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Metrics for Measuring Inter-item Dissimilarity in Fluency Data 

Tony J. Prescott*, Lisa D. Newton, Nusrat U. Mir, Peter W. R. Woodruff, and Randolph W. 

Parks. University of Sheffield, UK. 

 

This document is provided as an electronic appendix to the article “A new dissimilarity 

measure for finding semantic structure in category fluency data with implications for 

understanding memory organization in schizophrenia”.  This appendix contains two parts. In 

the first we derive a measure of the distance between two items in a fluency list that is 

appropriately normalized for list-length.  This measure serves as the core element of the mean 

cumulative frequency (mcf) dissimilarity metric described in the article.  In the second part 

we compare and contrast the mcf metric with the prevailing Chan et al. (1993) dissimilarity 

metric, referred to as the dis metric here and throughout the article. 

1.  Derivation of a Measure of Inter-item Distance based on Cumulative Frequencies 

Our measure of normalized inter-item distance is based on an analysis of the frequency 

distribution with which any given inter-item distance d occurs within lists of different 

lengths.  In the following, we first discuss this distribution, then derive the new distance 

measure by using calculations of cumulative frequency, and finally show how this metric can 

be weighted to take account of repeated items with a list. 

The effect of list-length on the frequency of a given inter-item distance 

Let a and b be the two items occurring at index positions (using the positive integers 1, 2, 3, 

…) i
al

 and i
bl

 in a given list l then we can calculate the ‘raw’ inter-item distance d
abl

 as the 

absolute difference of these values, i. e. d
abl
= i

al
" i

bl
.  If we calculate the inter-item distance 

for ever possible pair of items in a list of length n, then the frequency, f (d,n) , with which 

any specific distance d is observed, is given by the triangular distribution illustrated, for 

2  n  10, in Table 1. The table also shows the total number of item pairs for each list length, 

which we denote byB(n). 

___________ 
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Table 1 

 Frequency f (d,n)  of ‘Raw’ Inter-item Distances d in Lists of Length n 

Length Inter-item distance (d) Total 

n 1 2 3 4 5 6 7 8 9 B(n) 

2 1         1 

3 2 1        3 

4 3 2 1       6 

5 4 3 2 1      10 

6 5 4 3 2 1     15 

7 6 5 4 3 2 1    21 

8 7 6 5 4 3 2 1   28 

9 8 7 6 5 4 3 2 1  36 

10 9 8 7 6 5 4 3 2 1 45 

 

From Table 1 we can see that the number of pairs obtained at a given distance, d, increases 

linearly with list length. At the same time, however, the proportion, or relative frequency, of 

pairs at a given distance, f (d,n) /B(n) , changes non-linearly with length. For example, in a 

list n= 5, 30% (3 out of 10) of inter-item distances are of length d= 2, but in a list twice this 

length (n= 10), item pairs with d= 2 constitute just 18% of the combinations available (8 of 

45). Differences in list-length therefore do matter, and in controlling for list length, we should 

take account of the dependence of relative frequency on both list length and inter-item 

distance.  

Deriving a normalized distance measure based on cumulative frequency 

To solve the problem of controlling for changes in relative frequency we now describe a 

measure of normalized inter-item distance, D(d,n), that is based upon cumulative frequency. 
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For a list of length n, the cumulative frequency, C(d,n) , is the total number of item pairs 

with an inter-item distance less than or equal to d, i.e.  

C(d,n) = f (k,n)
k=1

d

" . 

So, for example, C(3,6)  can be obtained from Table 1 as the sum 

f (1,6) + f (2,6) + f (3,6) = 5 + 4 + 3 =12.  It is useful to be able to calculate this value directly 

without having to first generate the frequency distribution. We do this by noting that the total 

number of item pairs for a list of length n is B(n) = n(n "1) /2 , and that the cumulative 

frequency, C(d,n) , is equal to the difference between the number of pairs in a list of length n 

and one of length n " d , i.e. C(d,n) = B(n) " B(n " d) . Finally, to obtain our normalized 

distance measure we take the average of C(d,n)  and C(d "1,n) to find the centre of the 

frequency range for d, and divide by the total number of item pairs B(n), hence 

D(d,n) = 1
2 C(d,n) + C(d "1,n)( ) B(n)  

which simplifies to 

D(d,n) = (2dn " d
2
" n) n(n "1) . (1)  

Figure 1 provides a graphical illustration of the proposed measure for a list containing seven 

items showing that, for any given d, the normalized measure exactly bisects the range of the 

relevant frequency distribution. So, for example, D(2,7) = 0.40 is the mid-point of the 

cumulative frequency range 1–2, which is the average position, in this distribution, of all item 

pairs with d= 2. 

C(d, 7)/B(7)

D(d, 7)

1 2 3 4 5 6

1 2 3 4 5 60

0.00 0.25 0.50 0.75 1.0

0.980.900.790.620.400.14

 

Figure 1. An illustration of the normalized inter-item distance measure, D(d,n), for lists of 

length 7.  The figure shows the cumulative frequency for ‘raw’ inter-items distances of 0–6, 

and, above this, the value of D(d,7�  for each possible observed inter-item distance. For any 

given value of d, D(d,n) exactly bisect the range of the relevant frequency distribution. 
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In order to apply the normalized distance measure derived above to specific items in fluency 

lists we introduce indexing with respect to items a and b in list l, of length nl , giving 

D
abl
= D(d

abl
,n

l
) = (2d

abl
n
l
 d

abl

2
 n

l
) n

l
(n

l
 1) . (2) 

Dealing with repeated items within lists 

The above analysis treats every item pair in a fluency list as a separate entity to be assigned 

its own distance measure, we now describe how this method can be extended to deal 

appropriately with lists in which one or more items are repeated. If either of the items a or b 

occurs more than once in l we select our ‘raw’ measure of inter-item distance ˆ d 
abl

 to be the 

smallest of all such distances, i.e. ˆ d 
abl
=min"a,b#l

d
abl

. Selecting the smallest inter-item 

distance for a repeated item pair does not, however, entirely resolve the problem as 

repetitions also significantly increase the frequency of short inter-item distances relative to 

long ones. Rather than determine an exact solution for such situations, we have developed an 

approximation, based on equation 1, through an analysis of the relevant frequency 

distributions. Specifically, let o
al

 and o
bl

 be the number of occurrences of items a and b 

respectively in list l, then a measure of normalized inter-item distance that adjusts for 

repeated items can be calculated using 

ˆ D 
abl
= D( ˆ d 

abl
,m

abl
)[ ]
 

abl

, (3) 

where m
abl
= n

l
" (o

al
+ o

bl
" 2) is the length of the list less the number of repetitions of a and 

b, and "
abl
= o

al
o
bl( )

#2 3
.  Here "

abl
 provides an exponential scaling that increases the value of 

the measure to compensate for the greater frequency of short inter-item distances in a list 

containing repeated items.  The procedure used to derive this approximation was (i) to 

generate all possible lists of lengths between 2 and 20 containing combinations of o
a
" 1(2{ } 

and o
b
 1,2,3{ } occurrences of items a and b, (ii) to use this data to generate target 

cumulative frequency distributions, and (iii) to select the exponent of the scaling factor "
abl

 

so as to minimise the sum squared error between the approximation (equation 3) and the set 

of target inter-item distance values generated directly from this frequency data. 
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2.  Comparison of the mcf and dis measures of inter-item dissimilarity  

We next compare the mcf metric with a dissimilarity measure proposed by Chan et al. (1993) 

and referred to here as the dis metric.  The two metrics can be written as 

mcf(G,a,a) = 0, mcf(G,a,b) =
1

T
Gab

ˆ D 
abl

l"G;a,b"l

#
$

%
&

'

(
) , (4) 

dis(G,a,a) = 0, dis(G,a,b) =
Ng

TGab
2

dabl

nll"G;a,b"l

#
$

%
&

'

(
) . (5) 

where G is the participant group, n
G

 is the total number of lists generated by G, and T
Gab

 the 

number of such lists containing both a and b. It is evident from the above, that the dis and mcf 

metrics differ both in the way that distances are calculated within the list of a single 

participant, and in how they are combined across participants. We briefly consider both 

sources of difference below. 

First, the dis measure uses division by list length (n) to generate normalized distance 

measure for any pair of items in a given list. In some respects this is a fair approximation to 

the algorithm we have derived from our analysis of the underlying frequency distribution. For 

instance, equation 1 reduces exactly to 1/n for the particular case of d=1. For values of d 

greater than 1, however, division by length significantly under-estimates the frequency-based 

measure. This is illustrated for two example list lengths in Figure 2.  

Second, on the issue of combining estimates across participants, we can see from the above 

comparison of the two metrics that the dis metric does not take a simple average of 

normalized inter-item distance across all participants (this would be division by T
Gab

 as in the 

mcf metric) but instead weights this average by N
G
T
Gab

(giving N
G
T
Gab

2  overall). In their 

description of the algorithm, Chan et al. (1993) justify this weighting by alluding to a goal of 

compensating for differences in the relative frequency of item pairs across the participant 

group, however, they do not explain how their algorithm serves this purpose.  We will 

therefore briefly explore this idea and consider how such compensation might be best 

achieved. 
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Figure 2.  The mapping from ‘raw’ inter-item distances, d, into the normalized measure, 

D(d,n) (Equation 2), for two example list lengths (n= 7, 15), compared with one calculated 

using d /o  (as in Chan et al., 1993). The graph indicates that division by list length provides a 

first-order approximation to the frequency-based mapping, that is accurate at d=1 but 

otherwise under-estimates the latter across most of its range. 

 

In a previous article (Crowe & Prescott, 2003), we have argued that, across a set of fluency 

lists, differences in the frequency with which pairs of items occur together can provide a 

useful indicator of item similarity.  This idea derives from the reasonable assumption that 

items that are closely related in semantic memory will be named together in fluency lists 

more often than items that are distantly related (see also Schwartz and Baldo, 2001, for a 

method of calculating item similarity based on this principle). It seems likely, then, that the 

additional weighting in equation 5 is intended to serve this purpose. Indeed,N
G
T
Gab

, as a 

multiplier of the within-list dissimilarity measure, certainly acts in the right direction—its 

value is smallest (reflecting item similarity) for items that co-occur with high frequency and 

largest (reflecting dissimilarity) for items that co-occur with low frequency.  However, there 

are two significant disadvantages to using the frequency of item co-occurrence in this way.   

The first problem is that N
G
T
Gab

 is strongly negatively correlated with item production 

frequency. That is, words that are named often in lists will also co-occur frequently and will 

(d) 
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therefore be treated as more semantically related. The second problem is that by using the 

inverse of T
Gab

 the weighting applied is non-linear; this serves to further exaggerate the 

increased proximity of high frequency items and decreased proximity of low ones. For 

instance an item pair that occurs once in 10 pairings will have a weighting of 10, one that 

occurs twice, a weighting of 5, and one that occurs five times a weighting of just 2.  Hence 

this algorithm makes it very difficult to obtain a low dissimilarity rating for a low frequency 

pair. Note that it is possible to devise a measure that combines information about item co-

occurrence with average inter-item distance whilst avoiding these pitfalls. We have described 

such a combined measure—based on comparing the observed frequency of an item pair with 

its expected value—in Crowe and Prescott (2003), where we suggest that this may provide a 

useful indicator of dissimilarity when studying populations, such as young children, that 

generate very short fluency lists. In the current article, however, we have investigated lists 

from adult patients and controls that are of sufficient length to justify using a measure based 

on inter-item distance alone. 
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