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Abstract 

The existence of multiple parallel loops connecting sensorimotor systems to the basal ganglia has given rise to proposals 

that these nuclei serve as a selection mechanism resolving competitions between the alternative actions available in a 

given context.  A strong test of this hypothesis is to require a computational model of the basal ganglia to generate 

integrated selection sequences in an autonomous agent, we therefore describe a robot architecture into which such a 

model is embedded, and require it to control action selection in a robotic task inspired by animal observations.  Our 

results demonstrate effective action selection by the embedded model under a wide range of sensory and motivational 

conditions. When confronted with multiple, high salience alternatives, the robot also exhibits forms of behavioral 

disintegration that show similarities to animal behavior in conflict situations. The model is shown to cast light on recent 

neurobiological findings concerning behavioral switching and sequencing. 
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1. Introduction 

The basal ganglia are a group of highly interconnected 

central brain structures with a critical influence over 

movement and cognition. Interest in these structures 

derives in part from their importance for a cluster of brain 

disorders that includes Parkinson's disease, Huntington's 

disease, Tourette’s syndrome, schizophrenia, and 

attention deficit hyperactivity disorder, and has driven 

more than a century of neurobiological study.  This 

extensive research effort has given rise to a wealth of 

relevant data, and consequently a pressing need for a 

better functional understanding of these structures. The 

basal ganglia therefore present one of the most exciting 

prospects for computational modeling of brain function 

and have been the focus of extensive modeling research 

efforts (for reviews see Houk, Davis, & Beiser, 1995; 

Wickens, 1997; Gillies & Arbuthnott, 2000; Prescott, 

Gurney, & Redgrave, 2002; Gurney, Prescott, Wickens, 

& Redgrave, 2004).  

A recurring theme in the basal ganglia literature is that 

these structures operate to release inhibition from desired 

actions while maintaining or increasing inhibition on 

undesired actions (Denny-Brown & Yanagisawa, 1976; 

Cools, 1980; Robbins & Brown, 1990; Hikosaka, 1994; 

Mink, 1996; Wickens, 1997)). In our own theoretical 

work (Prescott, Redgrave, & Gurney, 1999; Redgrave, 

Prescott, & Gurney, 1999a) we have developed the idea 

that the basal ganglia acts as an action selection 

mechanism—resolving conflicts between functional units 

that are physically separated within the brain but are in 

competition for behavioral expression. We have shown 

how this proposal relates to known anatomy and 

physiology and meets several high-level computational 

requirements for an effective action selection device. In 

line with this hypothesis we also embarked on a program 

of modeling the circuitry of the basal ganglia and related 

structures at several levels of abstraction. A key focus has 

been to investigate ‘system’ level models of the basal 

ganglia constrained by the known functional anatomy in 

which neural populations are represented by simple leaky 

integrator units (Gurney, Prescott, & Redgrave, 2001a, 

2001b; Humphries & Gurney, 2002; Gurney, Humphries, 

Wood, Prescott, & Redgrave, 2004).  At lower levels of 

neurobiological detail we have studied the patterning of 
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signals encoded by trains of action potentials (‘spikes’) 

(Humphries & Gurney, 2001; Humphries, 2002), and 

have investigated biophysical models of the membrane 

dynamics of striatal neurons (Wood, Gurney, & Wilson, 

2004). Studies at all of these levels have generated 

complementary results confirming that the biological 

architecture of the basal ganglia can operate as an 

effective selection mechanism. In our view, however, this 

computational neuroscience approach, in which specific 

brain systems are modeled in isolation of the wider 

context, still leaves many important questions 

unanswered. First, we are left wondering how best to 

interpret the inputs and outputs of the model—we might 

choose to think of inputs as, say, ‘sensory’ signals, or of 

outputs as ‘motor’ signals, but such assignments are 

essentially ungrounded. Second, without locating a model 

within any wider context, we are unable to judge whether 

it can fulfill its hypothesized functional role within a 

more fully specified control architecture. Third, without 

any linkage to sensory and motor systems we may 

question whether a model could cope with noisy or 

ambiguous sense data, or as part of a system challenged 

with coordinating the movements of real effector 

systems. Finally, without the context of multiple 

demands, such as the need to maintain physical integrity, 

avoid threats, and discover and exploit resources, we will 

be unsure whether or not a model can meet some of the 

basic requirements for adaptive behavior. In this article 

we therefore describe an embedding of the system-level 

model of the basal ganglia and associated thalamocortical 

connections within the control architecture of a small 

mobile robot engaged in a simulated foraging task that 

requires the robot to select appropriate actions under 

changing sensory and motivational conditions and 

thereby generate sequences of integrated behavior.  We 

describe the methodology we are applying as embodied 

computational neuroscience. Preliminary results for the 

robot model have been described in (Montes Gonzalez, 

Prescott, Gurney, Humphries, & Redgrave, 2000), and a 

version of the model has been shown to have better 

selection properties than a standard winner-takes-all 

selection mechanism in a robotic survival task (Girard, 

Cuzin, Guillot, Gurney, & Prescott, 2003). The current 

article, however, provides the first full account of the 

robot embedding of the basal ganglia model together with 

an extensive evaluation of the model’s behavior in 

comparison to relevant neurobehavioral studies. We also 

present results showing the behavior of the robot model 

when faced with multiple high-salience alternatives, and 

draw comparisons with studies of animal behavior in 

conflict situations. 

The remainder of the article is organized as follows.  The 

action selection hypothesis of the basal ganglia and 

related modeling work is reviewed in section 2.  The 

motivation for the robot basal ganglia model, full details 

of the robot implementation, and a summary of action 

selection metrics, are described in section 3 (and the 

accompanying appendices). Section 4 then describes the 

results of three experiments: experiment 1, a systematic 

search of a salience space using a disembodied version of 

the extended basal ganglia model (extending earlier 

analyses of this model by Humphries and Gurney 

(2002)); experiment 2, our main investigation of the 

action selection by the robot basal ganglia model; and 

experiment 3, an investigation of robot behavior in the 

context of high salience alternatives. Section 5 provides 

our discussion of the experimental results focusing on 

comparisons with biological data. 

2.  Background: The basal ganglia viewed as 

an action selection device 

There have been many excellent summaries of the 

functional anatomy of the basal ganglia (e.g. Gerfen & 

Wilson, 1996; Mink, 1996; Smith, Bevan, Shink, & 

Bolam, 1998), the following therefore focuses on those 

aspects most relevant to understanding the models 

discussed below. 

The principle structures of the rodent basal ganglia 

(Figure 1a) are the striatum (consisting of the caudate, the 

putamen, and the ventral striatum), the subthalamic 

nucleus (STN), the globus pallidus (GP), the substantia 

nigra (SN, consisting of the pars reticulata SNr and pars 

compacta SNc), and the entopeduncular nucleus (EP) 

(homologous to the globus pallidus internal segment, or 

GPi, in primates). These structures are massively 

interconnected and form a functional sub-system within 

the wider brain architecture (Figure 1b).  

The input nuclei of the basal ganglia are the striatum and 

the STN. Afferent connections to both of these structures 

originate from virtually the entire brain including cerebral 

cortex, many parts of the brainstem (via the thalamus), 

and the limbic system. These connections provide phasic 

excitatory input. The main output nuclei are the 

substantia nigra pars reticulata (SNr), and the 

entopeduncular nucleus (EP). These structures provide 

extensively branched efferents to the thalamus (which in 

turn project back to the cerebral cortex), and to pre-motor 

areas of the midbrain and brainstem. Most output 

projections are tonically active and inhibitory.  
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Figure 1. Basal ganglia anatomy of the rat: (a) internal pathways, (b) external pathways. Not all connections are shown. 

Abbreviations: STN—subthalamic nucleus, EP—entopeduncular nucleus, GP—globus pallidus, SNc—substantia nigra 

pars compacta, SNr—substantia nigra pars reticulata, D1, D2—striatal neurons  preferentially expressing dopamine 

receptors subtypes D1 and D2. 

To understand the intrinsic connectivity of the basal 

ganglia it is important to recognize that the main 

projection neurons from the striatum (medium spiny 

cells) form two widely distributed populations 

differentiated by their efferent connectivity and 

neurochemistry. One population contains the 

neuropeptides substance P and dynorphin, preferentially 

expresses the D1 subtype of dopamine receptors, and 

projects primarily to the output nuclei (SNr and EP). In 

the prevailing informal model of the basal ganglia (Albin, 

Young, & Penney, 1989) this ‘D1 striatal’ projection 

constitutes the so-called direct pathway to the output 

nuclei. Efferent activity from these neurons suppresses 

the tonic inhibitory firing in the output structures which 

in turn disinhibits targets in the thalamus and brainstem. 

A second population of striatal projection neurons 

contains enkephalin and preferentially expresses D2 

subtype dopamine receptors. This group projects 

primarily to the globus pallidus (GP) whose tonic 

inhibitory outputs are directed both to the output nuclei 

(SNr and EP) and to the STN. The inhibitory projection 

from these ‘D2 striatal’ neurons constitutes the first leg of 

an indirect pathway to the output nuclei.  Since this 

pathway has two inhibitory links (Striatum–GP, GP–

STN), followed by an excitatory one (STN–EP/SNr), its 

net effect is to activate output nuclei thereby increasing 

inhibitory control of the thalamus and brainstem. 

The main source of dopamine innervation to the striatum 

is the substantia nigra pars compacta (SNc). 

Dopaminergic modulation of basal ganglia is generally 

considered to act at two time-scales (Grace, 1991; 

Walters, Ruskin, Allers, & Bergstrom, 2000).  One is a 

short-latency phasic response (100ms burst) that 

correlates with the onset of biologically significant 

stimuli and appears to be critical for some forms of 

incentive learning (Schultz, Dayan, & Montague, 1997; 

Redgrave, Prescott, & Gurney, 1999b), the other is a 

tonic level of activity (1-8Hz) that is altered by various 

brain pathologies, such as Parkinson’s disease, and in the 

normal brain may be subject to modulation by structures 

such as the frontal cortex. Interestingly, the D1 and D2 

striatal populations respond differently to variations in 

dopaminergic transmission. Whilst a range of effects 

have been reported, one simplifying hypothesis, that 

accounts for a significant proportion of available 

findings, is that dopamine enhances the effectiveness of 

other synaptic inputs when acting via D1 receptors 

(Akkal, Burbaud, Audin, & Bioulac, 1996) whilst 

reducing such efficacy when acting at D2 receptors 

(Gerfen et al., 1990; Harsing & Zigmond, 1997). This 

arrangement seems to provide dopaminergic control of a 

'push/pull' mechanism subserved by the direct (inhibitory) 

and indirect (net excitatory) basal ganglia pathways.  The 

effects of variations in this tonic dopamine level on our 

robot model are the subject of a separate article; in the 

current work we report results in which the simulated 

dopamine level is fixed at an intermediate level. Likewise 

the current article does not address the problem of 

learning (and the role of dopamine therein) but the 

logically distinct question of whether the basal ganglia 

the basal ganglia are suitably configured to support action 

selection in an embodied agent. 
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Figure 2.  The basal ganglia viewed as an action selection mechanism. Abbreviations as per figure 1. Our analysis of 

the basal ganglia intrinsic connectivity (Gurney et al., 2001ab) indicated the presence of two off-centre, on-surround, 

feed-forward networks. One instantiation (a) makes use of EP/SNr as its ‘output layer’ and is designated the selection 

pathway, the second (b) targets GP and is designated the control pathway. The control signals emanating from GP are 

evident when the two subsystems are combined to give the overall functional architecture shown in Figure 2c. 

 

A key assumption of our basal ganglia model is that the 

brain is processing, in parallel, a large number of sensory 

and cognitive streams or channels, each one potentially 

carrying a request for action to be taken. For effective 

behavior, the majority of these requests must be 

suppressed to allow the expression of only a limited 

number (perhaps just one). This channel-based scheme is 

consistent with evidence that basal ganglia input occurs 

via a series of topographically-organized, parallel 

processing streams (Alexander & Crutcher, 1990). The 

action selection hypothesis of the basal ganglia further 

suggests that the activity of cell populations in the 

striatum and STN encodes the salience, or propensity for 

selection, of candidate actions. At the same time, the 

basal ganglia output structures, SNr and EP, are viewed 

as gating candidate actions via a reduction in their 

inhibitory output for winning channels. When considered 

in isolation of the wider brain architecture, this action 

selection thesis is best restated in terms of the context-

neutral problem of ‘signal selection’; in other words, the 

proposal is that large signal inputs at striatum and STN 

select for low signal outputs at EP/SNr. 

From a signal selection perspective multiple mechanisms 

within the basal ganglia and related circuitry appear to be 

suitably configured to resolve conflicts between 

competing channels and provide the required clean and 

rapid switching between winners. Our initial system-level 

model of the basal ganglia (Gurney et al. 2001a, 2001b) 

focused on the following candidate selection 

mechanisms. 

First, at the cellular level considerable interest has 

focused on an intrinsic property of striatal projection 

neurons such that, at any given moment, a majority of 

cells are in an inactive ‘down-state', and can only be 

triggered into an active ‘up-state’ (where they can fire 

action potentials) by a significant amount of coincident 

input (Wilson & Kawaguchi, 1996). This bistable 

behavior could act as a high-pass filter to exclude weakly 

supported 'requests'.  

Second, computational theory suggests that a feed-

forward, off-centre, on-surround network is an 

appropriate mechanism for enhancing signal selection. In 

the basal ganglia, this type of selection circuit appears to 

be implemented by a combination of focused striatal 

inhibition of the output nuclei (the off-centre) and diffuse 

STN excitation of the same (the on-surround) (Parent & 

Hazrati, 1995). On closer examination, however, it 

appears that there are actually two such feed-forward 

networks in the basal ganglia intrinsic circuitry (see 

Figure 2a,b), differentiated by the projection targets of 

the D1-type and D2-type sub-populations of striatal 

neurons. One instantiation (figure 2a) makes use of 

EP/SNr as its ‘output layer’; since this is clearly 

consistent with our signal selection hypothesis for the 

basal ganglia we have designated this circuit the selection 

pathway.  However, there is also a second 

implementation of the feed-forward architecture whose 

target is the GP (figure 2b). Since the efferent 

connections of the GP are confined to other basal ganglia 

nuclei it is not immediately clear in what sense this 

second implementation can contribute to the overall 

selection task. This question can be resolved by 

supposing that this second subsystem forms a control 

pathway that functions to regulate the properties of the 

main selection mechanism. The control signals emanating 

from GP are evident when the two subsystems are 

combined to give the overall functional architecture 

shown in Figure 2c. 

In our original system-level model we operationalized the 

above circuit (figure 2c) as a multi-channel system where, 

for every basal ganglia nucleus, the neural population 

encoding each channel is simulated by a suitably 

configured leaky integrator unit. Analytical and 
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simulation studies (Gurney et al., 2001a, 2001b) 

conducted with this model demonstrated that it has the 

capacity to support effective switching between multiple 

competitors. In simulation, two or more channels of the 

model were provided with afferent input in the form of 

hand-crafted signals of different amplitude. Results 

showed that the largest signal input always generates the 

smallest signal output (thus showing signal selection), 

and that the system rapidly switches from a currently 

selected channel to a competing channel that suddenly 

has a larger input. We were also able to generate signal 

characteristics in the component circuits of our basal 

ganglia model that follow similar temporal patterns to 

single-unit recordings of neural firing in GP (Ryan & 

Clark, 1991) and SNr (Schultz, 1986).  

Humphries and Gurney extended the original model of 

intrinsic basal ganglia processing to include basal 

ganglia-thalamocortical loops (Humphries & Gurney, 

2002). This work led to the proposal that the thalamic 

complex—the ventro-lateral (VL) thalamus and thalamic-

reticular nucleus (TRN)—acts to provide additional 

selection-related functionality. Specifically, as shown in 

figure 3, these circuits can be understood as sub-serving 

two important roles.  First, disinhibition of VL thalamic 

targets by EP/SNr enables a positive feedback loop 

whereby winning basal ganglia channels can increase the 

activation of their own cortical inputs.  Second, the 

within- and between- channel connections between the 

TRN and the VL thalamus appear to implement a distal 

lateral-inhibition network that serves to increase the 

activity of the most strongly innervated channel at the 

expense of its neighbors. In simulation, again with hand-

crafted signals, the additional selective functions of these 

extra-basal ganglia mechanisms were found to promote 

several desirable selection features including cleaner 

switching between channels of closely matched salience, 

and the ability to ignore transient salience interrupts.  

Recently we have also shown that the model can 

accommodate new data on striato-pallidal projections, 

and on local inhibitory connections within the globus 

pallidus and substantia nigra (Humphries, Prescott, & 

Gurney, 2003; Gurney, Humphries et al., 2004). Both 

extensions also appear to enhance the selectivity of the 

system and, in adding further biological realism, lend 

further support to the selection hypothesis of basal 

ganglia function. 

 

 

 
 

Figure 3. The extended basal ganglia model of Humphries and Gurney (2002).  Abbreviations: SSC—somatosensory 

cortex, MC—motor cortex, VL—ventro-lateral thalamus, TRN—thalamic–reticular nucleus, others as per figure 1. 

Connectivity within the basal ganglia component of the model is as shown in Figure 2c. Basal ganglia-thalamocortical 

loops can be understood as providing additional mechanisms that can contribute to effective action selection. First, the 

removal of basal ganglia inhibition from VL completes a positive feedback loop to the motor cortex. Second, the diffuse 

inhibitory connections from TRN to VL, which are stronger between channels than within channels (as indicated by the 

plain and dotted inhibitory connections in the figure), together with within-channel excitation from VL to TRN, produces 

a form of mutual inhibition between channels. See text and Humphries and Gurney (2002) for further explanation.
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An effective action selection mechanism should be 

sensitive to changes in salience weightings that alter the 

relative urgency of competing behaviors in a given 

context. It is less evident, however, how a selection 

mechanism should respond to changes in salience 

weightings that leave relative salience unchanged whilst 

scaling the overall level of the selection competition. The 

assumption encapsulated by the widely-used winner-

takes-all selection mechanism, for example, is that the 

overall level of salience is irrelevant (the competitor with 

highest salience is always preferred).  We have 

previously demonstrated that the selection properties of 

both the intrinsic (Gurney et al., 2001b) and extended 

(Humphries and Gurney, 2002) basal ganglia models do 

not conform to this assumption, but instead, vary 

according to the overall ‘intensity’ of the selection 

competition. We will extend this work below by showing 

that that the degree of hysteresis, or persistence, of the 

winning sub-system may change as a consequence of 

changes in the overall level of salience. Our previous 

studies noted interesting patterns of ‘multiple channel’ 

selection when the model is presented with multiple, high 

salience alternatives. We therefore investigate the 

behavior of the robot model in these circumstances, and 

consider possible parallels with observations derived 

from ethological studies of behavioral conflict. 

3.  Developing a robot model of action 

selection by the basal ganglia 

The modeling work considered above serves to 

demonstrate signal selection by the basal ganglia rather 

than action selection per se. To show convincingly that 

the basal ganglia model is able to operate as an effective 

action selection device we believe it needs to be 

embedded in a real-time sensorimotor interaction with the 

physical world. An important goal has therefore been to 

construct an embedded basal ganglia model in which 

selection occurs between multiple, physically-realized 

behaviors in a mobile robot.  Since the use of robotics in 

computational neuroscience is relatively new, we preface 

our description of this model with a brief explanation of 

how we approach this task of embedding a computational 

neuroscience model within a robot architecture that 

generates observable behavior. 

3.1. A methodology for embodied computational 
neuroscience  

Any computational neuroscience model, robotic 

or otherwise, is composed of components that are 

‘biomimetic’—that is, they are intended to directly 

simulate neurobiological processes (at some appropriate 

level), and those that are merely ‘engineered’ so as to 

provide an interface that will allow the model to be 

interrogated and evaluated. The need for engineered 

components is particularly obvious in the case of robotic 

models where simulations of neural circuits must, at some 

point, be interfaced with (usually) very-non-neural robot 

hardware. Furthermore, in models that seek to simulate 

complete behavioural competences it is also generally 

impractical, because of the scale of the task, or 

impossible, because of the lack of the necessary 

neurobiological data, to simulate all components of the 

neural substrate for the target competence at a given level 

of detail. In this situation, engineered components are 

also required to substitute for the function of some of the 

neural circuits, known or non-known, that are involved in 

the production of that competence in an animal. In the 

current model, since the biological substrate of interest is 

the basal ganglia, the system components that provide the 

interface between the robot hardware (and low-level 

controllers) and the models of the basal ganglia and 

related nuclei have been constructed as a set of 

engineered sub-systems that we collectively denote as the 

embedding architecture. While broadly ‘biologically-

inspired’, we would stress that this embedding 

architecture is not intended to directly mimic any specific 

neural substrate. 

Latimer (1995) has identified the presence of 

two such distinct types  of model components as a 

universal characteristic of Cognitive Science research. In 

his terminology, components that are intended to be 

biomimetic are said to be ‘theory-relevant’, and those that 

simply make the model useable are ‘theory-irrelevant’. In 

fact, Latimer makes this distinction only to immediately 

deconstruct it! ‘Theory relevance’, after all, is largely in 

the eye of the beholder, and what, to one researcher, is a 

theory-irrelevant assumption made to get the simulation 

running, is to a critic, an unjustified fix on which the 

results of the model critically depend. Such issues have, 

for example, provided an important line of attack for 

detractors of connectionist models of psychological 

processes (see e.g. Massaro, 1988; Pinker & Prince, 

1988). Furthermore, whether a particular component of a 

model is deemed to be ‘theory-relevant’ or not, can 

depend as much on what hypothesis is being tested as on 

the nature of the model itself.  Thus, whilst we would 

argue here that the specific details of how (robotic) motor 

behaviour is implemented is not relevant from the 

standpoint of the action selection hypothesis of basal 

ganglia function, such details would become relevant if 

the same model were to be evaluated as a theory of a 

complete sensorimotor loop.  

Since the use of engineered components is unavoidable in 

Cognitive Science, but their ‘theory-irrelevance’ cannot 

be taken for granted, it is important (i) that these elements 

of a model are described in sufficient detail to allow their 

evaluation and replication; (ii) that the interface with the 

inputs and outputs of the biomimetic components respects 

important biological constraints; and (iii) that where 

engineered components turn-out to have significant 

behavioural or functional consequences (i.e. are 

potentially theory-relevant) these are explored and, where 

possible, related to functional properties of relevant 
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neural systems.  In this article we attempt all three tasks.  

First, in the remainder of this section, and in the 

appendices, we give a full description of the embedding 

architecture and demonstrate that, at a functional level, 

the decomposition of this architecture into behaviour-

related (action) sub-systems is consistent with ethological 

evidence. Second, in section 2 (above), we reviewed 

evidence justifying our general assumption that the inputs 

to the basal ganglia inputs encode action salience, and 

that its outputs act as gating signals that suppress 

undesired motor acts (we also revisit these issues in 

section 5). Third, in section 5.2, we will consider whether 

there are possible neural correlates for specific 

components of the embedding architecture that have 

significant functional consequences. 

3.2.  A model task 

To evaluate the action selection properties of the 

embodied basal ganglia model requires an 

environment/task-setting complex enough to present 

interesting competitions between alternative behavior 

systems, yet simple enough to establish base-line levels 

of performance and to allow detailed analyses of the 

resulting patterns of behavior switching. In developing a 

task to meet these needs we were inspired by observing 

the behavior-switching of food-deprived rats placed in an 

unfamiliar rectangular arena containing a centrally-

located dish of food pellets (see Figure 4, top).  The 

initial behavior of such animals is typically exploratory, 

defensive, and characterized by avoidance of open space. 

Animals placed in the centre of the arena quickly move to 

the periphery, then tend to stay close to the arena walls, 

showing a preference for the corners of the arena, and 

little or no visible interest in food consumption. As the 

animal becomes more accustomed to the novel 

environment, hunger-related behaviors become more 

apparent. A common ‘foraging’ behavior being to locate 

the food dish, collect a food-pellet, and carry it back to a 

‘nest’ corner of the arena (identified by the presence of 

bedding material) to be consumed. The balance between 

locomotion, feeding, and resting is of course sensitive to 

the level of hunger of the animal and its familiarity with 

the arena. 

Our efforts to create a setting in which to test the 

embedded basal ganglia model have focused on 

producing a similar, if much simplified, problem setting 

for a small mobile robot. The robot is placed in a walled, 

square arena (55x55cm) containing a number of small 

cylindrical objects (see Figure 4, bottom). The cylinders 

substitute for food pellets, so the collection and 

consumption of food is modeled by collecting cylinders 

and depositing them in a ‘nest’ corner of the arena. The 

‘nest’ is identified by the presence of a local light source 

(an 8v filament bulb) of which there are two, placed in 

diagonally opposite corners.  Simulated motivations are 

used to modulate the robot’s inclination to avoid open 

space (‘fear’), and to collect cylinders (‘hunger’) through 

the time-course of each experiment. 

 

 
 

Figure 4. The behavior of an adult rat in a square arena 

with a shaded nest area (top right) and central food 

resource (top) has provided the inspiration for the task 

setting investigated in the robot model of action selection 

by the basal ganglia (bottom). 

3.3. The robot control architecture 

The full robot control architecture is illustrated in Figure 

5, and the following sub-sections, together with the 

appendices, provide a full description the various 

components of this architecture. Figure 5 distinguishes (i) 

the robot and the primitive sensory and motor systems 

available to it, (ii) the embedding architecture that 

provides a repertoire of action (behavioral) sub-systems, 

computes their relative salience, and combines their 

outputs subject to gating by the basal ganglia, and (iii) the 

extended basal ganglia model that provides the substrate 

for resolving action selection conflicts.  As noted above, 

it is only this third element of the model that aspires to 

mimic specific aspects of vertebrate brain function. Other 

components of the architecture, that are included to 

satisfy the requirements for a working control system do, 

however, provide useful hypotheses concerning the 

embedding of the basal ganglia within the wider brain 

architecture, and we return to this issue in the discussion.  
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The robot control architecture has a large number of free 

parameters, that specify, for instance, the timings of sub-

elements of behavior patterns (section 3.3.2) and the 

weightings for action ‘salience’ calculations (section 

3.3.3). We have opted to use hand-tuned parameters 

throughout, as the free parameters in the embedding 

architecture do not need to be optimal but simply 

adequate to generate desired behaviour. This practise is 

consistent with much of the existing research on action 

selection where hand-coded systems are frequently 

employed (Maes, 1995). From the point of view of robot 

control, the capacity to learn from experience would 

clearly make our architecture more adaptive, however, 

the goal of the current study is limited to investigating the 

selection capabilities of an embodied basal ganglia 

model, so optimization of the embedding architecture is 

not a critical requirement. 

3.3.1.  The robot sensory and motor systems 

The Khepera™ I is a small cylindrical robot, 60mm in 

diameter, with two driven wheels and a detachable 

gripper arm. The robot senses the environment through an 

array of eight peripheral sensors, which can operate in 

both an active mode, as an infra-red proximity sense, and 

in a passive mode as an ambient light sense. In active 

mode, the sensor array has a very limited range, reliably 

detecting nearby vertical surfaces no further than 25mm 

away. In this respect it is somewhat analogous to a 

biological tactile sensory system, such as the rat 

vibrissae. In addition the robot has a positional sensor on 

the gripper arm to determine whether it is currently raised 

or lowered, and a binary-valued optical sensor that 

detects whether there is an object between the gripper 

jaws.  Further details of the robot sensory systems are 

given in Appendix 1. The two wheel motors can be 

independently driven forwards or backwards, and the 

gripper turret is powered by two motors, one to lift/lower 

the arm, the other to open/close the gripper. Further 

details of the motor systems are given in Appendix 4. A 

serial link, controlled by Webots 2.0 robot interface 

software, is used to send sensor readings to, and receive 

motor commands from, the computer hosting the 

embedding architecture and basal ganglia model. This 

interface operates on a series of discrete time-steps 

providing updates at a rate of approximately 7Hz. For 

convenience of notation, indexing according to the 

current ‘robot time-step’ is assumed in the following 

account of the embedding architecture (note, however, 

that the embedded basal ganglia model has a different 

intrinsic time-step as explained in 3.3.4 below).  

 

 

Figure 5. The embedded basal ganglia model.  The model is composed of three parts: (i) the robot and its sensory and 

motor primitives, (ii) the embedding architecture—a repertoire of perceptual, motivational, action (behavioral) sub-

systems—and its interface to (iii) the biomimetic extended basal ganglia model (whose full connectivity is shown in 

figures 3, and 2c).  Connections for the first of the five action sub-systems are shown (projections to and from other 

action sub-systems are indicated by dotted lines). Abbreviations: VG—(motor) vector generator, SI—shunting inhibition, 

b—busy signal, s—salience signal, f—feedback signal, y
snr—basal ganglia output, e—gating signal, v—motor vector, ˆ v 

—aggregate motor vector. 
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3.3.2.  The embedding architecture—action sub-
systems 

The control architecture of the robot includes five 

behaviors, or action sub-systems, which it can switch 

between at any time. These are: searching for cylinders 

(cylinder-seek or Cs), picking up a cylinder (cylinder-

pickup, Cp), looking for a wall (wall-seek, Ws), following 

alongside a wall (wall-follow, Wf), and depositing the 

cylinder in a corner (cylinder-deposit, Cd). Each action 

sub-system operates independently to compute a stream 

of output signals that are directed toward the robot motor 

systems. So, for instance, cylinder-seek uses the infra-red 

proximity sense to detect nearby surfaces and to 

discriminate objects that are likely to be cylinders from 

other contours such as walls, and generates motor outputs 

that specify movement towards or away from the 

stimulus object as appropriate. 

Our decomposition of robot activity into these five sub-

systems is inspired by the ethological classification of 

behavior. Each action sub-system consists of a set of 

condition–action mappings, and three of the five action 

sub-systems—cylinder-seek, wall-seek, and wall-follow—

map patterns of input from the peripheral sensor array 

into movements that orient the robot towards or away 

from specific types of stimuli (e.g. object contours). 

These behaviors can be viewed as belonging to the 

ethological category of orienting responses or taxes (see, 

e.g. Hinde, 1966). The two remaining sub-systems—

cylinder-pickup and cylinder-deposit—generate 

stereotyped, and carefully timed, patterns of movement 

modeled on the ethological concept of a fixed action 

pattern (FAP). As originally defined by Lorenz (1935), 

FAPs are species-specific, instinctive responses to 

specific patterns of stimulation. Although a FAP may 

describe a complex spatio-temporal pattern of movement, 

a distinctive feature is that, once elicited, the overall form 

of the pattern (though not the parameters of specific 

motor elements) is uninfluenced by further external cues 

(Colgan, 1989). Perhaps the best known example of a 

FAP is the pattern for egg-retrieval, displayed by many 

ground-nesting birds, which has been described as having 

three sequential elements (Tinbergen, 1951; Hinde, 

1966): (i) stand up; (ii) place the bill beyond the egg; (iii) 

roll the egg back into the nest (moving the bill from side-

to-side to prevent the egg from slipping).  By comparison, 

the fixed action pattern for cylinder-pickup in the robot 

model constitutes five sequential elements: (i) slowly 

approach the cylinder (to ensure correct identification and 

good alignment for pickup); (ii) back away (to allow 

room to lower the arm) whilst opening the gripper; (iii) 

lower the arm to floor level; (iv) close the gripper 

(hopefully around the cylinder); (v) return the arm to 

vertical. The term ‘fixed action pattern’ has been 

criticized within ethology for over-emphasizing the 

stereotyped and instinctive nature of the resulting 

behavior—‘modal action pattern’ (Barlow, 1977; Colgan, 

1989) is therefore sometimes preferred. We have used the 

original term here both because our robot implementation 

of FAPs is consistent with Lorenz’s definition, and 

because researchers in neuroethology have continued to 

find this a useful concept (Hoyle, 1984; Ewert, 1987; 

McFarland & Bosser, 1993; Casseday & Covey, 1996; 

Toates, 1998). 

Whilst an action pattern may, in general, exploit sensory 

or proprioceptive data to shape ongoing motor output, 

some FAPs are held to be ballistic in nature (Hinde, 1966; 

Ewert, 1987), suggesting the involvement of intrinsic 

pattern-generating mechanisms. In the robot model, the 

relative paucity of appropriate sensory data has led us to 

investigate the use of such intrinsic patterning to regulate 

sequencing within a FAP.  Specifically, the timing of the 

sub-elements of a pattern are determined relative to the 

state of an internal clock (C in figure 5) and the full 

behavior is implemented as a set of mappings from 

elapsed time, as recorded by this clock, to specified 

patterns of motor output.  Given that the spatiotemporal 

organization of the robot FAP is regulated solely by this 

intrinsic time signal, a critical issue is how the sub-

system clock is itself controlled.  Our architecture here 

assigns an important role to the output of the basal 

ganglia by making the state of the clock depend upon 

thalamocortical feedback. Specifically, the sub-system 

clock is enabled (non-zero) only if there is a non-zero 

feedback signal from the VL thalamus in the relevant 

basal ganglia channel (indicated by the symbol f in figure 

5). Since this aspect of the embedding architecture has a 

significant functional role (i.e. is potentially ‘theory-

relevant’ with respect to the action selection hypothesis) 

we will consider evidence of a role for the basal ganglia 

in behavioural timing in our discussion (section 5.2.2). 

We designate v to be the vector generated by any given 

action sub-system that encodes its current motor output. 

To be effectively gated by the basal ganglia we require 

that all elements of v are positively-valued and lie in the 

interval 0,1[ ] , and to interface with the Khepera robot we 

make v a nine-element vector containing a distributed 

coding of the target left- and right- wheel-speeds (two 

elements each), arm-position (three elements), and 

gripper-position (two elements). Further details of this 

motor encoding scheme are given in appendix 2, which 

also provides a full description of the condition–action 

mappings implemented by each of the action sub-

systems.  The elements of the robot’s behavioral 

repertoire are illustrated in Figure 6. 
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Figure 6.  Elements of robot behavior in the simulated 

foraging task: (a) wall-seek, (b) wall-follow, (c) cylinder-

seek, (d) cylinder-pickup, (e) wall-seek (carrying a 

cylinder), (f) wall-follow (again carrying a cylinder), (g, 

h) cylinder-deposit. 

 

3.3.3.  The embedding architecture—determining 
salience 

A centralized action selection system requires 

mechanisms that can assimilate relevant perceptual, 

motivational, and contextual signals to determine, in 

some form of ‘common currency’ the relative salience or 

urgency of each competing behavior (McFarland, 1989; 

Redgrave et al., 1999a). In the embedding architecture of 

our model, at each time-step, a salience value for each 

action sub-system is calculated as a weighted sum of 

relevant perceptual and motivational variables, and may 

also be dependant on the current activity status of the 

action sub-system itself. Each of these contributions to 

the salience calculation is briefly described below. 

As ethologists have noted, the perceptual stimuli that give 

rise to a behavioral selection, often termed sign stimuli, 

are often quite different from those that are used to 

control the execution of the selected behavior (Ewert, 

1987; Colgan, 1989). Sign stimuli generally indicate the 

presence (or absence) in the immediate environment of 

the relevant affordances for different behaviors. In the 

robot model, these values are computed by perceptual 

sub-systems from the raw sensory data available to the 

robot and generate four bipolar signals indicating: the 

presence (+1) or absence (-1) of a nearby wall ( pwall ), 

nest ( p
nest

), or cylinder ( pcyl ), or of an object in the robot 

gripper ( p
grip

). 

An action selection mechanism also requires information 

about intrinsic state, indicating, for example, the current 

level of energy reserves (McFarland, 1989; McFarland & 

Bosser, 1993).  In the current model two simple intrinsic 

drives, loosely analogous to ‘hunger’ and ‘fear’, are 

calculated by two motivational sub-systems. ‘Fear’ (m fear

) is calculated as a function of exposure to the 

environment and is reduced with time spent in the 

environment, whilst ‘hunger’ (mhung
) gradually increases 

with time and is reduced when cylinders are deposited in 

the nest corners of the arena. Further details of the 

calculation of the perceptual and motivational variables 

are given in appendix 3. 

In addition to perceptual and motivational input our 

model allows an action sub-system to contribute to its 

own salience computation by generating a signal 

indicating the urgency or importance attached to 

completing an ongoing task. We have adopted the term 

busy signal to describe a contribution to the weighted 

salience calculation that encodes this aspect of the 

activity status of an action sub-system (indicated by the 

symbol b in figure 5). In the robot model, such signals 

provide contributions to the salience calculations for three 

sub-systems. In cylinder-pickup a busy signal, bpick, 

boosts the sub-system salience while the robot backs-up 

in order to grasp a target cylinder (the robot is generally 

unable to detect the cylinder during this maneuver), the 

busy signal then continues after the cylinder is grasped 

and until the robot arm is returned to a safe, vertical 

position. The role of the signal is to compensate for the 

salience changes that occur as the perceptual variables 

pcyl  (cylinder detection) p
grip

 (gripper status) switch sign 

during the task.  In a similar fashion, cylinder-deposit 

uses a busy signal, bdep, to boost its salience after the 

cylinder has been released and until the robot arm is 

returned to vertical.  Finally, wall-follow, generates a 

signal, b foll , if a nearby surface is detected by only one of 

its six proximity sensors. In this situation the wall 

percept, pwall , often has a negative value (since there is 

insufficient sensory input to reliably identify a wall), so 

the signal encourages wall-following to be sustained until 

an unambiguous percept of the wall is regained or the 

robot loses track of the surface altogether.  Full details of 

when each of these busy signals is generated are given in 

appendix 2. Some possible neural correlates of such 

signals are considered in section 5.2.1. 

The overall salience s
i
 for the ith action sub-system is a 

linear weighted sum (including a threshold term) of 

relevant perceptual and motivational variables and the 
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busy signal (if required) for that sub-system.  The weights 

given below were selected by hand to provide closely-

matched action selection competitions, then ‘tuned’ 

whilst observing the robot until the appropriate and 

opportunistic action selection was observed. 

cylinder-seek: 

s
1
= sseek = −0.12pcyl − 0.12pgrip − 0.06m fear + 0.45mhung

 

cylinder-pickup: 

s
2
= spick = 0.21pcyl − 0.15pgrip − 0.18m fear + 0.18mhung  

+0.78bpick + 0.25  

wall-seek: 

s
3
= swall = −0.12pwall + 0.14 pgrip + 0.18m fear + 0.25 

wall-follow: 

s
4
= s foll = 0.12pwall + 0.14 pgrip + 0.21p fear + 0.25b foll + 0.25

 

cylinder-deposit: 

s
5
= sdep = 0.33pnest + 0.33pgrip + 0.18mhung + 0.40bdep + 0.13

 

These salience signals form the input to the model basal 

ganglia to which we turn next. The elements of the 

embedding architecture responsible for interfacing basal 

ganglia outputs with the motor system are then described 

in section 3.3.5.  

3.3.4.  The extended basal ganglia model—a 
biomimetic substrate for action selection 

In the robot, the task for the basal ganglia model is to 

arbitrate at each time-step between the five available 

action sub-systems and to generate a pattern of action 

selection over time that results in coherent sequences of 

behavior. For the experiments reported below we used the 

model of basal ganglia intrinsic circuits described by 

Gurney et al. (2001a, b) extended to include the models 

of VL thalamus and the thalamic reticular nucleus as 

described by Humphries and Gurney (2002). The full 

functional architecture of the model therefore combines 

the elements in figure 2c and figure 3.  

In a living animal, the activity of the brain and of the 

body both unfold in continuous time, therefore the ideal 

scenario for modeling would be to simulate both neural 

processes and behavioral processes at the same, high 

temporal rate. Unfortunately, the current robot model 

presents a problem in that the sense-act cycle operates in 

discrete steps at the relatively sedate pace of 

approximately 7Hz.  This raises the issue of how we 

relate the update rate of the basal ganglia model to that of 

the robot. In this study, we have chosen not to enforce a 

specific, fixed mapping between the two update cycles, as 

this could lead to artifacts caused by the intermittent 

sampling of basal ganglia activity at non-equilibrium 

values. Instead, we have opted to run the basal ganglia 

model to convergence at each robot time-step. Clearly, by 

allowing only equilibrium basal ganglia states to 

influence motor output we lose the opportunity to observe 

the behavioral consequences of basal ganglia dynamics at 

high temporal rates, a topic that merits future 

investigation in its own right.  

For convenience, a brief summary of the full basal 

ganglia model is provided next; the reader is referred to 

Gurney et al. (2001a, b) and Humphries and Gurney 

(2002) for a detailed justification of its form. 

The standard leaky integrator unit used throughout model 

is defined as follows. Let a be the unit activation and u be 

the net input (or total post-synaptic potential) generated 

by the afferent input to the unit. Given a rate constant k  

(corresponding to the cell membrane capacitance and 

resistance) ˙ a = da dt  is given by 

˙ a = −k(a − u)  (1) 

The output y of the unit, which corresponding to the mean 

firing rate, is bounded below by 0 and above by 1, and is 

given by the piecewise linear function 

y = L a,θ( ) =

0 : a <θ

(a −θ ) : θ ≤ a ≤ 1/ 1+θ( )

1 : a > 1+θ( )

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

. (2) 

Note that θ  is the threshold below which any value 

outputs zero—a negative threshold value therefore 

indicates tonic activation, whilst a positive value 

indicates resistance to synaptic input.  

The following equations specify the net input u
i
 and 

output y
i
 for the ith channel in each component of the 

model. The net input u
i
 is computed using the outputs y

i
 

of other components of the model except for the model 

somatosensory cortex where it is equal to the current 

salience input, s
i
, for that channel (see section 3.3.3). 

Dopamine modulation of the model is provided by 

introducing a multiplicative factor in the equations 

specifying afferent input to the striatum—in striatal D1 

channels where dopamine modulation increases synaptic 

efficacy the effective weight is (1+λ) where 0 ≤ λ ≤ 1, in 

D2 channels, where the effect is to reduce efficacy, the 

weight is (1-λ). All parameter and threshold values are 

the same as those used in Humphries and Gurney (2002) 

and Gurney et al. (2001a, b), except the weighting of the 

inputs from the TRN to the VL thalamus1. Note that, 

                                                             

1 Lower weights are used on the TRN-VL connections than in the 

previous article, as the original weights generated some instabilities in 

architectures with three or more active channels. 
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since the architecture forms a continuous loop, definition 

of the net input for the motor cortex requires the output of 

VL thalamus ( y i
vl) defined later in the list. All other 

values are defined consecutively: 

Somatosensory cortex (ssc): 

u
i

ssc
= s

i
, y

i

ssc
= L(a

i

ssc
,0.0) . (3) 

Motor cortex (mc): 

u i
mc
= y

i

ssc
+ y i

vl
, y

i

mc
= L(a

i

mc
,0.0) . 

Striatum D1 (d1): 

u i
d1 = (1+ λ) 1

2
y i
ssc + y i

mc( ) , y id1 = L(a id1,0.2) . 

Striatum D2 (d2): 

u i
d 2 = (1− λ) 1

2
y i
ssc + y i

mc( ) , y id 2 = L(a id 2 ,0.2) . 

Subthalamic nucleus (stn): 

u
i

stn = 1

2
y
i

ssc + y
i

mc( ) − y igp , y istn = L(a istn ,−0.25) . 

Globus pallidus (gp): 

u i
gp
= 0.9 y i

stn

i
∑ − y i

d 2
, y

i

gp
= L(a

i

gp
,−0.2) . 

EP/SNr (snr): 

u i
snr
= 0.9 y i

stn

i
∑ − y i

d1 − 0.3y i
gp

, y
i

snr
= L(a

i

snr
,−0.2) . 

VL Thalamus (vl): 

u i
vl = y i

mc − y i
snr − 0.125y i

trn + 0.4 y j

trn

j≠i
∑( ) , 

y i
vl
= L(a i

vl
,0.0). 

Thalamic reticular nucleus (trn): 

u i
trn
= y i

mc
+ y i

vl
− 0.2y i

snr , y
i

trn
= L(a

i

trn
,0.0) . 

In the robot implementation the time-course of the basal 

ganglia model is simulated using a Euler solution2 to 

equation (1) 

                                                             

2
 The Euler method is known to have stability problems if the time-step 

chosen is too large. However, with a small enough time-step it is 

sufficiently accurate and less computationally expensive than some 

other methods (an important consideration in developing robot models 

that must make decisions in finite time). In the light of the known 

stability issues our algorithm was extensively tested to ensure that the 

time-step chosen was small enough to avoid stability issues.  The 

behaviour of the model used in the robot was also tested on several 

benchmark runs against a simulation, implemented in Simulink™, using 

a fixed-step Dormand-Prince (5th order) solver with a time-step of 0.01 

and the outputs were found to be equivalent.  

Δa
i
(t) = −k(a

i
(t −1) − u

i
(t))Δt , (4) 

a
i
(t) = a

i
(t) + Δa

i
(t) . 

Hence the net input u
i
(t)  is calculated using the outputs

y
i
(t −1) of other model components from the previous 

iteration step and the salience s
i
 which is fixed for the 

current robot time-step (and therefore throughout 

convergence). The output y
i
(t)  is obtained by 

substituting a
i
(t)  in equation 2 with the appropriate 

threshold. A rate constant k= 25, and step-size Δt = 0.012  

were used in the experiments reported here, and the 

model was considered to have converged whenever the 

smallest Δa on two consecutive time-steps was less than 

0.0001. 

Previous studies (Gurney et al, 2001b, Humphries and 

Gurney, 2002) have established that the basal ganglia 

model shows good selection properties, across a wide-

range of salience pairings, with the simulated dopamine 

level set at λ = 0.2 .  This value was therefore used in all 

this experiments described in the current article; the 

consequences of variation of the simulated dopamine 

level will be investigated in detail in a separate article. 

 

3.3.5.  The embedding architecture—gating motor 
output 

The output of the model basal ganglia gates the motor 

vector produced by each action sub-system by reducing 

or increasing the inhibition on the corresponding motor 

pathway. This is implemented in our embedding 

architecture using a gating signal e generated using a 

shunting inhibition mechanism (labeled SI in figure 5) 

defined such that, for the ith action sub-system, e
i
 (0≤ ei ≤ 

1) is given by  

e
i
= L 1− y

i

snr
y
tc

snr
, 0.0( ) . (5) 

Here y
tc

snris a constant equal to the tonic output of EP/SNr 

obtained when the model is run to convergence with zero 

salience input on all channels. For the parameters of the 

basal ganglia model listed above y
tc

snr
= 0.169 .  Our 

model assumes that this level of basal ganglia output 

provides complete inhibition of target structures, and that 

disinhibition of targets begins when the output falls 

below y
tc

snr, increases linearly with decreasing output, and 

is maximal when the output reaches zero. Since this 

element of the embedding architecture mediates the 

effects of basal ganglia output on the motor system it 

plays a ‘theory-relevant’ role in our model.  We will 

therefore consider evidence, in Section 5.2.3, that basal 

ganglia output to motor and pre-motor systems may also 

have a gating effect similar to shunting inhibition. 

The gated motor outputs of all action sub-systems are 

summed over all channels and the result passed through a 

further limiter to give the aggregate vector 
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ˆ v = L e
i
v
i
,

i
∑ 0.0( ) . (6) 

Finally, the motor plant maps the vector ˆ v  into motor 

commands that can be understood by the robot, details of 

this mapping are given in appendix 4. 

Note that the aggregate motor vector expresses target 

values for the motor state, that is, target wheel-speeds, 

gripper-arm elevation, and gripper-jaw position. In the 

event of full basal ganglia inhibition of all channels, this 

aggregate command will have zero value and the robot 

will freeze in its current position. In the event that one or 

more channels is partially (but not fully) disinhibited, the 

robot will act but its movements may be slowed by the 

resulting reduction in the size of the motor signals. 

Finally, note that the motor signal generated by any 

losing behavior that is not fully inhibited by the basal 

ganglia will be combined with that of the winner.  This 

mechanism allows for the possibility of distortion (the 

robot tries to do two things at once) in the event of 

ineffective suppression of competitors by the basal 

ganglia.   

 

3.3.6.  Time course of the robot model 

To make clear the relationship between the update cycle 

of the robot, the embedding architecture, and the basal 

ganglia model, the activity in the embodied model 

occurring in one robot time-step can be summarized as 

follows: 

(i) Enact the robot’s current aggregate motor 

command ˆ v and obtain new sensor data. 

(ii) For each action sub-system i update the 

salience s
i
 and generate a new motor vector 

v
i
. 

(iii) Run the basal ganglia model to 

convergence. 

(iv) Using the output, y
i

snr, of the converged 

basal ganglia model generate the gating 

signal e
i
 and compute a new aggregate 

motor command ˆ v . 

(v) Using the output of the VL thalamus, y i
vl , 

enable or disable the sub-system clock of 

any sub-system that implements a fixed 

action pattern.  

For the embedded basal ganglia model the activation 

values of all leaky integrator units at convergence are 

retained as the starting values for the next time-step. This 

allows for the possibility of hysteresis across robot time-

steps and has potentially important consequences for 

behavior. 

 

3.4.  Action selection metrics 

To assist the presentation of the model results it is helpful 

to define a number of terms to describe the outcomes of 

action selection competitions.  

First, we note that the gating signal e , defined in equation 

5, provides a useful normalized measure of selection by 

the embedded basal ganglia model. In evaluating the 

performance of the model we will therefore use e
i
 as a 

measure of the efficiency with which the motor output of 

the ith action sub-system is transmitted to the motor 

resource. Allowing a 5% margin from absolute limits, we 

define the selection state of the ith competitor as fully 

selected if 0.95≤ e
i
≤ 1 , partially selected if 

0.05≤ e
i
< 0.95, and unselected if e

i
< 0.05.   

It is helpful to have specific metrics relating to the 

winning sub-system, hence, we define 

e
w
= max∀i ei  (7) 

as the efficiency of the winner(s) in the current robot 

time-step, and 

d
w
=
2 e

i
i

∑ − e
w( )

e
i

i
∑

 (8) 

to be the level of distortion affecting the output of the 

winner(s). Note that d
w

 will equal zero when all other 

competitors have zero efficiency, will increase with the 

number of partially disinhibited losers, and will be 1.0 or 

greater if two or more channels are fully disinhibited. 

Finally, inspired by ethological research (Lehner, 1996), 

we describe an uninterrupted series of time-steps that 

share the same winner(s), and for which e
w
≠ 0 , as a 

single bout of behavior. 

The result of the basal ganglia selection competition, as a 

whole, can be described by the vector e. Using the criteria 

just defined for single competitors we assign the 

following labels to the possible outcomes of the full 

competition: 

Clean selection: One competitor fully selected, 

all others unselected. 

Partial selection: One or more competitors 

partially selected, no competitor fully selected. 

Distorted selection: One competitor only fully 

selected, at least one other partially selected. 

Multiple selection: Two or more competitors fully 

selected. 

No selection: All competitors unselected. 
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4.  Experiments 

Three experiments were performed using the basal 

ganglia model. Experiment 1 (section 4.1) was designed 

to aid the interpretation of the behavior of the robot 

model and employed a systematic search of a salience 

space using a disembodied version of the extended basal 

ganglia model.  Experiment 2 (section 4.2) was our main 

investigation of a robot model implemented using the 

hand-tuned salience inputs described in section 3.3.3. 

Experiment 3 (section 4.3) investigated the behavioral 

consequences of using multiple, high salience inputs in 

the robot model.  

4.1.  Experiment 1—selection properties of the 
disembodied model 

Method. To provide a framework for interpreting the 

behavior of the robot model we performed a systematic 

search of a salience space using a disembodied version of 

the extended basal ganglia model.  Specifically, we 

simulated a five-channel model, with two active channels, 

varying the salience s
1
 in channel 1 systematically from 0 

through to 1 in steps of 0.01, then for each value of 

channel 1 salience, varying the salience s
2

 of channel 2 

from 0 through 1, again in steps of 0.01. For each 

resulting salience vector s1,s2,0,0,0( )  the model was run 

to convergence and the result classified according to the 

scheme set out in section 3.4. Importantly, selection 

competitions were run in sequence from low values to 

high values. The activations levels of all leaky integrators 

in the model were initialized to zero for each new value 

of s
1
 but thereafter, while that salience value was tested, 

were retained from one competition to the next. In other 

words, we simulated the situation where channel 1 was 

initially the only active channel, and gradually increased 

channel 2 while holding channel 1 constant, the goal 

being to simulate some aspects of the continuity of 

experience of the robot model in which the recent history 

of basal ganglia selection competitions may influence the 

current competition through hysteresis. 

Results. The disembodied model displayed a high-

proportion of clean selections (79%), with some partial 

selections (17%). Reduced selection efficiency and 

distortion occurred only for evenly-matched, high 

salience competitions. The model also showed evidence 

of hysteresis that varied with salience intensity. 

The state-space search described above resulted in 10,000 

(100x100) salience competitions of which 78.6% resulted 

in clean selection, 16.7% in partial selection, 4.3% in no 

selection, 0.3% in distorted selection, and 0% in multiple 

selection.  Some further results from this analysis are 

shown in figure 7. In the upper graph we show the 

efficiency, e
w
, of the winning channel for each salience 

competition plotted in the s1,s2( ) plane, and below this 

the equivalent plot for distortion, d
w

, of the winning 

channel. Progressively lighter shading indicates, 

respectively, increasing efficiency (top) and decreasing 

distortion (bottom). The dotted line in the upper graph 

also indicates the boundary below which the selection 

competition was resolved in favor of channel 1 (i.e. 

channel 1 efficiency exceeds that of channel 2). Several 

properties of figure 7 are worthy of comment. First there 

was high efficiency, minimal distortion, and hence clean 

selection, across most of the state space. Second, there 

was no selection only for very low salience pairings. 

Third, there was reduced efficiency of selection and 

significant distortion for strong, evenly matched, salience 

values s
1
,s
2
> 0.6( ) , resulting in partial selection in this 

area of the state-space. Finally, we note that the model 

showed significant hysteresis (as indicated by the dotted 

line in the upper graph). In particular, a salience value 

between 0.2 and 0.6 in channel 1 was able to resist a 

‘rising tide’ of channel 2 salience until the latter was 

substantially stronger in numerical terms. Furthermore, 

changes in the overall intensity of the salience 

competition resulted in different levels of hysteresis, with 

the effect most pronounced at intermediate levels of 

salience. 

4.2.  Experiment 2—the robot basal ganglia 

Method. The robot was tested for five trials, each lasting 

300s (2000 robot time-steps), with all parameters of the 

model as described in section 3.3.  The experimental 

procedure was as follows. At the start of each trial the 

robot was placed in the centre of the arena (see figure 4) 

facing one of the four walls, with four cylinders placed 

18cm diagonally in from each corner. All motor outputs 

were initially set to zero, and the basal ganglia model run 

to convergence with zero salience on all channels. For 

each trial automatic logs were generated detailing the 

robot’s sensory, motivational, and basal ganglia state, at 

each robot time-step, and the overall bout structure of its 

behavioral selections. Most trials were also recorded in 

digital video, using a camera positioned approximately 

1m above the arena, to allow detailed examination of the 

robot’s behavior and its interaction with objects and 

surfaces in the environment. 

Results. In the following we describe (i) the general 

selection properties of the robot model, (ii) the intrinsic 

processing in the model basal ganglia during robot 

behavior, and (iii) the observed behavior of the robot 

model. 

(i) The robot engaged in a high proportion of closely 

fought selection competitions resulting in predominantly 

clean selections (84%). Hysteresis, which generates 

behavioral persistence, was exhibited in 10.1% of 

competitions. 
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Figure 7. Efficiency (top) and distortion (bottom) in the 

winning channel, for a systematic salience-space search 

with two active channels. Progressively lighter shades 

show higher efficiency (top) or reduced distortion 

(bottom). The salience space was sampled at a resolution 

of 0.01. For each salience value of channel 1, channel 2 

began at 0 and increased gradually. The model was re-

initialized only when a new channel 1 value was selected 

thus allowing the possibility of hysteresis. The dotted line 

in the left-hand graph indicates the boundary below 

which the selection competition was resolved in favor of 

channel 1. 
 

Figure 8 provides a partial view of the salience space 

explored by the robot. Each cell shows the proportion of 

the (approximately 10,000) basal ganglia competitions (1 

per robot time-step) for which the salience of the winning 

channel (horizontal-axis) and that of the most salient 

loser (vertical-axis) fell within a given range (note, there 

was also, typically, non-zero salience in other losing 

channels that is not shown in the figure) with darker 

colors indicating greater proportions. The plot shows that 

there were a large proportion of closely fought salience 

competitions, but that the area of high salience 

competitions (where reduced efficiency can be expected) 

was relatively sparsely sampled. Our analysis again 

classified the outcome of the basal ganglia selection 

competition, at each time-step, according to the criteria 

specified in 3.4. Across all five trials, 84.4% of salience 

competitions resulted in clean selection, 9.7% in partial 

selection, and 5.9% in no selection. There was no 

distorted selection or multiple channel selection.  This 

result indicates that the range of operation within which 

the basal ganglia model generates (primarily) clean 

selection is sufficient to meet the action selection 

requirements of a reasonably complex robotic task.  

 

The presence of some shaded cells above the diagonal 

(x=y) in Figure 8 provides evidence of hysteresis in the 

embedded basal ganglia model (i.e. competitions for 

which the winning channel has lower salience than its 

closest competitor). In the robot, hysteresis translates into 

behavioral persistence, where the robot continues to 

display a selected behavior beyond the point where a 

winner-takes-all selector would switch to a higher 

salience task. Over all five trials, persistence was shown 

on 10.1% of time-steps and therefore had a significant 

influence on the observed behavior of the robot.  

Figure 8. A partial view of the salience space sampled by 

the robot in a typical trial. Axes denote the salience of the 

winning channel (horizontal), and of the most salient 

loser (vertical). Shading indicates the proportion 

(darker=greater) of the approximately 10,000 salience 

pairs falling within a given (0.1x0.1) bin. Average 

channel salience was 0.235 (across all channels and all 

time-steps), the average winning salience 0.475, and the 

average margin (between winner and most salient loser) 

0.154. 
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(ii) Intrinsic processing in the embodied model 

Figure 9 illustrates some of the intrinsic processing 

occurring in the embedded basal ganglia model during 

the first 180s (approximately 1200 robot time-steps) of a 

typical trial. Figure 9a shows, for each channel (action 

sub-system), activity in two of the basal ganglia input 

structures—the somatosensory cortex, y
ssc  (solid line), 

whose output is proportional to the net salience, and the 

D1 striatum, y
d1

 (dotted line). The final plot in 9a shows 

the cortical output for the winning channel (solid line) 

compared with that of the most salient loser (dotted line).  

Figure 9b shows the model activity, per channel, for the 

basal ganglia output nuclei EP/SNr, y
snr .  The final plot 

in 9b showing average EP/SNr output across the four 

losing channels (solid line) compared with that of the 

winning channel (dotted line).  In the following we 

briefly relate some key features of model intrinsic 

processing to computational properties of the basal 

ganglia model and embedding architecture, and to the 

observed behavior of the robot.  We also present some 

quantitative measures relating the selection behavior of 

the embedded model to intrinsic activity in EP/SNr and 

STN. 

 

Figure 9. Intrinsic activity of the embedded basal ganglia model for the first 180s of a typical trial. (a, left) The first five 

graphs show, for each of the five basal ganglia channels, the output of the somatosensory cortex,   (solid line), and of the 

D1 striatum,   (dotted line) plotted against time. The final plot shows the   output of the winning channel (solid line) 

compared to that of the most salient loser (dotted line). (b, right) The first five graphs show the per-channel output of 

EP/SNr,  , while the final plot shows the average   output of losing channels (solid line), compared to that of the winning 

channel (dotted line). Solid bars below the sub-system plots indicate periods of full selection of the corresponding action 

sub-system. Note that there is no selection during the period t= 160–180s. 
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Striatal activity reflected changes in channel salience, 

modulated by thalamocortical feedback. 

The graphs of cortical and striatal D1 activity (9a) show 

that the saliences varied both gradually and sharply with 

time reflecting changes in either the continuous, and 

generally slow-varying, motivations or the discrete and 

rapidly-varying perceptual variables. The difference 

between the cortical and striatal activity (the filled and 

dotted lines) illustrates the effect of thalamocortical 

feedback in boosting selected channels, and of the striatal 

thresholds in suppressing low salience inputs. A period of 

no selection occurred in this trial during the interval t= 

160–180s where the cortical output of the most active 

channel was at a low level (<0.3), there was a near-equal 

level of output in a second channel (see the final plot in 

9a), and significant, non-zero output in two further 

channels. This outcome demonstrates that the threshold 

for selection is often higher in the five-channel robot 

model than in the two-channel, disembodied model 

illustrated in figure 7. This result is consistent with a 

previous finding (Gurney et al., 2001b) that the presence 

of multiple active channels makes the selection of any 

given channel more difficult, a property of the model that 

we have termed ‘selection limiting’.  

 ‘Busy signals’ performed a significant role in 

maintaining behavioral selections. 

The utility of a sub-system busy signal for maintaining a 

selected behavior is also visible in the graphs of cortical 

and striatal output (9a). For instance, during cylinder-

pickup there is a noticeable change partway through the 

execution of the behavior (t= 75–79s) corresponding to 

the moment when the primary objective of grasping the 

cylinder was achieved. The busy signal was engaged at 

this point to maintain the salience of the behavior above 

that of its competitors while the full movement (returning 

the robot arm to vertical) was completed. Without this 

signal the salience of the behavior would have fallen 

more substantially once the cylinder was gripped, 

resulting in failure to complete the full action pattern.  In 

other words, the busy signal allowed the maintenance of 

the behavior while an essential ‘house-keeping’ element 

of the task was completed. A busy signal played a similar 

role during the execution of cylinder-deposit (t= 83–87s).  

The action of the busy signal during wall-follow can be 

seen in the series of intermittent salience spikes (t= 5–

40s) that compensated for temporary interruptions of the 

wall percept and therefore prevented an early return to 

wall-seeking behavior. In this role, the busy signal helped 

avoid unnecessary behavior switching due to noisy or 

ambiguous sense data.  

Basal ganglia output showed, predominantly, full 

disinhibition of winners and increased inhibition of 

losers. Average EP/SNr activity increased during 

behavioral selections.  

The graphs of basal ganglia output (9b) show the 

consequences of the further intrinsic basal ganglia 

selection mechanisms (feed-forward off-centre on-

surround, and the GP control circuit) that resulted in 

sharp decision boundaries between action sub-systems 

with selected sub-systems fully disinhibited (zero EP/SNr 

output). Note that there is a marked difference in the 

mean activity of losing channels (see bottom graph) 

during the period when there was no selected behavior (t= 

160–180s), as compared with all times at which there was 

a winning behavior.  To quantify this effect, average 

EP/SNr activity was calculated across all five runs for 

different selection outcomes.  Taking the EP/SNr output 

during periods of no selection as a baseline, average 

output for all channels (losing channels) was 123% 

(134%) of baseline during periods of partial selection, 

and 156% (182%) during clean selection. More generally, 

across all selection competitions, there was a strong 

negative correlation (r= -0.895) between the activity of 

the winning channel and the average activity in losing 

channels. Thus as a winning channel was disinhibited, the 

level of inhibitory output to losing channels increased.   

STN activity increased during behavioral selections and 

was the principle cause of increased inhibition of losing 

channels.  

In the basal ganglia model the only structure providing 

excitatory input to EP/SNr is the STN which 

consequently showed a high correlation (r= 0.884) with 

activity in losing channels. STN is itself driven by 

cortical inputs (somatosensory and motor) encoding 

channel salience and thalamocortical feedback (EP/SNr–

VL–MC), and by a recurrent loop with GP.  Analysis of 

STN firing in the model indicates that this showed 

gradual increases with cortical activity relating to 

increased salience (r= 0.696, with SSC), and also showed 

a sharp increase when the baseline periods of no selection 

were compared with either partial selection (176% of 

baseline), or clean selection (272%). From this data, we 

can conclude that while selection of a winning channel 

generates, through thalamocortical feedback, increased 

inhibition of EP/SNr of that channel (via the direct 

striatonigral pathway), the same positive feedback signal 

also leads, via STN, to increased EP/SNr activity in 

losing channels. 

 (iii) The observed behavior of the robot showed clean 

and decisive switching between selected channels, was 

organized in extended bouts and goal-achieving 

sequences, and displayed variability in sequence 

structure and duration. 

Based on our earlier definition of a behavioral bout, the 

activity of the robot (as illustrated in figure 9) can be seen 

to consist of appropriate, and suitably extended bouts of 

individual activities that are integrated over time into 

appropriate, higher-order sequences of goal-achieving 

behavior. This bout/sequence structure is more easily 
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seen in figure 10 where we show sub-system activity for 

the full 300s of the trial for which sample basal ganglia 

activity was shown in figure 9. From the top down, the 

first five graphs in this figure show the efficiency e of 

each of the five action sub-systems over time, with bouts 

of full selection appearing as solid blocks (in the style of 

a behavioral ethogram). The next (sixth) graph shows a 

plot of 1− e
w( )  over time, and thus displays the extent to 

which the robot was expressing its current action 

inefficiently or engaging in periods of inactivity (note, 

that there was no distorted selection in this trial, therefore 

a plot of distortion is unnecessary). The next plot shows 

the structure of the robot behavior in terms of higher-

order behavioral sequences, while the final plot shows the 

two simulated motivations. Selection of each action sub-

system was triggered by relevant perceptual affordances, 

maintained for an appropriate period, and followed by 

rapid and decisive switching to the next bout.  Behavior 

switching occurred whenever the salience of the ongoing 

activity fell significantly below that of a competitor, or 

the salience of a competitor rose significantly above that 

of the currently selected act. In either case, the ongoing 

behavior terminated abruptly and the new activity 

commenced with little delay (usually in the next robot 

time-step). 

 

Figure 10. Bout/sequence structure of action selection in the robot model for a full 300s trial. From the top down, the 

first five graphs show the efficiency (e) of selection for a given action sub-system plotted against time, the sixth the 

inefficiency 1− e
w( )  of the current winner, the seventh the higher-order structure of the bout sequences, (Av= avoidance, 

Fo= foraging), and the final graph the levels of the two simulated motivations. All measures vary between 0 and 1 on the 

y-axis. The robot began this trial with a high level of simulated ‘fear’ that resulted in higher salience for wall-seek than 

for other actions. After quickly finding a wall (t= 3s), wall-follow, became more salient and was selected. These two 

bouts form a higher-order sequence of avoidance behavior. Avoidance behavior was interrupted by an increase in 

‘hunger’ and decrease in ‘fear’ driving up the relative salience of cylinder-seek. Once the salience for wall-follow fell 

significantly below that of cylinder-seek the robot switched to the latter (t= 52s). When it found a cylinder, cylinder-

pickup was selected (t= 75s), followed by wall-seek (t= 79s, this time carrying a cylinder), wall-follow (t= 81s), and 

finally cylinder-deposit (t= 84s) when a ‘nest’ area was detected. These four bouts constitute a sequence of appetitive or 

foraging (fo) activity. Having completed a foraging sequence the level of simulated ‘hunger’ fell to zero temporarily (t= 

87s), and the robot engaged in a new period of avoidance (wall-follow, since the robot was already at the periphery of the 

arena). Increasing ‘hunger’ then led to three further sequences of foraging (the final one unfinished) interspersed by two 

periods of inactivity (as ‘fear’ approaches zero there was no motivation to perform avoidance behaviors). 
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 Bouts per 

trial 

Relative 

frequency 

% 

Transition frequency % 

    Cs    Cp    Ws    Wf    Cd    No 

Cs   3.6   15.0   0.0 100.0   0.0   0.0   0.0   0.0 

Cp    3.6   15.0 16.7   0.0  83.3   0.0   0.0   0.0 

Ws   5.2   21.7   0.0   0.0   0.0 100.0   0.0   0.0 

Wf   6.6   27.5  30.3   0.0  18.2   0.0  45.5   6.1 

Cd   3.0   12.5   0.0   0.0   0.0  46.7   0.0  53.3 

No   2.0   8.3 100.0   0.0   0.0   0.0   0.0   0.0 

Table 1: For each action subsystem the table shows the mean number of bouts per trial, the relative frequencies of 

alternative behaviors, and the relative frequencies of different transitions (preceding behavior on the vertical axis, 

subsequent behavior on the horizontal axis). No indicates a bout of inactivity. The transition matrix is dominated by the 

standard foraging sequence Cs–Cp–Ws–Wf–Cd (shown in bold type). 

 

The initial bout sequence—finding a wall (wall-seek) and 

then following it (wall-follow)—reflected the high initial 

level of simulated ‘fear’ and can be viewed as forming a 

higher-order sequence of avoidance (Av) behavior, that 

kept the robot away from open space. As ‘fear’ reduced 

and ‘hunger’ increased this was followed by a second 

episode of behavioral selections—finding and collecting a 

cylinder (cylinder-seek, cylinder-pickup), carrying it to a 

‘nest’ (wall-seek, wall-follow) and dropping it there 

(cylinder-deposit)—that can be viewed as a sequence of 

appetitive or foraging (Fo) activity. The robot 

subsequently engaged in further sequences of avoidance 

and foraging interspersed with short periods of inactivity, 

where the robot displayed no movement, corresponding 

to times at which both artificial motivation levels were 

low. 

The model behavior illustrated in figure 10 is typical of 

that observed in all five trials, however, there are a 

number of factors that contributed to significant 

variability both within and across trials.  These included 

small variations in the initial position of the robot and of 

the cylinders; sensor noise; perceptual aliasing (for 

instance ambiguous signals that could derive from either 

walls or cylinders); wheel slip; and friction against the 

arena floor and walls.  Some of the effects of this 

variability are illustrated in Table 1 which depicts the 

transition frequencies for all behavioral pairs (preceding 

behavior on the vertical axis, subsequent behavior on the 

horizontal axis).  The predominance of the “standard” 

foraging sequence—Cs, Cp, Ws, Wf, Cd—is clearly 

visible from high proportion of transitions lying on the 

diagonal.  The Cd-Wf and Wf-Cs transitions reflect the 

occurrence of wall-following as an avoidance behavior 

subsequent to, or preceding, foraging. The smaller 

number of Cp-Cs transitions and Wf-Ws reflect the fact 

that the robot occasionally failed to grasp a cylinder 

correctly (and therefore returned to cylinder-seeking), or 

lost touch with the wall during wall-follow (and therefore 

returned to wall-seeking).  A second consequence of 

variability is that there was a wide distribution of 

durations for foraging sequences (range 23.7-126.4s, 

median 36.63s), due, in part, to the simplistic search 

strategy employed by the robot and the short-range of its 

sensors. 

4.3.  Experiment 3—behavior of robot model when 
faced with high salience competitions 

Method. We previously noted (section 4.1) that a 

breakdown of clean selection can occur in the 

disembodied model when two competitors have high 

salience levels. To examine the behavioral consequences 

of this pattern of selection, the robot model was tested 

over five trials of 120s (approximately 800 robot time-

steps) in which the salience of every channel was 

increased, on every time-step, by a constant amount 

(+0.4). All other aspects of the experimental procedure 

were as described for experiment 2 (section 4.2). 

 

Results. During a continuous sequence of high salience 

competitions the robot exhibited patterns of behavioral 

disintegration characterized by (i) reduced efficiency and 

distortion of a selected behavior, and (ii) rapid switching 

and incomplete foraging behavior. 
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Figure 11 shows the effect of increased salience intensity 

on exploration of the winner/most-salient-loser salience-

space over all trials. The graph demonstrates that virtually 

all (~4,000) salience competitions appeared in the region 

of salience space (compare with figure 7) where reduced 

efficiency and distorted selection can be expected.  

 

Figure 11. Salience space exploration following a 

uniform (+0.4) increase in salience across all channels. 

Axes denote the salience of the winning channel 

(horizontal), and of the most salient loser (vertical). 

Shading indicates the proportion (darker=greater) of the 

approximately 4,000 salience pairs falling within a given 

(0.1x0.1) bin.  Average channel salience was 0.576 

(across all channels and all time-steps), the average 

winning salience 0.935, and the average margin (between 

winner and most salient loser) 0.173. 

Figure 12 illustrates the behavior of the robot in a typical 

trial. The initial avoidance sequence followed the 

expected pattern but the transition to foraging activity did 

not begin cleanly, instead showing reduced efficiency and 

intermittent, partial selection of (losing) avoidance 

behaviors. To the observer the movement of the robot 

behavior during the transition appeared somewhat slowed 

and ‘tentative’. During the foraging bout there was an 

extended period of rapid switching between cylinder-seek 

and cylinder-pickup with the robot repeatedly 

approaching the cylinder but failing to grasp it. The 

pattern initially observed (t= 60–85s) was for the robot to 

approach the cylinder; back up as if to collect it in the 

gripper; then move forward without lowering the gripper-

arm, pushing the cylinder forward slightly. Later (t= 85–

90s, 110–115s), where both behaviors showed some 

partial selection, the robot would lower the arm whilst 

moving forward but fail to grasp the cylinder due to being 

incorrectly aligned. 

In all five trials, the selection behavior of the robot was 

similarly inefficient and distorted with the robot 

frequently displaying rapid alternation of foraging acts. 

This is illustrated in the transition matrix in table 2, which 

shows that the behavior of the robot was dominated by 

the sequence Cs–Cp–Cs–Cp… with no trials leading to a 

successful foraging sequence. 

 

 

 Bouts per 

trial 

Relative 

frequency % 

Transition frequency % 

    Cs    Cp    Ws    Wf    Cd    No 

Cs  14.6  44.5   0.0  98.6   0.0   1.4   0.0   0.0 

Cp   14.4  43.9 100.0   0.0   0.0   0.0   0.0   0.0 

Ws   1.8   5.5   0.0   0.0   0.0 100.0   0.0   0.0 

Wf   2.0   6.1  60.0   0.0  40.0   0.0   0.0   0.0 

Cd   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 

No   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 

Table 2: For each action subsystem the table shows the mean number of bouts per trial, the relative frequencies of 

alternative behaviors, and the relative frequencies of different transitions (preceding behavior on the vertical axis, 

subsequent behavior on the horizontal axis). No indicates a bout of inactivity. The transition matrix is dominated by 

switching between cylinder-pickup (Cs) and cylinder-seek (Cs) (bout and transition frequencies highlighted in bold type). 
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Rapid switching between foraging acts constitutes a 

‘behavioral trap’ arising through errors in behavior 

maintenance. 

The reduced efficiency and distorted selection that 
occurs with very high salience competitions is 
generally consistent with the analysis presented in 
figure 7. However, the disintegration observed in 
the foraging sequence—oscillation between two 
foraging behaviors while failing to grasp the 

cylinder—requires some further explanation. Recall 
that the cylinder-pickup FAP makes use of a busy 
signal at the point where the robot has backed-up to 
make room for the gripper arm and is consequently 
no longer able to detect the cylinder. In normal 
circumstances, this signal would be sufficient to 
maintain behavioral selection until the cylinder has 
been collected and the gripper arm raised to 
vertical. 

 

Figure 12. Bout/sequence structure of action selection in the robot model for a trial of 120s following a uniform increase 

(+0.4) in salience across all channels. From the top down, the first five graphs show the efficiency (e) of selection for a 

given action sub-system plotted against time, the sixth and seventh the inefficiency 1− e
w( )  and distortion ( d

w
) of the 

current winner, the eighth the higher-order structure of the bout sequences, (Av= avoidance, Fo= foraging), and the final 

graph the levels of the two simulated motivations. All measures vary between 0 and 1 on the y-axis. The initial avoidance 

sequence followed the expected pattern with wall-seek succeeded by a period of wall-follow, however, the gradual 

increase in cylinder-seek salience, from approximately t= 15s onwards, caused reduced efficiency of the wall-follow 

behavior resulting in visibly slowed movement.  The transition to foraging activity occurred at around t= 30s, cylinder-

seek was selected but at reduced efficiency with intermittent partial selection of avoidance behaviors (wall-seek, wall-

follow). When the robot found a cylinder (t= 60s) the cylinder-pickup behavior was cleanly selected but then interrupted 

prematurely—the robot backed-up ready to lower the gripper-arm but then suddenly switched back to cylinder-seek.  

There then followed a period of rapid switching between cylinder-pickup and cylinder-seek with the robot repeatedly 

approaching the cylinder but failing to grasp it.  As the hunger motivation increased further, the robot displayed a 

mixture of both behaviors (cylinder-seek and cylinder-pickup) (around t= 90s and t= 110s) but at reduced efficiency, still 

failing to grasp the cylinder correctly. 
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In the high salience model, however, the disappearance of 

the cylinder, which increases the salience of cylinder-

seek, initiates a brief period of distorted selection (note 

the brief spikes in the graph of the distortion measure in 

figure 12), during which cylinder-pickup and cylinder-

seek are simultaneously selected. High levels of distortion 

have an interesting consequence in the extended basal 

ganglia model, which is to reduce thalamocortical 

feedback on the winning channel (cylinder-pickup). This 

occurs because reduced SNr activity in losing channels 

generates increased TRN activity for those channels, 

which then inhibits the VL thalamus activity of the 

winner (see figure 3 and section 3.3.4). In the model, the 

timing of the cylinder-pickup pattern, and thus of the 

busy signal, relies on continued thalamocortical feedback. 

When this feedback is lost, the sub-system clock is 

disengaged and the busy signal cancelled. The salience of 

cylinder-pickup then falls sharply, and the competing 

behavior, cylinder-seek, wins the subsequent basal 

ganglia selection competition. This pattern is then 

repeated when the robot re-establishes contact with the 

cylinder.  In sum, the disintegrated pattern of rapid 

behavioral switching arises through the premature 

interruption of a behavior that depends upon an intrinsic 

salience boost (the busy signal) for its completion. This 

can be characterized as an error of behavior maintenance. 

The failure to execute the action pattern successfully (and 

thus to trigger subsequent elements of the behavioral 

sequence) places the robot in a ‘behavioral trap’ where it 

repeatedly executes an incomplete and ineffective 

sequence of actions. 

 

 

5. Discussion 

5.1.  Summary of main findings 

The embedded basal ganglia succeeded in generating 

sequences of integrated behavior in a robot model 

provided with a repertoire of alternative behaviors and 

varying levels of simulated motivations. The robot 

switched cleanly and decisively between successive 

behaviors, interrupting an ongoing behavior whenever 

there was a competitor with significantly higher salience. 

This outcome supports the hypothesis that the functional 

properties of basal ganglia circuitry (to the extent that 

they are captured by our computational model) make it 

suited to the task of resolving selection conflicts.  The 

robot model therefore supports the claim of effective 

action selection by the basal ganglia, over and above 

earlier demonstrations of the good signal selection 

properties of these circuits. Whilst the model has an 

operating range that supports clean selection for most 

levels of salience competition, and is sufficient to provide 

appropriate selection in our robot task, reduced selection 

efficiency and partial selection of losing competitors can 

occur when the model is presented with multiple high-

salience competitors. Hence, when a version of the model 

was tested with substantially increased salience across all 

channels, distorted motor output and behavioral 

disintegration were observed. 

In the remainder of this discussion we consider: (i) some 

elements of the embedding architecture and their possible 

neural correlates, (ii) comparisons of the results from the 

robot model with neuroethological observations of animal 

behavior, and (iii) the relationship of the current study to 

other computational models of the basal ganglia. 

5.2.  Possible neural correlates of the robot 
embedding architecture 

As previously noted (section 3.1), our approach to 

developing a robotic test of the hypothesis that the basal 

ganglia performs action selection is based on the 

assumption that informative models can be constructed 

by combining biomimetic components (here the extended 

basal ganglia model) with sufficient engineered 

components to create a full working model.  This strategy 

requires, however, that we devise a suitable interface 

between the biomimetic and engineered components such 

that appropriate input signals are supplied to the 

embedded neural model, and a biologically-plausible role 

is assigned to its outputs. We have also argued that it is 

necessary to assess the engineered components of the 

model so-constructed with respect to their possible 

consequences for the theoretical issues under 

investigation.  The following briefly considers key 

elements of the architecture/model interface with regard 

to these requirements. 

5.2.1. Basal ganglia input encodes signals relevant 
to the selection and maintenance of ongoing 
behavior 
The hypothesis that the basal ganglia is involved in 

selecting actions implies that the inputs to the basal 

ganglia encode the relative salience of competing actions 

(Redgrave et al., 1999a; Zink, Pagnoni, Martin, Dhamala, 

& Berns, 2003). Amongst the evidence lending weight to 

this view are studies showing activity in striatal spiny 

neurons just prior to movements (see Mink, 1996 for 

review). Our proposal that the basal ganglia is an action 

selection device makes the further claim, however, that 

basal ganglia activity is important not just for selecting 

winning actions but also for the appropriate maintenance 

and termination of selected actions (Redgrave et al., 

1999a).  That the basal ganglia is involved in the 

maintenance of selection is suggested by data showing 

that a substantial proportion of striatal projection neurons 

fire after movement has been initiated, and that the timing 

of this movement-related activity in the striatum is 

distributed over a wide-range of delays relative to the 

onset of movement (Aldridge, Anderson, & Murphy, 

1980; DeLong et al., 1984; Jaeger, Gilman, & Aldridge, 

1995; Mink, 1996). The inhibition of activity in basal 

ganglia output neurons (EP/SNr or GPi/SNr in primates) 
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has similarly been recorded as occurring during the 

execution of limb movements (Schultz, 1986; Mink & 

Thach, 1991), saccades (Hikosaka & Wurtz, 1989; 

Handel & Glimcher, 1999; Basso & Wurtz, 2002), and 

behavioral bouts (Joseph, Boussaoud, & Biguer, 1985). 

The robot model we have described here, highlights a key 

issue in the appropriate maintenance of behavioral 

selections which is that the perceptual and motivational 

conditions that lead to the selection of a given behavior 

often do not persist for the full duration of the 

performance of that behavior.  This means that a 

mechanism, such as winner-takes-all, that ignores the 

recent history of selection and allocates control of the 

motor system to the action sub-system with the highest 

instantaneous salience will be prone to errors of behavior 

maintenance such as the premature interruption of an 

ongoing behavior, or ‘dithering’ (rapid switching) 

between two actions with similar salience.  Two logically 

possible solutions for this problem are (i) that a winning 

competitor instigates some form of ‘mutual exclusion 

lock’ that prevents rivals from accessing motor resources 

until the intended motor act has been completed (and then 

releases the lock), or (ii) that the ongoing selection 

contest is biased in favor of the currently winning 

competitor allowing it to maintain an ‘edge’ over its 

selection rivals, for an appropriately extended period, at 

lower (extrinsic) salience levels than were required to 

initiate it. Whilst a type (i) solution is often employed in 

real-time computer operating systems (Ganssle & Barr, 

2003), our model proposes that the basal ganglia 

implements a type (ii) solution to the maintenance 

problem by providing additional salience support to the 

current winner for the duration of the behavior.  More 

specifically, we have proposed two such salience-

incrementing mechanisms. First, we have suggested that 

basal ganglia-thalamocortical loops instantiate a positive 

feedback circuit that can provide a significant salience 

boost to a winning sub-system (Redgrave et al., 1999a). 

In the extended basal ganglia model this feedback 

induces significant hysteresis (see Figure 7), and thus 

generates behavioral persistence in the robot. Second, we 

have found that accurate control over the maintenance 

and termination of selection for action patterns may be 

best achieved when an action sub-system is able to 

generate a precisely-timed, intrinsically-generated 

contribution to its own salience, that we have termed a 

busy signal. We therefore hypothesize that basal ganglia 

activity during ongoing behavior may reflect in part, the 

operation of similar selection maintenance mechanisms.  

The suggestion that basal ganglia thalamocortical loops 

act to generate increased salience in currently selected 

channels is consistent with a significant corpus of 

research in ethology indicating a role for positive 

feedback mechanisms in the maintenance of behavioral 

selections (Roeder, 1975; Houston & Sumida, 1985; 

McFarland, 1989). The further notion, that signals 

generated by ongoing motor activity can be important for 

maintaining behavioral selections, might explain why the 

input to the basal ganglia, from both cortical (Cowan & 

Wilson, 1994; Levesque, Charara, Gagnon, Parent, & 

Deschenes, 1996) and subcortical (Chevalier & Deniau, 

1984; Krout, Loewy, Westby, & Redgrave, 2001) 

sources, often comprises collateral branches from fibers 

projecting to motor regions of the brainstem and spinal 

cord. At the current time there is no agreed interpretation 

of these data, the busy signal employed in our robot 

model therefore suggests a novel hypothesis concerning a 

possible functional role for these motor-related inputs. 

Note that while our model invokes a single leaky 

integrator in each nucleus for each channel, this is 

intended to represent a population of neurons in each 

target structure. Thus, in considering the striatum, for 

example, our model is consistent with the possibility that 

different sub-populations of striatal neurons encode 

different aspects of the salience of the current selection at 

different times during the execution of a motor act. In 

other words, some sub-populations of striatal neurons 

may be specifically concerned with the initiation of 

behavior (and thus fire before behavior onset), and others 

with the maintenance of the current selection (and thus 

fire during the expression of the behavior).  

It is interesting to contrast the type (ii) maintenance 

mechanisms implemented in our model (and 

hypothesized for the basal ganglia), that will allow an 

interrupt by a much stronger competitor, with the type (i) 

‘mutual exclusion lock’, or mutex, preferred in real-time 

operating systems. Interestingly, the use of a mutex can 

lead to a resource allocation problem termed ‘priority 

inversion’, that occurred most famously in the significant 

computer difficulties experienced by the 1997 Mars 

pathfinder mission (Reeves, 1998). Whilst there are 

workarounds that can avoid the inversion problem these 

are computationally non-trivial involving, for instance, 

the inheritance of priority levels from one task to another 

(Sha, Rajkumar, & Lehoczky, 1990).  It is therefore 

conceivable that ‘softer’ forms of resource locking, such 

as the maintenance mechanisms described here, could 

have applications in artificial scheduling systems. 

5.2.2. Thalamocortical feedback may play a role in 
timing sequential action patterns 

A role for the basal ganglia in behavioral timing is 

consistent with our general hypothesis that the basal 

ganglia regulate the maintenance and appropriate 

termination of action as part of the solution to the overall 

action selection problem. Our robot model invokes the 

use of the output of VL thalamus as a signal regulating 

the internal clock used by each action sub-system that 

generates an intrinsically-patterned behavioral sequence 

(i.e. a fixed action pattern). Although the manner in 

which basal ganglia output is used to control these 

intrinsic patterning systems is not intended to be closely 

biomimetic, the following evidence supports the 
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suggestion that thalamocortical feedback is important for 

behavioral timing. First, cortico-basal ganglia-

thalamocortical loops have been specifically 

hypothesized as a likely neural substrate for interval 

timing (Meck, 1983; Meck & Benson, 2002), and have 

been the basis for a neurobiologically plausible 

computational model (Matell & Meck, 2000). Second, 

dopaminergic drugs have been found to affect the speed 

of the ‘internal clock’ (Buhusi & Meck, 2002), further 

implicating the basal ganglia as part of the functional 

brain system for time estimation. Finally, the timing of 

repetitive, intrinsically-generated sequences (such as 

paced finger-tapping) is known to be impaired in 

Parkinson’s patients with reduced thalamic activity a 

possible causal factor (Marsden & Obeso, 1994; Elsinger 

et al., 2003). Meck and co-workers (Gibbon, Church, & 

Meck, 1984; Meck & Benson, 2002) have elaborated a 

number of models of the role of the basal ganglia in 

interval timing, the simplest of which, we propose, bears 

interesting similarities to the mechanism we have used in 

our model.  Specifically, Gibbon et al. (1984) have 

suggested: (i) that the basal ganglia can act as a form of 

‘switch’ that can be opened or closed depending on the 

detection of temporally significant information; (ii) that 

when closed this switch allows the flow of pacemaker 

pulses to target systems; and (iii) that when the 

temporally significant information ended, the switch 

opens stopping the flow of pulses. Similarily, in our 

model, the internal clock of a target FAP sub-system is 

enabled (i.e. begins to measure elapsed time from zero) 

by basal ganglia disinhibition (closing the switch) and is 

disabled (reset to zero) when the output for that basal 

ganglia channel returns above threshold (opening the 

switch). Whilst the robot model would benefit from the 

inclusion of a more biologically-realistic simulation of 

interval timing it is likely that this will require modeling 

of populations of oscillating neurons (Matell & Meck, 

2000) rather than the simpler rate-coding units used 

currently. 

As noted above, our robot embedding architecture allows 

winning sub-systems to reinforce their own salience 

during critical passages of behavior. Where this 

additional salience input is triggered by the internal clock, 

it is logical to suppose that the loss of thalamocortical 

feedback, and consequent disruption of sub-system 

timing, should also interrupt the busy signal as 

implemented in the model. 

5.2.3. Basal ganglia output to the brainstem may 
operate as a motor gating signal 

Computational studies have suggested that the position of 

axon terminals on the dendritic tree of a target neuron 

help determine the extent to which inhibitory inputs have 

non-linear effects.   More specifically, terminals on or 

close to the cell body have been proposed to have a non-

linear, multiplicative ‘shunting’ effect that scales 

incoming excitatory signals (Blomfield, 1974; Koch, 

Poggio, & Torre, 1983). Our robot model instantiates 

such a form of shunting inhibition for the influence of 

basal output nuclei on motor pattern generators via the 

gating signal e (equation 5). GABAergic terminals have 

been viewed as implementing shunting inhibition 

elsewhere in the nervous system (Ulrich, 2003), and this 

interpretation of the role of GABAergic basal ganglia 

outputs to the brainstem motor systems appears to be 

consistent with the available, if limited, electron 

microscopy evidence. For instance, Tsumori & Yasui 

(1997) found SNr axon terminals on the soma and 

proximal dendrites of neurons in the rat superior 

colliculus, while Shink, Sidibe, & Smith (1997) found 

that GPi output to the pedunculopontine nucleus in the 

squirrel monkey formed symmetrical contacts 

predominantly with proximal dendrites.  Since the action 

selection hypothesis asserts that the basal ganglia act to 

gate access to the final motor path we might expect to 

find further evidence of shunting inhibition in future 

studies of EP/SNr output to motor and pre-motor systems. 

5.3. Comparisons with ethological and 
neuroethological investigations of animal behavior 

Action selection and behavioral sequencing 

In our robotic task the embedded model of the basal 

ganglia demonstrates the capacity to generate extended 

sequences of appropriate and goal-directed behavior, 

organized at two temporal scales— bouts (cylinder-seek, 

cylinder-pickup, etc.) and behavioral sequences 

(avoidance, foraging). This outcome accords with a 

variety of studies in which the vertebrate basal ganglia 

have been shown to play a role in generating sequential 

behavior. For instance, Kermadi and co-workers 

(Kermadi & Boussaoud, 1995; Kermadi & Joseph, 1995) 

have found caudate nucleus activity in monkeys, linked to 

memorized sequences of saccades and arm movements. 

Berridge and co-workers (Cromwell & Berridge, 1996; 

Aldridge & Berridge, 1998; Meyer-Luehmann, 

Thompson, Berridge, & Aldridge, 2002) have shown that 

the striatum is necessary for the expression of species-

typical sequences of grooming behavior in rodents, and 

have recorded related activity in dorsolateral and 

ventromedial striatum and in substantia nigra. 

Electrophysiological studies in behaving animals have 

also identified activity encoding successive phases of 

maze-traversing behavior in the rat ventral striatum 

(Shibata, Mulder, Trullier, & Wiener, 2001; Mulder, 

Tabuchi, & Wiener, 2004) and dorsal striatum 

(Schmitzer-Torbert & Redish, 2004). Finally, behavioral 

sequences in non-mammalian vertebrates, such as the 

toad prey-catching sequence studied by Ewert and co-

workers (Ewert 1987; Ewert, Buxbaum-Conradi, 

Dreisvogt et al., 2001), may also be subserved by basal 

ganglia loops that are largely homologous to those found 

in mammals (Marin, Gonzalez, & Smeets, 1997; 

Redgrave et al., 1999a). 
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Our experiments with the robot model raise some 

interesting questions with regard to this neurobehavioral 

data on basal ganglia sequencing, which are best 

illustrated with reference to the research on rodent 

grooming by Berridge and co-workers (Cromwell & 

Berridge, 1996; Aldridge & Berridge, 1998).  Grooming 

patterns in rodents often appear in a stereotypic sequence 

that Aldridge and Berridge (1998) have described as a 

“four-phase syntactic chain”.  Whilst the grooming 

pattern itself is thought to be generated outside the basal 

ganglia (see below) its behavioral expression has been 

shown to be critically dependent on the integrity of a 

small area of the anterior dorsolateral striatum. In 

electrophysiological single-cell recordings from behaving 

animals (Aldridge and Berridge, 1998), activity in 

dorsolateral striatal neurons showed marked increases 

during one or two phases of the grooming sequence.  In 

addition, the majority of these neurons did not respond 

when similar grooming movements were made outside a 

sequence (suggesting that their activity is sequence-

related not movement-related).  Finally, some neurons in 

ventromedial striatum, where lesions do not impair the 

production of syntactic grooming chains, also showed 

increased activity during grooming sequences, however, 

these increases were smaller than those seen in the 

dorsolateral striatum.  The intrinsic activity of the robot 

basal ganglia model, as shown in the traces of model ‘D1’ 

units in figure 9a, suggests that activity in striatal neurons 

can occur in multiple channels simultaneously, with 

correlated changes occurring in those channels whose 

salience is based on over-lapping feature sets. However, 

it is generally only the most active channel whose motor 

output is gated for behavioral expression (see simulated 

EP/SNr output in figure 9b).  Applied to the data from the 

grooming study, this suggests that the (weaker) activity of 

ventromedial striatal neurons may code for losing 

behaviors that are partially primed by contextual salience 

cues present during the sequence of syntactic grooming.  

A related hypothesis can also be formulated with respect 

to the activity in those dorsolateral neurons that fire 

during multiple phases of grooming syntax.  Specifically, 

it seems plausible that a neuron tuned to fire maximally 

in a single phase of grooming, might also show activity 

during an earlier or later phase due to a partial overlap in 

afferent input (related to shared contextual cues) with the 

neurons coding for the other phase.  Again, this activity 

will not feed-through to behavioral expression, since 

activity in weaker channels loses out during the 

resolution of the competition elsewhere in the basal 

ganglia.  Several examples of this can be seen in Figure 

9a, for instance, the wall-seek channel shows strong 

activity (t= 77–79s) during the preceding cylinder-pickup 

(as well as some activity during wall-follow) whilst the 

cylinder-deposit channel shows a significant activity 

during the preceding bout of wall-follow (t= 80–83s)—in 

all cases the corresponding small reductions in EP/SNr 

output are insufficient to allow these channels to distort 

the behavioral expression of the winner.  Note, the 

hypothesis that multi-phase activity in dorsolateral striatal 

neurons is due to overlapping feature sets differs from the 

suggestion put forward by Aldridge and Berridge (1998) 

that neurons that fire during multiple phases code  “serial 

order as a higher-order property distributed over the 

duration of the chain” (p. 2784).   

Whilst the activity of our robot model shows interesting 

parallels with experimental studies in mammals, at a 

purely behavioral level, the most obvious similarity is 

perhaps with the behavior of an amphibian—the prey-

capture sequence of the toad bufo bufo, which has been 

carefully described and analyzed by Ewert (1987). Toad 

prey-catching is composed of a sequence of action 

patterns—orienting to the prey (o), approaching (a), 

fixating (f), and snapping (s)—that may be implemented 

in the toad brain by disinhibitory loops involving the 

ventral striatum (Ewert et al., 2001).  Summarizing an 

extensive series of experiments on prey-catching 

behavior Ewert concludes that “it is not the previous 

action, but the ongoing stimulus situation <…> that 

determines the subsequent response” (Ewert, 1987, p. 

340). Much the same can be said of our robot model, 

where it is primarily the perceptual/motivational context 

that determines which behavior is selected at any given 

moment. Further, although ‘standard’ toad prey-catching 

behavior is described by the action sequence o, a, f, s; 

observed behavior often departs from this template in a 

manner that demonstrates both flexibility and 

opportunism.  Thus, “if the distance between prey and 

toad is short, prey-catching consists of o, f, s; if prey 

suddenly appears close to the animal, only, o, s, or f, s, or 

just s is elicited; if the prey flees the toad’s appetitive 

pursuit response occurs—depending on the prey’s 

behavior—in variable succession such as o, o, o, a, o, a, f, 

a, f, o, f, s” (Ewert, 1987, p. 340). The behavioral 

sequences generated by the robot are similarly context 

dependent. So, for instance, the ‘standard foraging 

sequence’—Cs, Cp, Ws, Wf, Cd—may be emerge as Cs, 

Cp, Cs, Cp, Ws, Wf, Cd, if the robot fails to grasp the 

cylinder correctly on first attempt, or as Cs, Cp, Ws, Cd, 

if wall-seeking behavior fortuitously places the robot in 

the ‘nest’ area.   

Whilst the two-level structure of robot behavior is 

suggestive of hierarchical organization, it is clear from 

the design of our embedding architecture that the 

observed behavioral sequences are not the consequence 

of any explicit hierarchical decomposition of control. 

Rather, robot activity is organized by a stream of 

moment-to-moment action selection ‘decisions’ 

structured by the robot’s perceptual and motor 

interactions with its environment, by its internal 

(motivational) state, and by the selection/switching 

properties of the embedded basal ganglia model.  We 

conclude, following Ewert (1987), that hierarchical 

organization of control is not essential for the appearance 

of sequential activity. This is not to say that we would 

rule out the possibility of hierarchical organization in 
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vertebrate action selection. Indeed we have argued 

(Prescott et al., 1999; Redgrave et al., 1999a) that the part 

closed-loop, part open-loop inter-relationships between 

the different basal ganglia domains (limbic, associative, 

and motor) (Joel & Weiner, 1994) strongly suggest some 

form of hierarchical decomposition of control, the 

benefits of which have been identified by research in 

artificial agents (Prescott et al., 1999; Bryson, 2000). 

Instead, the robot model makes clear that any account of 

animal behavior that purports to show hierarchical 

decomposition must demonstrate that emergent 

sequencing, of the kind described here, is not a viable 

alternative explanation. 

A related issue concerns the granularity of the action 

selection provided by the basal ganglia. For instance, 

some researchers have proposed a role for the basal 

ganglia in a more fine-grained sequencing of movement 

than selecting between competing behavioral alternatives 

(see Mink, 1996 for review). Indeed, this level of action 

selection would be equivalent to the type of movement 

sequencing currently performed within our fixed action 

pattern sub-systems (e.g. cylinder-pickup). The 

suggestion that the basal ganglia is involved in the details 

of movement sequencing can, however, be reconciled 

with the view of the basal ganglia as an action selection 

device on the grounds that such tasks can be regarded as 

action selection problems on a much shorter time-scale. 

Again, this is consistent with the evidence of multiple 

basal ganglia domains and the general hypothesis 

(Redgrave et al. 1999) that similar switching circuitry is 

employed in different regions of the basal ganglia to 

resolve selection problems at different levels of 

functional integration. It seems likely, however, that in 

the case of innate or well-practiced movement patterns, 

fine-grained control of movement generally takes place 

outside the basal ganglia. The research on the syntax of 

rat grooming behavior, reviewed above, serves to 

demonstrate this point—Cromwell and Berridge (1996) 

propose both that the role of sequencing the component 

movements of basic grooming acts is satisfied by pattern-

generators in the brainstem, and that the role of the basal 

ganglia, “is not so much for the generation of the serial 

order pattern <...> as for the implementation of that 

pattern in the normal flow of behavior." (p. 3455). 

Research on learning in the striatum suggests a further 

interesting possibility in relation to acquired behaviour. 

Carelli, Wolske, & West (1997) have shown that striatal 

neurons that fire while a rat is learning a lever-pressing 

task cease firing once that behavior is well-practised. The 

conclusion these researchers derived from this finding is 

that the striatal activity needed to learn a particular motor 

response may not be required for its performance once 

the action has become automated. This result is open to a 

number interpretations, however, one possibility is that 

action selection by the basal ganglia may be involved in 

constructing new movement sequences which, following 

practice, then become available for selection as larger 

‘chunks’ of behavior (Graybiel, 1998). 

Activity in Substantia Nigra pars reticulata neurons 
during behavior 

A number of recent studies with behaving rats (Gulley, 

Kuwajima, Mayhill, & Rebec, 1999; Gulley, Kosobud, & 

Rebec, 2002; Meyer-Luehmann et al., 2002) have noted 

correlations between SNr activity and episodes of motor 

behavior. Given the prevailing view that the basal ganglia 

selectively gate the motor system through the removal of 

EP/SNr inhibition, a particularly interesting finding is 

that rat SNr cells showing an increase in behavior-related 

firing generally out-number those showing a decrease in 

firing rate. For instance, Gulley et al. (1999) compared 

electrophysiological recordings of SNr cells during 

movement with those of the same neurons during periods 

of quiet rest. Of the cells showing an overall correlation 

with movement, 79% showed increased firing compared 

to 21% decreased firing. In cells with increased firing, 

rates were up to 38% higher than during the base-line rest 

period. In a further study (Gulley et al. 2002), comparing 

SNr activity during a conditioned reinforcement task with 

a base-line period prior to exposure to the reward-related 

apparatus, 110 of 225 SNr cells (48%) showed an 

increased in activation of 200% or more, while only 17 

cells (8%) showed a decrease of 25% or greater.  

The above findings concur with the levels of activity 

found in our model of EP/SNr during different patterns of 

robot activity. Specifically, we found fluctuations in 

EP/SNr output correlating with changes in channel 

salience, and a substantial increase (34–82%) in the 

average output of losing channels during episodes of 

partial or full selection as compared to periods of no 

selection (inactivity). It seems reasonable to expect that in 

action selection competitions mediated by the rat basal 

ganglia losers will outnumber winners (just as in the 

robot where there is generally 1 winner and 4 losers). Our 

model is therefore consistent with the data of Gulley et al. 

(1999, 2002) showing that only a minority of cells reduce 

their activity during behavior (here interpreted as the 

‘winning channels’), whilst a majority show increased 

activity (the ‘losing channels’).   Our analysis of the 

mechanisms underlying these changes suggests that SNr 

neurons showing increased firing are responding to 

correlated increases in STN, which in turn are due to 

greater activity in cortical-STN afferents, and in 

particular, in pathways encoding thalamocortical 

feedback from winning channels.  Such increases can be 

expected to be most evident during periods of activity 

relative to inactivity (as in Gulley et al., 1999), or where 

there is a sudden increase in the affordances for reward-

related behavior (as in Gulley et al., 2002). 
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Behavioral disintegration in competitions between 
multiple high-salience competitors 

When presented with a continuous sequence of high 

salience selection competitions the robot exhibited two 

identifiable patterns of behavioral disintegration. First, it 

displayed reduced efficiency of the winning sub-system 

combined with partial activity of losing sub-systems. This 

resulted in a slowed and distorted execution of the most 

active behavior. Second, a ‘behavioral trap’ developed 

consisting of repeated switching between two behaviors. 

The latter pattern arose through the full selection, but 

premature interruption, of a fixed action pattern (cylinder-

pickup), and depended on two features of the embedded 

model: (i) that intrinsically generated salience signals are 

used to maintain ongoing selections, and (ii) that the 

timing and maintenance of such signals relies upon 

feedback signals from the selection mechanism (that are 

disrupted under circumstances of strong, evenly-matched 

salience). Possible neural correlates for these mechanisms 

were considered above (section. 5.2).  

Whilst the performance of the model in these 

circumstances is clearly sub-optimal from a purely action 

selection viewpoint, it shows interesting similarities to 

the findings of a large number of studies investigating the 

behavior of animals in conflict situations (Hinde, 1953, 

1966; Fentress, 1973; Roeder, 1975).  For instance, Hinde 

(1966) describes a number of possible outcomes that have 

been observed in ethological studies of strong behavioral 

conflicts: (i) inhibition of all but one response; (ii) 

incomplete expression of a behavior (generally the 

preparatory stages of behavior are performed); (iii) 

alternation between behaviors (or ‘dithering’); (iv) 

ambivalent behavior (a mixture of motor responses); (v) 

compromise behavior (similar to ambivalence, except that 

the pattern of motor activity is compatible with both 

behavioral tendencies); (vi) autonomic responses (for 

instance defecation or urination); (vii) displacement 

activity (expression of a behavior that seems irrelevant to 

the current motivational context, e.g. grooming in a ‘fight 

or flight’ conflict situation). Of these outcomes, several 

show clear similarities with the behavior of the robot in 

the high salience condition. Specifically, the distortion 

observed in the early stages of the trial could be 

understood as a form of ambivalent behavior (iv), whilst 

the later repetitive behavioral switching has elements of 

both incomplete expression of behavior (ii) and 

alternation (iii). 

More generally, the behavior of the embodied basal 

ganglia model is consistent a wide range of findings in 

psychology and ethology demonstrating that behavioral 

processes are most effective at intermediate levels of 

activation (Malmo, 1959; Berlyne, 1960; Bindra, 1969; 

Fentress, 1973), These findings can also be viewed as 

expressing the Yerkes-Dodson law (Yerkes & Dodson, 

1908) that predicts an ‘inverted U’-shaped relationship 

between arousal and performance. Our model is 

consistent with this law in that the robot shows little or no 

behavioral expression when only low salience inputs are 

present, demonstrates effective action selection for a 

range of intermediate level salience inputs (and for high 

salience inputs where there is no high salience 

competitor), and exhibits disintegrated behavior in 

circumstance of conflict between multiple high-salience 

systems. The robot model therefore suggests that the 

basal ganglia form an important element of the neural 

substrate mediating the effects of arousal on behavioral 

effectiveness.  

5.4.  Comparison with other modeling investigations 
of the basal ganglia 

The literature on computational modeling of the basal 

ganglia has been extensively reviewed elsewhere (Houk, 

Davis et al., 1995; Gillies & Arbuthnott, 2000; Prescott et 

al., 2002; Gurney, Prescott et al., 2004).  Whilst action 

selection is a strongly emerging theme in this literature, 

the Gurney et al. (2001a, b) model that we have 

embedded in our robot architecture is distinctive in its 

interpretation of basal ganglia intrinsic circuitry as 

containing synergistic ‘selection’ and ‘control’ pathways. 

The current study demonstrates the effectiveness of these 

mechanisms, when combined with basal ganglia 

thalamocortical loops, in providing effective robot action 

selection across a wide range of competing salience 

inputs.  A large number of models have also examined 

the role of the basal ganglia as part of a wider circuit 

involved in motor control or behavioral sequencing (e.g. 

Dominey & Arbib, 1992; Contrerasvidal & Stelmach, 

1995; Houk & Wise, 1995; Dominey & Boussaoud, 

1997; Beiser & Houk, 1998; Fukai, 1999; Taylor & 

Taylor, 2000; Frank, Loughry, & O'Reilly, 2001; Bar-

Gad, Morris, & Bergman, 2003; Brown, Bullock, & 

Grossberg, 2004) but have stopped short of investigating 

fully embodied (robotic) implementations. In the current 

article we have adopted a different strategy emphasizing 

embodiment as both a test-bed for validating hypotheses 

about basal ganglia function, and also as an ‘intuition-

pump’ for generating new insights into neurobiological 

data.  For instance, the requirement to provide integrated 

sequences of robot behavior that fulfill real goals, focused 

our attention on the problem of maintaining ongoing 

behavioral selections in the face of varying motivational 

and sensory input. Resolving these issues for the robot 

model then prompted us to reconsider evidence for 

striatal and thalamocortical activity during ongoing 

behavior as a possible neural substrate for this function of 

selection maintenance. Whilst some authors have 

assigned a role to basal ganglia thalamocortical loops in 

sustaining working memory patterns (e.g. Beiser & Houk, 

1998; Frank et al., 2001), we suggest the more general 

hypothesis that these circuits operate to maintain ongoing 

selections in either the behavioral or working memory 

domains. Further, whereas Frank et al. (2001) have 

proposed a dissociation between intermittent firing in the 
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basal ganglia that performs a gating role, and more 

continuous firing in frontal cortex that performs a 

maintenance role; we have drawn attention to the ongoing 

activity in basal ganglia during movement that cannot be 

linked to the initiation of new selections.  We suggest that 

a parsimonious explanation of this activity, consistent 

with the wider hypothesis of selection by the basal 

ganglia, is that it serves to maintain selections and varies 

both with the urgency assigned to the completion of the 

current task (maintenance signals) and with the changing 

salience values of competitors (due to the dynamics of 

between-channel interactions in the basal ganglia). 

The basal ganglia are strongly implicated in goal-directed 

or incentive learning (Kimura, 1995; Hollerman, 

Tremblay, & Schultz, 2000; Dayan & Balleine, 2002), a 

key finding in this context being that dopaminergic 

neurons in midbrain basal ganglia nuclei appear to fire in 

conjunction with rewarding events, or prior to anticipated 

rewarding events (Schultz, Apicella, & Ljungberg, 1993; 

Schultz et al., 1997). Montague and colleagues 

(Montague, Dayan, & Sejnowski, 1996; Schultz et al., 

1997) have proposed that the afferents from these 

structures to striatal neurons may provide a training 

signal similar to the temporal difference error used in 

artificial reinforcement learning methods, while Houk, 

Adams, and Barto (1995) were the first of several authors 

to suggest that something akin to an actor-critic learning 

system (Sutton & Barto, 1998) may be operating in the 

basal ganglia. There have been various computational 

formulations of these proposals (see Schultz, 1997; Doya, 

Dayan, & Hasselmo, 2002; Montague, Hyman, & Cohen, 

2004; Worgotter & Porr, 2005 for reviews), including a 

robotic demonstration of a ‘dopamine’-based actor-critic 

model described by (Sporns & Alexander, 2002). Despite 

this effort, there is no universally accepted theory, at a 

systems level, of how such learning might be 

implemented in the circuits of the basal ganglia (Joel, 

Niv, & Ruppin, 2002; Worgotter & Porr, 2005), and this 

remains a very active area of research. Our article has 

addressed the question of whether an embodied model of 

the basal ganglia can perform appropriate action selection 

irrespective of how the salience-related parameters for 

specific actions are determined; although hand-tuned 

parameters where used, the model could, in principle, be 

extended so as to learn from experience using model 

learning systems such as those reviewed above. 

There is a general trend in basal ganglia modeling 

towards the use of more biologically realistic but 

computationally-intensive models of neural circuits based 

on ‘leaky-integrate and fire’ (LIF) or compartmental 

models of single neurons (Gurney, Prescott et al., 2004). 

The availability of parallel computing clusters is 

beginning to make feasible the simulation of large-scale 

circuits, that include these more detailed single neuron 

models, at speeds that will permit real-time control of 

robot behavior. Future versions of our robot model will 

therefore seek to incorporate greater biological detail, for 

instance, by using a spike-coding (rather than rate-

coding) neurons as our basic model element (Humphries, 

2002), by incorporating additional pathways (Gurney, 

Humphries et al., 2004), and by exploiting insights from 

biophysical modeling of single neurons (e.g. (Wood et 

al., 2004). One particularly promising route may be to use 

so-called 'reduced' models (e.g. (Rinzel & Ermentrout, 

1998; Izhikevich, 2003) that can exhibit many of the 

patterns of excitability shown in real neurons without the 

full apparatus of the Hodgkin-Huxley dynamics 

instantiated across several ionic currents (as required in 

biophysical models). An additional goal will be to 

incorporate realistic models of target sensor input and 

motor output systems—for instance, through embodied 

modeling of the role of the basal ganglia in sensorimotor 

tasks such as gaze control—in order to more directly 

address a wide range of neurobehavioral data. 

6. Conclusion 

We have described the robotic embedding of a high-level 

model of the basal ganglia and related nuclei based on the 

premise that these neural circuits play a critical role in 

action selection. This model was challenged with the task 

of selecting between five alternative behavioral 

subsystems in the context of varying motivational and 

sensory inputs, and required to generate coherent 

sequences of robot behavior. Results demonstrate that the 

model basal ganglia switches effectively between 

competing subsystems depending on the dynamics of 

their relative salience. The architecture therefore provides 

an existence proof that the basal ganglia can function as 

an effective action selection mechanism when embedded 

in a physical device. Further, by generating a model 

whose behavior is directly observable (rather than merely 

interpretable as a disembodied model would be) we were 

able to draw some interesting comparisons with the 

outcomes of behavioral experiments with animals, most 

notably with respect to (i) the role of the basal ganglia in 

behavioral sequencing, (ii) the activity of neurons in basal 

ganglia input (striatum and STN) and output (SNr) nuclei 

during ongoing behavior, and (iii) the behavior of animals 

in situations of behavioral conflict. 
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Appendices 

Appendix 1. Sensory systems 

The first six peripheral sensors (1–6) are arranged in a 

semi-circle at the front of the robot, sensor 1 is furthest 

left, sensor 6 furthest right, with sensors 3 and 4 covering 

a narrow field of view directly ahead of the robot. 

Sensors 7 and 8 are directed towards the rear of the robot 

and are not used in the current model. The ith peripheral 

sensor generates both an infra-red proximity reading, 

ir(i) , which is integer valued in the range 0-1023 with 

higher values indicating greater proximity to a nearby 

surface, and an ambient-light reading, amb(i) , in the 

range 0–450 with lower values indicate greater 

luminance. The optical gripper sensor, opt(), provides a 

binary signal, 1 if there is an object in the gripper, 0 

otherwise.  The arm position sensor, arm(), returns a 

value in the range 255 (lowered in front)  to 152 (raised 

overhead). The following variables are computed from 

the current infra-red and ambient light readings for use in 

determining motor vector values and perceptual and 

motivational variables: 

ir
tot
= ir(i)

i=1

6

∑ , irleft = ir(i)
i=1

3

∑ , irright = ir(i)
i=4

6

∑ , 

irdiff = irleft − irright , side =
left : irleft ≥ irright

right :  otherwise  

⎧ 
⎨ 
⎩ 

, 

detect(i) =
1 : ir(i) > 30   

0 :  otherwise   

⎧ 
⎨ 
⎩ 

, n
touch

= detect(i)
i=1

6

∑ , 

lit(i) =
1 : amb(i) < 100

0 :  otherwise    

⎧ 
⎨ 
⎩ 

, n
lit
= lit(i)

i=1

6

∑ . 

Appendix 2. Action sub-systems 

Each action sub-system generates a motor vector 

v = v lws−,v lws+ ,v rws−,vrws+ ,vvert ,vhoriz,v floor,vopen ,vclose[ ]   

where 0 ≤ v
j
≤ 1∀v

j
∈ v .The first four elements of v 

correspond to the backward and forward components of 

the desired left v
lws−,v lws+( )  and right v

rws−,vrws+( ) wheel 

speeds, the next three to alternate positions for the arm 

vvert ,vhoriz,v floor( )  and the last two to instructions to open 

or close the gripper (vopen ,vclose) .  

The following variable wheel speed values are computed 

based on current sensory input, for use by action sub-

systems: 

nws =

0.07 : irdiff < 30  

irdiff 450 : irdiff < 450 

1.0 : otherwise  

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

, 

sws = 0.4 − 5.0×10
−4
ir
tot
−1200 , 

fws = 0.4 − 3.5×10
−4
irtot −1200 . 

The condition-action mapping employed by each action 

sub-system to generate a motor vector and a busy signal 

value (where needed) at each time-step, are given in 

Table 3 in pseudo code. Note that for the two ‘fixed 

action patterns’—cylinder-pickup and cylinder-deposit—

the condition element of the mapping indicates 

dependency on elapsed time (in seconds) since the start of 

the behavior as recorded by the relevant sub-system clock 

(tpick or tdep), see section 3.3.2 for details. 

Appendix 3. Perceptual and motivational sub-
systems 

Detecting a wall: A wall is detected if the sum of infrared 

readings across all forward-facing sensors indicates a 

nearby surface and either the left-most(1) or right-

most(6) sensor input suggest a nearby surface on that side 

or three or more of the forward sensors detect a surface at 

any distance (input>30). These conditions are required to 

allow a wall to be detected when it is approached at any 

angle, or when the robot is moving parallel to a wall. A 

wall can only be detected when the arm is raised above 

horizontal (arm()<=227) since, otherwise, the gripper arm 

will be detected as a wall (note that the gripper arm may 

still be responded to as a ‘surface’ by action sub-

systems). 

pwall =

+1 :    irtot > 800( )

           ∧
ir(1) > 800 ∨  ir(6) > 800

∨  detect(i) ≥ 3
i=1

6

∑

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

           ∧ arm() <= 227( )
−1 :  otherwise

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

Detecting a nest: A nest is detected if the ambient light 

reading on at least two of the forward peripheral sensors 

is below a threshold, hence: 

pnest =
+1 : n lit ≥ 2    

−1 : otherwise

⎧ 
⎨ 
⎩ 

 

Detecting a cylinder: A cylinder is detected when the two 

front-most sensors (3 and 4) detect a surface at very close 

proximity, and the two sensors either side (2 and 5) of the 

front detect no surface. A cylinder cannot be detected in 

the nest (to prevent perceptual aliasing). 
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pcyl =

+1 :
ir(2) < 10∧ ir(3) > 1000∧ ir(4)

> 1000∧ ir(5) < 10

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

      ∧ pnest ≠ +1( )
−1 :  otherwise

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

Gripper status:  The gripper is considered to contain a 

cylinder when the optical sensor is triggered. 

p
grip

=
+1 : grip() = 1  

−1 :  otherwise

⎧ 
⎨ 
⎩ 

. 

The simulated motivation m fear
 is initialized to 1.0 and 

decays toward a minimum value of 0.0 at a rate of –

0.0007 per step; the motivation mhung
 is initialized to 0.2 

and increases at a constant rate of +0.0015 per step 

toward a maximum of 1.0, except on any time-step where 

a cylinder is deposited in a ‘nest’ area at which point it 

falls immediately to 0.0. 

Appendix 4. The motor plant 

The two wheel motors can be powered forwards and 

backwards and are controlled by integer-valued motor 

commands ranging from –20 (maximum reverse) to +20 

(maximum advance).  The robot gripper turret is powered 

by two motors, one to lift/lower the arm, the other to 

open/close the gripper. For the current model the useful 

range of operation for the arm motor varies from touching 

the floor (255), to overhead/vertical (152). The gripper 

motor is controlled by a binary command signal of 1 to 

close, 0 to open. To operate within these constraints the 

elements of the aggregate motor vector  

ˆ v = ˆ v lws+ , ˆ v lws−, ˆ v rws+ , ˆ v rws−, ˆ v up , ˆ v middle, ˆ v down , ˆ v open , ˆ v closed[ ]  

are converted into instructions to the four robot motors as 

follows: 

wheels: lws = 15( ˆ v 
lws+ − ˆ v 

lws−) , rws = 15( ˆ v 
rws+ − ˆ v 

rws−). 

arm:  unless ˆ v vert + ˆ v horiz + ˆ v floor = 0.0  

arm _ position =
152× ˆ v vert + 227× ˆ v horiz + 255× ˆ v floor

ˆ v vert + ˆ v horiz + ˆ v floor

. 

gripper:  unless ˆ v open + ˆ v closed = 0.0  

gripper _ position =
1 (closed) : ˆ v closed − ˆ v open > 0.0

0 (open) :  otherwise

⎧ 
⎨ 
⎩ 

 

where all fractional values are rounded to the nearest 

integer. 





cylinder-seek: 
irtot≤500  vseek= (0,1.00, 0,1.00, 0,0,0, 0,0) // no nearby objects 
   // fast ahead  
irtot>500 & nlit ≥2  // strong light (nest) 
 sd= left: vseek= (0.27,0, 1.00,0, 0,0,0, 0,0) // backup, rotating right 
 sd= right: vseek= (1.00,0, 0.27,0, 0,0,0, 0,0) // backup, rotating left  
500<irtot≤1025 & nlit <2 vseek= (0,1.00, 0,1.00, 0,0,0, 0,0) // nearby object 
    // fast ahead  
1025<irtot≤2000 & nlit <2  // possible cylinder 
   side= left: vseek= (0.20,0, 0,0.15, 0,0,0, 0,0) // rotate toward object  
 side= right: vseek= (0,0.15, 0.20,0, 0,0,0, 0,0) // rotate toward object 
irtot>2000 & nlit <2  // probable wall 
 side= left: vseek= (0,nws, nws,0, 0,0,0, 0,0) // rotate away (right) 
 side= right: vseek= (nws,0, 0,nws, 0,0,0, 0,0) // rotate away (left) 
 
wall-seek: 
irtot≤10  vwall= (0,1.0, 0,1.0, 0,0,0, 0,0) // in ‘free space’, 
    // fast ahead 
10<irtot≤500 vwall= (0,0.50, 0,0.50, 0,0,0, 0,0) // some contact 
      // slow ahead  
irtot>500  // near an obstacle 
 side= left: vwall= (0,nws, nws,0, 0,0,0, 0,0) // rotate right 
 side= right: vwall= (nws,0, 0,nws, 0,0,0, 0,0) // rotate left 
 
wall-follow: 
irtot≤600  // well away from wall 
   side= left: vfoll= (0,0.20, 0,0.27, 0,0,0, 0,0) // veer-in sharp left  
 side= right: vfoll= (0,0.27, 0,0.20, 0,0,0, 0,0) // veer-in sharp right 
if 600<irtot<1200  // away from wall 
   side= left: vfoll= (0,sws, 0,fws, 0,0,0, 0,0) // veer-in left  
 side= right: vfoll= (0,fws, 0,sws, 0,0,0, 0,0) // veer-in right  
1200≤irtot<2000  // quite near wall 
   side= left: vfoll= (0,fws, 0,sws, 0,0,0, 0,0) // veer-out gently right  
 side= right: vfoll= (0,sws, 0,fws, 0,0,0, 0,0) // veer-out gently left 
irtot>2000  // very close to wall 
 side= left: vfoll= (0,0.15, 0.15,0, 0,0,0, 0,0) // rotate right 
 side= right: vfoll= (0.15,0, 0,0.15, 0,0,0, 0,0) // rotate left 
ntouch≠1  bfoll=0 
ntouch=1  bfoll=1 

 
cylinder-pickup: 
0<tpick<0.3 bpick= 0, vpick= (0,0.10, 0,0.10, 0,0,0, 0,0) // slow approach 
0.3≤tpick<1.4 bpick= 1, vpick= (0.20,0, 0.20,0, 0,0,0, 1.0,0) // backup, open gripper 
1.4≤tpick<1.8 bpick= 1, vpick= (0,0, 0,0, 0,0,1.0, 0,0) // lower arm (floor) 
1.8≤tpick<2.8 bpick= 1, vpick= (0,0, 0,0, 0,0,0, 0,1.0) // close gripper 
2.8≤t<3.5 bpick= 1, vpick= (0,0, 0,0, 1.0,0,0, 0,0) // raise arm (vertical) 
3.6≤tpick  bpick= 0, vpick= (0,0, 0,0, 0,0,0, 0,0), t= 0.0 // idle 
 
cylinder-deposit: 
0<tdep<0.8 bdep= 1, vdep= (0,0, 0,0, 0,1.0,0, 0,0) // lower arm (horizontal) 
0.8≤tdep<1.6 bdep= 1, vdep= (0,0, 0,0, 0,0,0, 1.0,0) // release cylinder 
1.6≤tdep<2.4 bdep= 1, vdep= (0,0, 0,0, 1.0,0,0, 0,0) // raise arm (vertical) 

2.4≤tdep bdep= 0, vdep= (0,0, 0,0, 0,0,0, 0,0), t= 0.0 // idle 

 

Table 3. The condition-action mapping employed by each action sub-system to generate a motor vector and a busy 

signal value (where needed) at each time-step. 
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