is repeated in a given list Equation 2 

reduces to Equation 1, even if the list contains repetitions of other items. 

 

Combining estimates of inter-item distance across participants 

The group estimate of the dissimilarity between two items, a and b, can now be 

obtained by combining the normalized distances ˆ D 
abl

 calculated from individual fluency lists.  

Letting T
Gab

 be the total number of co-occurrences of items a and b (i.e. the number of lists 
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for group G that contain both items), we define the mcf, or mean cumulative frequency, metric 

such that 

mcf(G,a,a) = 0, mcf(G,a,b) =
1

T
Gab

ˆ D 
abl

l∈G;a,b∈l

∑
 

 
 

 

 
 . (3) 

In other words, mcf(G,a,b), is a measure of inter-item dissimilarity for group G that is 

zero (maximally similar) between an item and itself, greater than zero for all non-identical 

items a and b, and increases (towards a maximum bound of 1.0) with the normalized inter-

item distance between a and b averaged over all group members who named both items at 

least once in their category list. Finally, we define the set of items A and the dissimilarity 

lower-half matrix MCF
G,A

 with elements mcf(G,a,b) corresponding to all possible 

combinations of a,b a ≠ b( )∈ A  found in the fluency lists of group G. 

 

Comparison with the Chan et al. Measure of Inter-item Dissimilarity 

Next we compare the mcf metric with a dissimilarity measure proposed by Chan et al. 

(1993) and used in all subsequent structural analyses of category fluency data for clinical 

groups. Using the notation developed above, this prevailing measure, which we will refer to 

for convenience as the dis (for dissimilarity) metric, can be written as 

dis(G,a,a) = 0, dis(G,a,b) =
N
G

T
Gab

2

d
abl

n
ll∈G;a,b∈l

∑
 

 
 

 

 
 , (4) 

where N
G

 is the total number of lists generated by the participant group. Using this 

metric we can also calculate the dissimilarity half-matrix DIS
G,A

 defined over the set of items 

A for group G.  
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The dis and mcf metrics differ both in the way that distances are calculated within the 

list of a single participant, and in how they are combined across participants. In an appendix 

provided via the Supplemental Data Web Page we consider both sources of difference and 

demonstrate that both introduce a degree of distortion to the dis metric.  First, the dis measure 

uses division by list length (nl) to generate a within-list, normalized distance measure; we 

show that this normalization method significantly under-estimates the correct frequency-based 

measure (Equation 1) across much of its range. Second, in combining estimates across 

participants, we can see from Equation 4 that the dis metric does not take a simple average of 

the set of normalized inter-item distances (this would be division by T
Gab

 as in Equation 3) but 

instead weights this average by N
G
T
Gab

(giving N
G
T
Gab

2  overall). We show that this 

weighting introduces a confound of the intended measure of inter-item dissimilarity with item 

production frequency such that, all else being equal, pairs composed of high frequency items 

are accorded smaller inter-item distances than pairs composed of medium or low frequency 

items. Thus, for example, the pair [dog elephant] could end up being rated as more similar, as 

a result of being named in the animal lists of most participants, than the pair [cheetah leopard] 

which will likely be named by just a few. Finally, it is also worth noting that the dis metric 

does not make any allowance for repeated items within lists, an omission that could have 

significant consequences if the clinical population of interest shows greater levels of 

perseveration than controls. 

 

Balancing Sample Size when Comparing Patient and Control Groups 

The above analysis indicates that the dissimilarity measure used in all previous structural 

analyses of category fluency data from clinical groups has several deficiencies that may lead 

to biased estimates of inter-item dissimilarity. There is therefore a strong case for re-

evaluating clinical data from this task using the newly-formulated mcf metric to determine 
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whether the semantic disorganization observed in earlier studies persists when this method of 

distance estimation is used.  Before doing so, however, it is worth noting a second 

methodological issue, affecting most previous studies, which is the balance (or imbalance) in 

the amount of data used when making comparisons between patients groups and controls. 

Specifically, although all studies that have performed structural analyses of fluency data from 

patients with schizophrenia have shown that patients generate fewer words than controls, this 

difference in output is often not controlled for when calculating average inter-item 

dissimilarity.  In several studies (Aloia et al., 1996; Moelter et al., 2001; Elvevåg and Storms, 

2003, Sumiyoshi et al., 2005a) the number of control participants has been equal to or greater 

than the number of patients, which means that analyses for the latter group will have been 

based on far fewer item pairs. For instance, Aloia, et al. (1996) tested 28 patients and 32 

controls, selecting 11 high-frequency animal names for detailed investigation and reporting 

that patients with schizophrenia generated significantly fewer of these target items (mean 5.7) 

than controls (mean 7.0).   These initial imbalances in group size and average fluency output 

are exacerbated by the way in which the number of raw inter-item distances scales with the 

number of item combinations. Indeed, from the data provided, we can estimate that the 

control group in the Aloia et al. study generated approximately 80% more distance measures 

than the patient group.1  Based on substantially fewer samples, the dissimilarity matrix for the 

patient group is likely to have contained noisier estimates of inter-item distance than that for 

the controls. Differences between the cluster trees or scaling analyses based on these matrices 

might then be due to this imbalance rather than to any more fundamental difference between 

the groups.  There have only been two studies involving patients with schizophrenia (Paulsen 

et al., 1995; Sumiyoshi et al. 2001) in which the patient group has outnumbered the control 

group by an amount sufficient to compensate for this difference in verbal fluency output. 
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The issue of balancing the number of raw inter-item distances across experimental 

group is particularly important because the clustering and scaling methods employed in 

previous studies treat all matrix elements identically (i.e. as carrying equivalent amounts of 

information).  At the same time, however, the nature of category fluency data is such that 

some item pairings—even of, in themselves, high-frequency items—occur at relatively low 

frequencies. If estimates for these low frequency pairings are based on a very small number 

of observations (possibly just one), this can contribute considerable noise to the dissimilarity 

matrix and may generate substantial distortion in the resulting clusters and maps. As a result 

of these concerns, in the study reported below, care was taken to ensure that the number of 

raw inter-item distances was balanced between the control and patient groups (rather than 

balancing the number of participants in each group).  We also provide statistics concerning 

the number of item pairings on which the structural analyses are based,2 and directly measure 

the variance in the dissimilarity estimates generated by patient and control groups.  We will 

show that by partialing out the effects of group differences in production frequency in this 

way we can formulate a clearer picture of the differences in semantic organization between 

patients and controls, as revealed by the category fluency task.  

 

Method 

Participants 

Forty patients diagnosed with schizophrenia and twenty-eight normal control volunteers were 

tested for this study. All participants were male and spoke English as their first language. 

Exlusion criteria included: neurological disorder, epilepsy, hypertension, previous episode of 

unconsciousness, significant difficulties in hearing, or an alcohol or drug dependence. 

Demographic variables for the two participant groups, together with appropriate statistical 
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comparisons and effect sizes, are summarized in Table 1. Participants were aged between 18 

and 47 years. Using an alpha level of 0.05, patients did not differ significantly from controls 

in age but did have fewer years of formal education. 

The patient group was recruited from the caseloads of National Health Service 

psychiatrists in the Sheffield area, and diagnosed by experienced psychiatrists on the basis of 

medical history and appropriate tests. All patients met the DSM – IV criteria (American 

Psychiatric Association, 1994) for chronic schizophrenia. All were medicated, 31 (77.5%) on 

atypical and 9 (22.5%) on typical antipsychotics. Of those treated with atypicals, 17 were 

receiving olanzapine, 9 clozapine, 3 risperidone, and 2 quetiapine. The chlorpromazine 

equivalent mean daily dose across all patients was 474.0 mg (s.d. =  339.3). The age of first 

diagnosis ranged from 14-45, with average age of onset 23.45 years (s.d. 6.92). 32.5% were 

diagnosed before age 20, and 97.5% before the age of 45.  The mean time since diagnosed 

was 9.33 years (s.d. 5.72).  At least 35% of patients were diagnosed as being of paranoid sub-

type (not all patients were given a sub-type diagnosis). Control participants were recruited via 

word of mouth and by posters displayed in hospitals and surgeries. 

 

TABLE 1 ABOUT HERE 

 

Procedure 

All participants (patients and controls) were given a battery of neuropsychological 

tests, administered by an appropriately qualified psychologist. This included the National 

Adult Reading Test (NART) (Nelson, 1982), and a verbal fluency test for the category of 

‘animals’. The patient group also underwent a clinical interview with a psychiatrist who 

administered the Scale for Assessment of Negative Symptoms (SANS) (Andreasen, 1984a), 

and the Scale for Assessment of Positive Symptoms (SAPS) (Andreasen, 1984b).  
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For the category fluency test each participant was asked to name as many animals as 

possible in sixty seconds.  Responses were recorded on audio-tape and transcribed to a 

computer database by a native English speaker. Following transcription of the fluency data, 

plural names were re-coded using the singular form (e.g. geese became goose), but infant, 

gender-specific or breed names were not converted to the more generic form (e.g. puppy, 

bitch, or greyhound were not recoded as dog). Statistics relevant to the interpretation of the 

fluency data, including matrices of inter-item dissimilarity scores, were generated using 

custom software written by the authors. Additive Tree (addtree) hierarchical cluster analyses 

(Sattath & Tversky, 1977), were subsequently generated from the dissimilarity matrices using 

Corter’s (1982) ADDTREE/P program, whilst MDS representations were created using the 

SPSS ALSCAL program (Takane, Young, & de Leeuw, 1977). An alpha level of 0.05 was 

used for all statistical comparisons reported below. 

 

Results 

A number of cognitive measures relating to the category fluency task, together with statistical 

comparisons and effect sizes, are summarized in table 1. The patient group named a total of 

703 items in their animal fluency lists of which 31 were repeated items (within lists), 

generating a mean of 16.80 unique items (item count after excluding repeats).  The control 

group listed 648 animal names in all, of which 15 were repeated items, giving an average of 

22.61 unique items. Since patients had lower NART scores than controls, an ANCOVA was 

performed on these measures of list-length with NART as a covariate,3 this showed that 

patients generated significantly fewer total items and unique items than controls independent 

of their NART score.  

Some authors have suggested that semantic memory is particular disintegrated in 

specific sub-groups of patients with schizophrenia (Paulsen et al., 1996; Rossell et al., 1999; 
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Sumiyoshi et al., 2001; Sumiyoshi et al., 2005a), therefore we here summarize some specific 

statistics concerning tests for clinical symptoms. Scores for negative symptoms (on the 

SANS scale) were in the range 1–18 with a median value or 9, and in the alogia (poverty of 

speech) sub-scale scores were in the range 0–4 with a median value of 1.  47.5% of patients 

had a high alogia score, according to the criteria suggested by Sumiyoshi et al. (2005a), of 2 

or greater. Scores for positive symptoms (on the SAPS scale) were in the range 0–8 with a 

median value of 4, and on the delusion sub-scale of this test in the range 0–4 with a median 

of 1.  45% of patients had a high score on the delusion sub-scale, according to the criteria 

suggested by Rossell et al. (1999), of 2 or more. 

 

Identifying high frequency items in verbal fluency data 

Fluency data for the animal category were first analyzed in terms of production 

frequencies, that is, the number of participants in each group that named a particular animal. 

Across both groups, participants generated a total of 206 different animal names. Production 

frequencies for 39 of these names generated by at least 10% of participants in both patient 

and control groups were calculated, and found to be strongly correlated (r= 0.87). Nine of the 

ten most frequently named animals were the same in both groups. These results indicate that 

patients with schizophrenia are similar to controls in terms of the animal names that typically 

appear in their category lists.  

Twelve animals names—cat, cow, dog, elephant, giraffe, horse, leopard, lion, 

monkey, mouse, tiger, sheep—were named by at least 30% of participants in both groups and 

were therefore selected for investigation using clustering and scaling methods.  This follows 

the practice of earlier studies where analyses of semantic organization in clinical groups have 

been based on similar sets of high frequency items.4 This set of twelve high frequency items 
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is denoted A12 below, while the full set of 206 items generated across both groups is denoted 

A206. 

Items belonging to A12 appeared a total of 257 times in the verbal fluency listings of 

patients, each naming, on average, 6.43 items. The control group listed A12 items 222 times 

with an average of 7.93 items per participant. Statistical results relevant to these high 

frequency items are also summarized in table 1.  Since controls generated significantly more 

target items than patients it was important to consider the impact of this on measures of inter-

item dissimilarity (as explained above, this was the motivation for including more patients 

than controls in the current study).  For the sixty-six animal pairs generated by A12, the 40 

participants in the patient group produced a total of 802 item co-occurrences with a median 

number of 11 per animal pair, while the control group generated a total of 809 co-

occurrences, median 11.5. Wilcoxon signed rank tests (Table 1) showed that the two groups 

did not differ significantly in terms of the total number of co-occurrences per animal pair or 

in the proportion of co-occurrences involving repeated items.  Thus we conclude that the two 

samples were well matched in terms of the number of raw inter-item distances used to 

compute the dissimilarity matrices. 

 

Comparison of dissimilarity metrics on the basis of frequency distribution 

In order to compare the general behavior of the two dissimilarity metrics defined earlier we 

first examine the frequency distributions that arise when both are applied to the 68 fluency 

lists generated by the patient and control groups combined (henceforth abbreviated by the 

group name ALL), and to the 206 animal names listed by either group. Figure 1 shows this 

comparison both for all elements of the two dissimilarity half-matrixes, MCF
ALL,A206

 and 

DIS
ALL,A206

,5 and for the two underlying measures of normalized inter-item distance, ˆ D 
abl

 

and d
abl

n
l
, on which they are based. The shape of the distributions shown here are consistent 
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with our mathematical analysis of the two dissimilarity measures (see Supplemental Data 

Web Page). First, the frequency-based measure of normalized inter-item distance, ˆ D 
abl

, 

generates an essentially flat distribution with a mean of 0.50. When values of ˆ D 
abl

 are 

averaged across several lists to calculate the mcf metric this generates a mildly humped 

distribution (a consequence of some regression to the mean) again centered on a value of 

0.50.  By comparison, the measure based on list-length, d
abl

n
l
, generates a distribution that 

is significantly skewed towards the lower end of the range (mean 0.34). In averaging values 

of d
abl

n
l
, and weighting these by the inverse of the number of item co-occurrences (1/Tgab ), 

the dis metric generates a distribution that is even more skewed with a mean of just 0.26 and 

more than half of the data-points falling in the first 20% of the normalized range. 

 

FIGURE 1 ABOUT HERE 

 

Having demonstrated the behavior of the two metrics in relation to the full set of 

inter-item distances derived from our verbal fluency data, we focus, in most of the remaining 

analyses, on the set A12 of high frequency animal names and the sixty-six item pairs they 

give rise to.  

 

Correlational analyses of dissimilarity measures 

We next consider some correlational analyses of the performance of our two 

dissimilarity measures.  

First, the elements of the MCF
ALL,A12

 and DIS
ALL,A12

 matrices show a correlation of 

0.69 for the fluency data of the combined participant group.  Thus, although the two metrics 

are similar, less than half of the variability ( r2= 0.48) of one is captured by the other.   
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The correlation between the patient and control groups, on either metric, is also worth 

investigating as it gives an indication of the similarity of the underlying semantic structures 

in the two groups and of the capacity of the selected metric to distinguish such similarity.  

The full correlations between the two groups are 0.67 for DIS
PATIENTS,A12

 vs. DIS
CONTROLS,A12

 

and 0.75 for MCF
PATIENTS,A12

 vs. MCF
CONTROLS,A12

.   However, these correlations may reflect 

other resemblances between the groups than those concerning just semantic distance. In 

particular, we noted earlier that the dis metric varies with frequency of item co-occurrence, 

hence the observed relationship may partly reflect the high correlation (0.87) between 

production frequencies in the two groups.  A better measure of the similarity in semantic 

structure, per se, is the partial correlation after removing the effect of item frequency.6 This 

reduces the between-group correlation to 0.48 for the dis metric while it remains high, 0.72, 

for mcf, thus the latter appears to capture more of the similarity in semantic structure between 

patients and controls. 

 

Cluster analyses of semantic structure using different dissimilarity measures 

The above results demonstrate substantial differences between the new dissimilarity measure 

and the prevailing approach.  Past research using the dis metric has focused on cluster and 

scaling analyses as the principle means of identifying differences in semantic memory 

organization between clinical and control populations, it is therefore appropriate that we 

compare the two measures in relation to such analyses. 

Additive tree analyses were carried out, for each participant group, using the A12 set 

of high frequency items and the two alternative dissimilarity metrics.  This gave rise to the 

four trees shown in Figure 2 derived from the matrices DIS
PATIENTS,A12

, DIS
CONTROLS,A12

, 

MCF
PATIENTS,A12

, and MCF
CONTROLS,A12

.  
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Each addtree is composed of nodes (horizontal lines in Figure 2) and arcs (vertical 

lines). Items are represented by external nodes and are formed into clusters by internal nodes; 

all nodes are joined by arcs. The distinctiveness of a cluster and the degree of dissimilarity 

within a cluster are both indicated by the length of nodes, with the longest lengths indicating 

the greatest dissimilarity. Thus distinctive clusters will be separated by long internal nodes, 

while tightly-knit clusters will have short external nodes. For any two items in the tree, their 

dissimilarity is indicated by the sum of the lengths of the nodes in the path between them 

(again longer= more dissimilar). Note that the length of arcs has no significance. 

 

FIGURE 2 ABOUT HERE 

 

All of the trees shown in Figure 2 show a general decomposition into two main 

superordinate clusters7—one of ‘domestic’ animals (i.e. those likely to be found in a home or 

on a farm) that includes cat, dog, horse, cow, and sheep, and another of ‘wild’ animals (such 

as, in the United Kingdom, might be found in a zoo) that includes elephant, giraffe, monkey, 

lion, leopard, and tiger. Beyond this primary decomposition, which is consistent with 

previous analyses of animal category fluency data in normal populations (see Crowe and 

Prescott, 2003), there are substantial differences between the trees. Perhaps most noticeably, 

trees derived from the mcf measure have longer internal nodes and shorter external nodes 

than the equivalent trees for the dis measure. There is also a similar, though less pronounced, 

difference between the control and patient groups on both metrics.  These differences in 

proportion are quantified in Figure 3 which shows the ratio of the sum of internal node lengths 

to the sum of external node lengths across both participant groups and dissimilarity measures.  

This result indicates that the mcf measure generates more distinctive and closely-knit clusters 
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than the dis measure, and that, on either measure, the control group generated more distinctive 

clusters than patients.  

FIGURE 3 ABOUT HERE 

 

The relatively weak similarity structure of the DIS
PATIENTS,A12

 addtree is also shown by 

the absence of sub-clusters (in Figure 2a) reflecting strong inter-item associations such as cat–

dog, lion-tiger, and elephant–giraffe, all of which are present in the MCF
PATIENTS,A12

 addtree 

(2c). When the trees generated from the MCF
PATIENTS,A12

 and MCF
CONTROLS,A12

 matrices are 

compared (2c vs. 2d) there are just two structural differences. First, mouse, which is in the 

‘domestic’ animal cluster for the patient group, appears as a ‘wild’ animal in the tree 

generated by control group.  Second, the sub-cluster elephant–giraffe which is present for the 

patient group is absent for controls. Neither of these differences is indicative of greater 

semantic memory disorganization in the patient group. 

There are two useful statistical measures of the ‘goodness of fit’ of an addtree to a 

matrix of inter-item distances both of which are given in Table 2 for the trees shown in Figure 

2.  The first is the stress value (specifically, Kruskal’s stress measure 1) which ranges from 0 

(best possible fit) to 1 (worst possible fit) and summarizes the extent to which distances 

between items in the tree accurately capture the distances provided in the original matrix.   

High stress values may indicate that a tree is not an adequate representation of the similarity 

structure of the data. The stress values obtained for the trees in our analysis are in the range 

0.040–0.068 indicating a ‘good’ degree of fit based on Kruskal’s (1964) guidelines. The 

second measure is R2 which describes the proportion of the variability of the distance data in 

the matrix that is accounted for by the tree, representations that fit the data well having high 

R2 values (i.e. close to 1).  For the trees shown in Figure 2, R2 varies between 0.70 and 0.89, 
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showing that a fair proportion of the variability is captured in all cases, but that more 

variability is accounted for in the control group addtrees than in those for the patient group. 

Note that these goodness of fit statistics do not particularly distinguish between the dis and 

mcf metrics. 

TABLE 2 ABOUT HERE 

 

MDS analyses of semantic structure 

MDS analyses were carried out, for each participant group, using the A12 set of high 

frequency items and the two dissimilarity metrics.  Each analysis used a Euclidean distance 

model with interval measurement. Two-dimensional solutions were selected, as in previous 

investigations (Aloia et al., 1996; Moelter et al., 2001; Paulsen et al., 1996; Rossell et al., 

1999; Sumiyoshi et al., 2001; Sumiyoshi et al., 2005a), to meet the criterion that the number 

of stimuli minus one should equal, or be greater than, four times the dimensionality (Kruskal 

& Wish, 1978). This procedure gave rise to the four maps shown in Figure 4 derived from the 

DIS
PATIENTS,A12

, DIS
CONTROLS,A12

, MCF
PATIENTS,A12

, and MCF
CONTROLS,A12

 matrices.  The items in 

each map are also coded according to aspects of the relevant addtree analysis.  Specifically, 

items belonging to the ‘domestic’ and ‘wild’ animal clusters are indicated by filled diamonds 

and crosses respectively, and items that form a two node sub-cluster in the relevant tree are 

linked by a dotted line to indicate this association.  

The superordinate clusters (‘domestic’ and ‘wild’ animals) are not clearly separated in 

the map generated by the dis metric for patient data (4a), although they are better 

distinguished in that generated by the controls (4b). At the same time, those items that are 

clustered in the addtree analyses for this metric (e.g. the two item sub-clusters) are often 

relatively far apart in the corresponding MDS map. Indeed, the organization of the dis maps 

appear, in part, to reflect the strong relationship between this measure and production 

frequency noted earlier, with high-frequency items tending to be grouped closer to the origin.8 

This influence has the effect of masking inter-item relationships due to semantic distance.  By 
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comparison, the mcf metric produced relatively distinct super-ordinate clusters for both 

patients and controls. Pairs of associated items are also located closer together in these maps 

consistent with the relatively tightly-grouped sub-clusters seen in the addtrees.  

Previous authors have sought to interpret the dimensions of maps of animal fluency 

data in terms of semantic categories or properties. For instance, Chan et al. (1993) suggested 

that maps for normal adults will have a principle dimension based on the ‘domestic/wild’ 

distinction, and a secondary dimension based on size.  Whilst the horizontal dimension in the 

maps shown in Figure 4 is consistent with a ‘domestic/wild’ axis, the evidence for a size 

dimension, along the vertical axis, is comparatively weak. For instance, giraffe and mouse 

which would be expected to lie at the extremes of the size scale, are both located in lower half 

of the map for three of the four analyses. 

Goodness of fit statistics for each map are given in Table 2.  Stress values are in the 

range 0.15–0.28 indicating relatively poor ‘goodness of fit’ according to Kruskal’s (1964) 

guidelines, and compared with the equivalent addtree analyses. The R2 values again indicate a 

better fit for control participants than for patients with either dissimilarity measure. Less 

variance is accounted for by the maps of patient data (R2= 0.64, 0.60) than the corresponding 

addtrees (0.70, 0.71).  

 

FIGURE 4 ABOUT HERE 

 

Differences between patients and controls on the category fluency task for animals 

The above structural analyses have identified strong similarities in semantic 

organization in patient and control groups as revealed by the animal category fluency task, 

suggesting that many of the differences identified in previous studies may be due to the 

choice of a sub-optimal measure of inter-item distance, or im-balanced sampling of the data 

from the two subject groups. However, our analyses do confirm one pattern found in most 

previous studies which is that structural analyses generally show a poorer fit for data derived 

from patient groups than from controls (see Chan & Ho, 2003 for review).  Our addtree 
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analyses also provide some further indication, in the ratio of internal to external node lengths 

(I/E), that the clusters found in patient data are less distinctive.  In the following, therefore, 

we describe some additional investigations intended to clarify how performance in the 

category fluency task differs between patients with schizophrenia and controls.  

 

Variability in performance of the category fluency task 

Hitherto we have focused on analyses using the mean normalized inter-item distance 

between pairs of animal names (the mcf metric).  However, it is also possible to look at the 

variability in the inter-item distance measure for each item-pair.  An appropriate measure for 

this is the standard error of mean as this statistic adjusts for the number of samples available 

(Note: use of the standard error is no longer recommended, see correction on p.54).  Figure 5 

shows the distribution of this measure for the patient and control groups generated for the 

sixty-six item pairs in A12 group of animal names. The graph shows that the distribution of 

error-size contains more high values for the patient group than for controls, indeed, the 

average standard error was found to be approximately 16% larger for patients (0.081. s.d. 

0.030) than for controls (0.070, s.d. 0.021). A multivariate analysis of variance of this data 

showed a significant difference between patient and control groups when the mcf measure 

and its standard error are treated as dependent variables (F=3.20, p=0.04).  Univariate 

analysis further showed that there was negligible difference in the mcf scores (F=1.31, p= 

0.25), but a significant difference in the standard error scores (F= 6.22, p= .014, Cohen’s d= 

0.43) (using a Bonferroni adjusted alpha level of 0.025). We therefore conclude that there is 

greater variance in the normalized distance measures generated from the patient data.  

 

FIGURE 5 ABOUT HERE 
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Split-half comparisons 

The differences in response variability between patients and controls were further 

confirmed by split-half correlation comparisons between groups. For this purpose the patient 

and control groups were first partitioned into two equally sized half-groups (i.e. 2x 20 

patients, and 2x 14 controls). In order to control for any between-group differences in these 

half-samples, three further partitions into two equal-sized sub-groups were then made for 

each full group, with each partition chosen so as to be maximally dissimilar from all others.   

This procedure therefore generated four split-half comparisons of the patient and control 

groups respectively, and sixteen half-group comparisons between patients and controls. For 

each half-group G, MCF
G,A12

was then calculated.9 The four correlations between matrices for 

patient half-groups were in the range 0.33–0.50 (median 0.39), compared with 0.57–0.65 

(median 0.61) for control half-groups. suggesting that the control group are less variable than 

the patient group.  The sixteen correlations between patient half-groups and control half-

groups were in the range 0.40–0.73 (median 0.57) thus the patient half-groups also appear to 

resemble controls more than they do each other.  

 

Semantic organization of medium and high-frequency items for the patient group 

We have shown that the use of an appropriate normalized distance measure, and of 

balanced data sets, can produce structural analyses for patients with schizophrenia in which 

the decomposition into semantic categories is similar to that seen in a control group. Since 

the analyses performed in earlier studies were based on sets of upto 16 animal names, it is 

worth investigating whether the outcomes obtained here are the particular consequence of 

analyzing just the twelve most high frequency items (A12) in both groups.   

To address this question a further analysis was performed using all the animal names 

listed by at least 20% of the patient group, with the added constraint that each item should co-
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occur with every other at least twice (to ensure that every element of the dissimilarity matrix 

was computed from at least two measurements). This resulted in a set of 20 animal names 

(A20) that generated 190 pairs with a median rate of co-occurrence (per item pair) of 7 (range 

2–27) in the patient fluency data. The addtree generated for the resulting dissimilarity half-

matrix MCF
PATIENTS,A20

 is shown in Figure 6. As is clear from the figure, the addition of eight 

further medium frequency items brings about an increase in the number of clusters but does 

not reveal significant disintegration of memory organization.  The new tree has clusters of 

‘wild’ animals (that includes a sub-cluster of big cats and another of large herbivores), 

‘domestic’ animals, farm animals, and reptiles.  Only one item, monkey, appears out of place 

(weakly linked to the reptile cluster), possibly because there are no closely related animals, 

such as other primates, in the A20 set.  Since we included more medium frequency items in 

this analysis the dissimilarity measures generated from the data are more variable than with 

the A12 set, this is indicated by the higher average standard error per matrix element of 0.094 

(s.d. 0.034).  

 

FIGURE 6 ABOUT HERE 

 

 

Discussion 

The category fluency task is one of a range of methodologies that can be used to gain insight 

into conceptual memory organization (Henley, 1969; Storm, 1980; Chan et al., 1993; Crowe 

and Prescott, 2003) and has the particular advantages of being a natural task to perform, a 

straightforward one to explain to participants, and one where the data can be collected 

quickly and processed easily. Against these advantages there are a number of drawbacks. For 
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instance, there is the problem of missing data (subjects will generally not list all the items of 

interest), the need for multiple fluency lists (since the data is intrinsically one-dimensional), 

and the presence of noise and of extraneous influences in the data (other factors, beside 

concept similarity, influence word ordering). To overcome these limitations an appropriate 

algorithm must be applied to derive estimates of semantic distance, and a reasonably large 

number of participants needs to be investigated to ensure that low frequency items (and item 

pairs) are adequately sampled.  In this article we have presented methodological advances 

addressing both of these issues that can be summarised as follows. 

Our primary objective was to derive a principled method for estimating inter-item 

dissimilarity using the raw inter-item distance data that can be obtained from fluency lists.  In 

this regard we have described a new dissimilarity measure, the mcf metric, that improves on 

that used in previous studies in several ways.  First, the method for controlling for differences 

in list-length is derived from an analysis of the relevant frequency distribution and thus has a 

clear rationale.  Second, the resulting normalized distance measure is evenly distributed 

between 0 and 1 and therefore does not introduce any systematic distortion.  Third, estimates 

from multiple participants are combined by simple averaging and without the introduction of 

confounding influences related to item production frequency. When the mcf metric is used to 

generate cluster and map analyses of fluency data the results show clear evidence of semantic 

structure with clusters that are distinctive and closely knit. The extent to which this improves 

over earlier approaches is shown perhaps most clearly in Figure 3 where we demonstrated 

that a measure of the strength of clustering in an addtree—the ratio of internal to external 

node length—is much higher (indicating stronger clusters) for the mcf metric than for the 

prevailing dis metric. 

With regard to the issue of sample size we have also made a methodological 

innovation relative to earlier research. Specifically, we have a identified a likely confound in 
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the results from some previous studies arising from the over-sampling of control fluency data 

compared to that of patients, and due to the reduced fluency output of the latter group.  To 

address this issue, we have analyzed data from patient and control groups where the sample 

size was selected so that the number of item-pairs (rather than the number of participants) 

was balanced across groups. It might be objected that this approach simply replaces one 

uncontrolled difference between the two participant groups with another—the number of 

items pairs might now be balanced, but group size is now no longer matched.  With respect to 

this issue we would point out the following.  First, a number of the statistical analyses we 

have performed, e.g. the correlations and analysis of variance, make comparisons between 

the mean normalised distance measures (and their standard errors) for item-pairs across 

groups, and do not combine this data within a group.  Thus for these analyses, which show 

that patient semantic structures are more variable, the data is appropriately controlled since 

the average number of samples per item-pair is the same in both groups.  Second, whilst the 

structural analysis do bring together the distance measures for item pairs within a group—and 

hence the difference in group size could have some impact—it should be noted that our 

methodology results in a more heterogeneous sample of patients than of controls. This greater 

variability should work against the semantic structures generated for the patient group 

showing as much distinct structure as for the controls. That the structural analyses generated 

for patient groups shows similar structure to that of controls therefore cannot be as the result 

of our sampling methodology. 

The results of our analyses using this balanced data set and the new dissimilarity 

metric suggest that, overall, in relation to data from the category fluency task, the category 

‘animals’ does not appear to be systematically disorganized in patients with schizophrenia as 

compared to controls. In the following we consider several specific ways in which memory 
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for this category might have been distorted and compare the results of the current study with 

those previously reported.  

 

Organization of the animal category into ‘wild’ and ‘domestic’ animals 

Perhaps the strongest finding from previous structural analyses of animal fluency data (see 

Crowe and Prescott 2003, for review) is that subjects, of all ages, tend to differentiate ‘wild’ 

animals, such as elephant, giraffe, lion, and tiger, from domestic ones such as dog, cat, horse, 

and cow.  This ‘wild/domestic’ distinction is usually identified with one of the main axes in 

scaling analyses of animal semantic space and in cluster analyses by the presence of two or 

more large and distinct clusters in which wild and domestic animals do not mix. With the 

possible exception of Rossell et al. (1999), previous studies comparing schizophrenic and 

control groups have found strong evidence for this distinction in the fluency lists generated 

by controls (Aloia et al., 1996; Moelter et al., 2001; Paulsen et al., 1996; Sumiyoshi et al., 

2001; Sumiyoshi et al., 2005a).  Most analyses of patient data, however, suggests that this 

decomposition is either partially disintegrated (Moelter et al., 2001; Sumiyoshi et al., 2005a) 

or almost entirely absent (Aloia et al., 1996; Sumiyoshi et al., 2001). In the current study all 

analyses of both control and patient data showed a clear split between wild and domestic 

animals. The clustering, however, was much less distinctive when generated using the dis 

metric than with the mcf metric.  Relatively weak clusters generated by the dis metric will be 

more easily disrupted by the increased variability in patient data relative to controls, and this 

may explain why the wild/domestic distinction appears to be disintegrated in some studies. 

Interestingly, Paulsen et al. (1996) who conducted one of the few studies to test substantially 

more patients than controls, also found a fairly clear decomposition along a wild/domestic 

axis in their patient data.  
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When medium frequency animal names are analyzed together with high frequency 

ones it becomes clear that a principal determinant of memory organization for this category is 

the environmental context in which different animals are commonly encountered (Storm, 

1980; Crowe and Prescott, 2003). Thus, typically, there are separate clusters of animals found 

in the home, on the farm, or in the zoo. A similar pattern is shown in figure 6 where we 

analyzed patient data for twenty animal names. This result suggests that, on average, memory 

organization in schizophrenia is also similar to the normal adult population for less 

prototypical members of the animal category. 

 

Associations between strongly-related items 

A second robust finding from the psychological literature is the presence of strong associative 

links between specific animal pairs such as cat–dog, lion-tiger, and horse–cow (e.g. Grube 

and Hasselhorn, 1996).  Such associations are most easily identified in cluster analyses where 

two items with relatively short external nodes are linked to a larger cluster, or the main tree, 

by a relatively long internal node (as, for instance, for cat-dog in figure 2d).  In scaling 

analyses strong associations may appear as items that are in close proximity to one another.   

One of the most striking findings of the study by Aloia et al. (1996) was the absence of such 

links in their cluster analysis of patient data, whereas strong associations between several 

stereotypical animal pairs were clearly evident in their equivalent analysis of control data.  

Other studies, however, have not shown such a prominent difference—strongly associated 

pairs appear in the cluster analyses of patient data performed by Moelter et al.  (2001) and of 

non-deluded patients tested by Rossell et al. (1999).   In the current study a fairly dramatic 

difference can be seen between the mcf and dis metrics (see figure 2) whereby the strong 

associations identified by the mcf metric are either absent or significantly weaker in the 

analyses generated using the dis metric.   This finding suggests that previous studies, all of 
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which have used the latter metric, may have significantly underestimated the presence of 

such associations in patient data. 

 

 Organization of the animals category according to size 

Since Henley (1969), various authors (e.g. Storm, 1980) have suggested that an important 

dimension along which semantic memory for the animal category is organized relates to 

physical size. In studies involving patients with schizophrenia, however, this ‘size’ dimension 

is clearly shown in only one scaling analysis of control data (Paulsen et al., 1996) and is 

either missing altogether (Moelter et al., 2001; Rossell et al., 1999; Sumiyoshi et al., 2005a), 

or relatively weak (and therefore open to alternative interpretations) in others (Aloia et al., 

1996; Sumiyoshi et al., 2001). Structural organization according to physical size was not 

evident in any of the scaling analyses reported in the current article.  Given this mixed 

evidence for a size dimension in control groups, the absence of an equivalent dimension in 

scaling analyses of patient data does not provide strong support for the hypothesis of a 

deterioration of semantic organization in schizophrenia.  There are two further reasons to be 

sceptical about arguments for semantic disorganization based on the absence of a size 

dimension in scaling analyses.  First, as Storms, Dirikx, Saerens, Verstraeten, and De Deyn 

(2003) point out, MDS is an algorithm that finds the best-fit mapping from a complex data-

set (here the matrix of inter-item distances) into a low-dimensional space (here a 2D plane), 

and hence there is no reason to expect that the dimensions of the resulting projection will 

have any straight-forward interpretation.   Second, as was reported above, the MDS solutions 

obtained here tend to have poor ‘goodness-of-fit’ statistics as measured against the widely 

accepted Kruskal (1964) guidelines, and when compared to the equivalent addtree analyses10 

(see table 2). These results indicate that two-dimensional spatial models may be less 
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appropriate than cluster-based models as a means for representing concept similarity data for 

the category animals (see also Rossell et al. 1999).  

 

Greater variability in fluency data from patients with schizophrenia 

The current study presents several findings that are consistent with the wider literature on 

impaired performance by patients with schizophrenia on the category fluency task. First, in 

common with many previous studies (see Bokat & Goldberg, 2003 for review), the patients 

tested here generated significantly fewer items in their category lists than controls after 

allowing for differences in verbal intelligence. Second, when the dissimilarity estimates 

(elements of the dissimilarity matrix) obtained from patients and controls were compared the 

former were shown to have greater variability (higher mean standard error). This difference 

cannot be explained as a consequence of patients generating fewer items in their lists as 

patient and control group sizes were specifically chosen such that, on average, the number of 

participants contributing to each element of the dissimilarity matrix did not differ between the 

two groups. Patients were also found to be less internally consistent than controls on split-

half correlation measures. Indeed, the dissimilarity matrices for patient sub-groups had higher 

correlations with those for control sub-groups than with each other. This pattern, which 

matches previous findings by Elvevåg and Storms (2003), suggests that whilst the average 

category structure may be similar between patients and controls (as shown in our structural 

analyses), in patients there is less consistency across individuals.  

There has been considerable debate in the literature as to whether the impaired 

performance of patients with schizophrenia on the category fluency task is best understood as 

arising from a specific problem in memory organization, or from a more general cognitive 

impairment leading to difficulties in accessing or searching a lexical store that is more-or-less 

intact (see e.g. Bokat & Goldberg, 2003; Elvevåg et al., 2001; Giovannetti et al., 2003; Green 
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et al., 2004; Vinogradov et al., 2003). Evidence favouring the memory impairment hypothesis 

includes a recent meta-analysis showing that patients with schizophrenia are 

disproportionately impaired in category fluency relative to letter fluency (Bokat & Goldberg, 

2003). Since letter fluency is thought to be less reliant on semantic processing than category 

fluency, this result suggests that performance on the latter is due, at least in part, to 

disorganization of semantic memory structure in addition to any general deficit in attention or 

retrieval that could be expected to effect both tasks.  Structural analyses of data from the 

category fluency task can contribute to this ongoing debate by helping to characterise the 

ways in which patient fluency data deviate from that of controls over and above these basic 

differences in word production. For instance, some studies have claimed that analysis of 

schizophrenic fluency lists reveals unusual or bizarre structure (Paulsen et al., 1996; 

Sumiyoshi et al., 2005a) that would be difficult to explain as anything other than a distortion 

in the underlying knowledge representation. In our study we have shown that patient data is 

more variable than that of controls after controlling for differences in total fluency output, but 

we have not found any evidence to support stronger claims of systematic semantic memory 

disorganization in schizophrenia.  

As pointed out by Elvevåg and Storms (2003) and Storms et al (2003), cross-sectional 

analyses, such as those presented here, that can reveal common patterns of organization or 

distortion within a group, are less informative where there are significant, but unrelated, 

differences between individuals. Thus there are two possible explanations for the greater 

variability seen in our patient data that are not distinguished by the current study.  The first 

possibility is that there are no interesting underlying differences in memory organization 

from one patient to the next. The observed variability might then be best characterised as due 

to increased ‘noise’ in the semantic networks of individuals with schizophrenia, or in the 

cognitive processes that sample these networks during performance of the fluency task.  Such 
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an outcome would be consistent with evidence that thought processes in schizophrenia may 

be effected by episodes of chaotic activity that disrupt normal chains of thought (Paulus & 

Braff, 2003). The second possibility is that patient memory is not intrinsically noisier but 

simply more eccentric or more idiosyncratic than in normal controls, in other words, that 

distortions in semantic memory may show an interesting pattern in relation to each 

individual’s clinical condition or life history.  Further investigation of these issues will 

require the use of different methodologies from the group analyses provided here using, for 

instance, longitudinal studies. 

 

Semantic organization in patient sub-groups 

Some authors have suggested that semantic memory is particularly disintegrated in specific 

sub-groups of patients with schizophrenia. First, Paulsen et al. (1996) have suggested that 

memory for the animal category is most disorganized in patients of the paranoid sub-type 

(compared with other sub-types) and in patients in whom schizophrenia was first diagnosed 

before the age of 45.  Second, Rossell et al. (1999) have suggested that there is more memory 

disorganization in deluded patients (i.e. those with SAPS delusion scores of 2 or greater) 

compared to the non-deluded.  Finally, Sumiyoshi and co-workers (2001, 2005a) have made 

similar claims for patients with very early onset schizophrenia (first diagnosed before age 

20), low vocabulary scores (WAIS-R 7 or less), or with high levels of alogia (SANS alogia 

scores of 2 or greater). The wide variety of sub-groups implicated by these studies raises 

doubts as to whether the semantic deficit in schizophrenia is specific to any one sub-group 

but is consistent with the possibility that memory impairment is greater in patients affected 

from an early age or exhibiting more profound psychiatric symptoms.   

As noted in the methods section, the schizophrenic group analyzed in the current 

study included a substantial proportion of patients belong to most of the sub-groups listed 
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above, thus it seems unlikely that the findings we have reported are due to the failure to 

sample critical sub-populations that are most prone to semantic memory deficit. One limiting 

factor in the current study is that the patient sample was entirely male. However, since there 

is little evidence of gender-specific differences in verbal fluency in people with schizophrenia 

(see Paulsen et al. 1996), it seems unlikely that this alone can account for the differences 

between the current findings and those of earlier studies.   

One of the benefits of investigating patient sub-groups is that these are likely to be 

more homogenous in terms of symptoms (and potentially their underlying causes) than the 

schizophrenic population as a whole (Sumiyoshi et al., 2005a). Thus we believe that further 

investigations of specific patient sub-groups would be worthwhile to identify whether the 

findings of these earlier studies can be replicated using the new dissimilarity metric proposed 

here. 

 

Effects of medication 

There is good evidence to suggest that atypical antipsychotic medications may have an 

ameliorative effect on some of the cognitive deficits seen in schizophrenia (see, e.g. Harvey, 

Green, McGurk, & Meltzer, 2003).  In relation to the category fluency task, several studies 

have reported an increase in the number of words generated by patients after treatment with 

the atypical drugs used in the current study (Buchanan, Holstein, & Breier, 1994; Lee, 

Thompson, & Meltzer, 1994; McGurk, Lee, Jayathilake, & Meltzer, 2004; Meltzer & 

McGurk, 1999; Harvey et al., 2003; Stip et al., 2003).  It should be noted, however, that the 

effect sizes in these studies are relatively small11, do not restore function to normal levels, and 

that a number of studies involving olanzapine (the medication used by almost half of the 

patients investigated here) have not shown a significant improvement in fluency output 

(Cuesta, Peralta, & Zarzuela, 2001; Purdon et al., 2000). Further, in the current study, none 
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of the patients were treated with ziprasidone, which is possibly the most potent atypical with 

regard to impact on cognitive dysfunction (Harvey et al., 2004). A recent study by Sumiyoshi 

et al. (2005b) used MDS and hierarchical clustering analyses of animal fluency data to 

investigate the possible effects of treatment with atypical drugs on semantic memory 

organisation.  This work showed some evidence for better organisation following six weeks 

of treatment with atypicals (either olanzapine or ziprasidone) in that it became possible to 

discern a wild-domestic split in the resulting MDS analyses that was not evident at baseline. 

However, for both drug treatments the resulting cluster analyses still showed substantial 

disintegration of these super-ordinate categories. Since Sumiyoshi et al. used the prevailing 

dis metric, the results obtained in that study will have been affected by the distortion that we 

have shown to arise from the use of that measure.   Since the majority (77.5%) of the patients 

in the current study were on atypical medication, differences in drug treatment compared to 

earlier studies are a possible factor in explaining the presence of a wild/domestic 

decomposition in our analyses generated using the dis metric. The structural differences we 

have described between analyses generated using the dis and mcf metrics are, however, 

clearly independent of any medication effects.    

 

The use of the category fluency task as a tool for investigating conceptual structure 

Good estimates of human conceptual memory structure are not easy to obtain.  Psychologists 

have traditionally approached this problem by adopting concept similarity as an indicator of 

how concepts are organized in memory (see, e.g. Medin, 1989), and have then set about 

obtaining multiple measure of concept similarity between different item pairs. For instance, 

one option is to present participants with many different triads—e.g. [cat cow dog]—asking 

them to select the two most similar items in each case (e.g. Henley, 1969; Chan et al, 1995); 

another is to collect priming data since concepts that are good primes for one another can also 
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be assumed to be semantically related (e.g. Neely, 1991); a third is to collect data on word 

associations (e.g. Henley, 1969).  Whilst these approaches differ in a number of ways, they 

all have in common that individuals must generate a large number of responses in order that a 

full matrix of item-to-item comparisons can be generated.  By comparison, the category 

fluency task is quick and easy to administer, and, since it is frequently used as a diagnostic 

tool, fluency data is readily available for many clinical groups without the need for special-

purpose testing.  This ease of use should not be allowed to mislead us, however, as to the 

utility of this test for understanding conceptual memory organisation. By pooling data across 

a sufficiently large pool of subjects, as we have done here, the fluency task can provide a 

quick, if somewhat fuzzy, snapshot of the typical pattern of concept similarity. However, if 

the goal is to obtain a picture of the semantic organisation on an individual basis, or to 

explore differences within, say, a specific clinical population, data from the fluency task, 

particularly in its shortened diagnostic form, cannot substitute for more comprehensive 

testing using something like triadic comparison.  

Having obtained concept-similarity data from a fluency, triad, priming, or word 

association study a matrix will have been generated consisting of a very large number of pair-

wise comparisons.  The use of some data reduction algorithm is then essential to make sense 

of all these measurements. Structural analysis tools such as the multidimensional scaling 

(MDS) and hierarchical cluster analyses used here have been developed specifically for this 

purpose so it is natural that they should applied to this problem (see also Chan & Ho, 2003). 

However, it is important to note that these tools are primarily intended for finding structure in 

data rather than for hypothesis testing. As such there are few useful tests for quantifying the 

extent to which one structural outcome is similar to another, comparisons thus tend to be 

made qualitatively. Where possible, therefore, other statistical techniques should be applied 

to determine whether the differences between the matrices obtained from the chosen 
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participant groups achieve statistical significance (see Elvevâg and Storms, 2003, for more 

discussion of this issue). For instance, in the current article we have used multivariate 

analysis of variance to examine differences in variability between participant groups. In 

addition, studies should be devised that test for hypothesized memory distortions or deficits 

in a more direct way than is possible by extrapolating patterns of semantic memory 

organisation from fluency data. 

 

Conclusion 

This article has identified significant methodological limitations in past studies that have used 

cluster and scaling analyses of category fluency data to investigate conceptual memory 

organization in patients with schizophrenia.  We have shown how these limitations can be 

overcome and have presented new analyses suggesting that, in relation to performance on this 

task, the extent of memory disorganization in chronic schizophrenia may have been over-

estimated. Specifically, we have shown that the use of an improved dissimilarity metric 

reveals, in patient data, an average pattern of semantic relationships between animal concepts 

that shares many of the organizational characteristics observed in control data. Whilst our 

results do demonstrate greater variability within the clinical group, they do not indicate any 

systematic pattern of memory distortion across patients. Overall, this evidence is consistent 

with some disintegration of memory storage in schizophrenia but suggests that such 

deterioration may not be as marked as previously supposed.  
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Footnotes 

1In a list of length n there are n(n −1) /2 item pairs. For each group in the Aloia et al. 

study we can insert the average number of target items into this equation, and then multiply 

by the number of participants, to give an estimate of the total number of item pairs. This 

calculations suggests approximately 375 raw distance measures for the patient group and 672 

for the control group. Similar calculations are not possible for other studies since they do not 

report the number of target items generated by each group. 

2It is worth noting that Chan et al.’s (1993) article on patients with Alzheimer’s 

disease provided similar statistics and also tested twice as many patients as controls in order 

to formulate balanced data-sets. 

3Since NART correlated with years of education (r= 0.54) only the former was used in 

the ANCOVA. List length increased significantly with NART score independent of condition 

(F(1,62)= 5.11, p= 0.03, for unique items), but the interaction between condition and NART 

was not significant (F(1,61)= 0.88, p= 0.35). 

4Previous studies have looked at sets of between 11 and 17 animal names that 

appeared with high frequency in their category fluency data. The actual items used have 

varied somewhat between studies, partly as the result of differences in local culture and 

ecology that affect the frequency with which specific animal names appear.  However, 7 out 

of the 12 animal names used here—cat, cow, dog, elephant, giraffe, lion, tiger—were also 

investigated in all previous studies. 

5In order to generate a normalised measure with range 0–1 the scaling factor N
G

 was 

omitted from Equation 4 in the calculation of the dis metric. This change has no effect on the 

shape of the distribution of dissimilarity scores. 

6Note that partial correlation is not ideal since it controls for linear effects and we 

know from equation 4 that the relationship between item co-occurrence and the dis measure 
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is non-linear. Thus the reported correlations may still over-estimate the strength of the 

relationship between groups independent of item frequency. 

7The placement of the root node of an addtree is not constrained by the algorithm that 

determines inter-node distances and is therefore usually chosen so as to minimise the overall 

depth of the tree.  This was the case for the two analyses of patient data shown in Figure 2, 

however, for the control group the root node was selected so as to best distinguish the two 

main clusters rather than to minimize tree-depth. Note that this has no effect on the way that 

items are grouped within the tree. 

8For dis analyses production frequency accounts for 83–84% of the variance in the 

radial distance from the origin (plot center), for mcf analyses the equivalent figure was 25–

52% of variance. 

9The number of item co-occurrences contributing to the calculation of each matrix 

was similar (median 401 for patients and 405 for controls), thus the half-group analyses are 

appropriately balanced in terms of the number of data points used. 

10On the basis of poor ‘goodness-of-fit’ statistics, Storms et al. (2003) have argued 

that the patient data presented in some previous studies “did not result in significantly better 

fits […] than random data” (Storms et al. 2003, p. 293).  Whilst the stress values for the MDS 

analyses presented here fall within the range identified as problematic by these authors, those 

for the addtree analyses are much better and are therefore not vulnerable to this criticism. 

11 For instance, in a large, double-blind study, investigating changes in cognitive 

function following treatment with atypicals, Harvey et al. (2003) found an effect size 

(Cohen’s d), for increase in category fluency output, of just 0.10 after eight weeks treatment 

with olanzapine.  This is a relatively small effect (Cohen, 1988) and corresponds to an 

overlap between distributions (baseline vs. post-treatment) of ~93%.  
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Table 1 

Demographic and Cognitive Variables Relating to the Patient and Control Groups 

Measure Patients Controls test p d 

Number of participants 40 28    

Age in years (M) 32.80 (8.40) 29.46 (7.45) t(66)= 1.67 0.10 0.42 

Years in education (Mdn) 11 (11–16) 13 (11–18) U= 321 <0.01  

NART (M) 99.58 (12.71) 111.52 (11.54) t(63)= 3.87 <0.01 0.98 

CFT Animals:      

Total responses (M) 17.58 (5.38) 23.14 (7.23) F(1,62)= 6.26 0.02 0.91 

Unique items (M) 16.80 (5.42) 22.61 (7.17) F(1,62)= 7.12 0.01 0.97 

Repeated items (f) 4.6% 2.4% U= 531 0.69  

Target items (A12, M) 6.43 (2.32) 7.93 (1.72) t(66)= 2.93 <0.01 0.73 

Item pairs:      

Co-occurrences (Mdn) 11 (3–27) 11.5 (4-26) z= 0.22 0.83  

Repeat co-occurrences (f) 11.9% 8.4% z= 1.34 0.18  

Note: Figures in brackets indicate the standard deviation of the mean (M) 

or, where the median (Mdn) is reported, the range; frequencies (f) of 

repetitions are reported as percentages.  The final column is the measure 

of effect size (Cohen’s d). For total responses and unique items statistical 

results are after adjusting for differences in NART score (three 

participants—two patients, one control—failed to complete this test). 
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Table 2 

Measures of ‘goodness of fit’ for the addtree and MDS analyses 

 

 Addtree MDS 

Dissimilarity matrix Stress R2  Stress R2 

DIS
PATIENTS,A12

 0.040 0.70 0.28 0.64 

DIS
CONTROLS,A12

 0.060 0.89 0.15 0.88 

MCF
PATIENTS,A12

 0.055 0.71 0.24 0.60 

MCF
CONTROLS,A12

 0.068 0.87 0.15 0.87 
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Figure Captions 

Figure 1. Frequency distribution of all elements of the dissimilarity half-matrices 

MCF
ALL,A206

 and DIS
ALL,A206

, and of the two underlying measures of normalized inter-item 

distance, ˆ D 
abl

 and d
abl

n
l
. The graph demonstrates that metrics based on cumulative 

frequency ( ˆ D 
abl

 and mcf) generate a more-evenly distributed set of measurements than those 

based on division by list-length ( d
abl

n
l
 and dis).  

Figure 2. Addtree analyses of verbal fluency data, for the A12 set of high frequency animal 

names, from patient (trees a, b) and control (trees c, d) groups, using the alternative 

dissimilarity metrics dis (trees a, c) and mcf (trees b, d).   

Figure 3. The ratio of the sum of internal node lengths to the sum of external node lengths 

(I/E) compared across dissimilarity measures and patient and control groups.  The mcf 

measure generates trees with more distinctive sub-clusters than the dis measure; there is a 

similar, but less pronounced, difference between the control and patient groups. 

Figure 4. MDS analyses of verbal fluency data, for the A12 set of high frequency animal 

names, from patient (maps a, b) and control (maps c, d) groups, using the alternative 

dissimilarity metrics dis (maps a, c) and mcf (maps b, d). 

Figure 5. Frequency distribution, over sixty-six item pairs, of the standard error of the 

mcf(G,a,b) measure for patient and control groups.  The graph shows the distance estimates 

obtained from the patient group are more variable than those of controls. 

Figure 6. Addtree analyses for items named by at least 20% of the patient group (and co-

occurring with each other item at least twice) based on the matrix MCF
PATIENTS,A 20

. Goodness 

of fit measures (stress = 0.06, R2= 0.59) were similar to those reported for the A12 analyses. 
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Correction to variability analysis (added 07.06.2009) 

The first part of our variability analysis (p22 of this document) looked at the standard error of 

the mean cumulative frequency (mcf) scores for 66 item pairs.  With hindsight1 the standard 

error is not the most appropriate measure for comparing variability between groups since it 

scales inversely with the square root of the sample size. We now recommend the use of the 

standard deviation for such comparisons.  Reanalyzing our data using the standard deviation 

shows that, consistent with our original conclusion, variability is somewhat greater for 

patients than for controls (patient mean=0.259, control= 0.233, F= 5.4, p= .022).  The figure 

below reproduces figure 5 but showing frequency distributions for the standard deviation. In 

our study, a similar number of item pairs were produced by both groups (802 for patients, 

809 for controls) thus the use of the standard error did not unduly affect the between-group 

variability test, however, similar analyses using unequal sample sizes should not use the 

standard error. Note that the conclusion of greater variability in the patient data was also 

supported by split-half comparisons using within- and between-group correlations. 

 

Frequency distributions, over sixty-six item pairs, of the standard deviation of the mcf(G,a,b) measure 

for patient and control groups.  The graph shows the distance estimates obtained from the patient 

group are more variable than those of controls. 

                                                
1 We are grateful to Daniel Pratt for drawing our attention to this issue. 


