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A Modeling Methodology for Robust Stability

Analysis of Nonlinear Electrical Power Systems

Under Parameter Uncertainties
Sharmila Sumsurooah, Milijana Odavic, Member, IEEE, and Serhiy Bozhko, Member, IEEE

Abstract—This paper develops a modeling method for robust
stability analysis of nonlinear electrical power systems over a range
of operating points and under parameter uncertainties. Standard
methods can guarantee stability under nominal conditions, but do
not take into account any uncertainties of the model. In this study,
stability is assessed by using structured singular value (SSV) anal-
ysis, also known as µ analysis. This method provides a measure of
stability robustness of linear systems against all considered sources
of structured uncertainties. The aim of this study is to apply the SSV
method for robust small-signal analysis of nonlinear systems over
a range of operating points and parameter variations. To that end,
a modeling methodology is developed to represent any such system
with an equivalent linear model that contains all system variabil-
ity, in addition to being suitable for µ analysis. The method em-
ploys symbolic linearization around an arbitrary operating point.
Furthermore, in order to reduce conservativeness in the stability
assessment of the nonlinear system, the approach takes into ac-
count dependences of operating points on parameter variations.
The methodology is verified through µ analysis of the equivalent
linear model of a 4-kW permanent magnet machine drive, which
successfully predicts the destabilizing torque over a range of dif-
ferent operating points and under parameter variations. Further,
the predictions from µ analysis are validated against experimental
results.

Index Terms—Linear fractional transformation (LFT), µ

analysis, robust stability analysis, structured singular value (SSV).

I. INTRODUCTION

T
HE MORE electric aircraft (MEA) is a fast-developing

technological trend in the aircraft industry. The MEA will

have a more complex electrical distribution system with a mul-

tiplicity of power electronics converters interfaced loads [1]. It

is well known that these loads, when tightly controlled, present

a negative impedance to the source and thus can cause severe

stability issues within the power system [2], [3]. Furthermore,
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the aircraft electrical power system (EPS) is subject to per-

turbations such as changes in environmental conditions or load

demand. These uncertainties may lead to variation in system pa-

rameters and operating points, which may further compromise

system stability. Therefore, it is crucial to incorporate parameter

uncertainties in the stability assessment of an EPS and ensure

system stability under all operating conditions, especially for

safety-critical applications. However, due to nonlinearities that

are inherent in such systems, small-signal stability assessment

may be challenging in the face of uncertainties. This is due to

the fact that small-signal stability analysis is performed on a

linear model about a certain operating point, and depending on

the amount of variability considered in the system, there may

be an arbitrarily large number of linearized models to be gener-

ated and assessed. Hence, in order to apply robust small-signal

stability assessment to nonlinear systems, this paper develops

a modeling methodology to represent a nonlinear system by a

generalized linear model that contains all system variability [4].

To assess small-signal system stability of power electron-

ics systems, the major classical approaches that are generally

employed are the eigenvalue-based method and the impedance-

based methods such as Middlebrook criterion. Middlebrook cri-

terion and many of its extensions such as the Gain and Phase

Margin criterion and the energy source analysis consortium

(ESAC) criterion are based on the Nyquist criterion applied

to the ratio of the source and load subsystem impedances [2],

[5], [6]. An important drawback of the classical techniques is

that they do not take into account system uncertainties such

as parameter variations. However, in order to incorporate un-

certainties in stability analysis, classical methods such as the

eigenvalue method are combined with the Monte Carlo simu-

lation. This probabilistic stability assessment approach can be

employed to determine probability density functions of critical

eigenvalues but cannot guarantee to identify the most critical

system scenarios with respect to stability [7], [8]. Additionally,

Sudhoff, Glover, Lamm, Schmucker, and Delisle [9] present

an admittance space stability analysis method that incorporates

uncertainties in the application of the classical ESAC crite-

rion approach. Yet, the aforementioned methods involve ex-

haustive iterations of parameter variations, linearization at a

number of equilibrium points, and computation of eigenvalues

or impedances, which can be quite extensive. Nonetheless, Sud-

hoff, Glover, Lamm, Schmucker, and Delisle [9] have developed

software to make the process automatic.

This paper employs the structured singular value (SSV, µ)
approach which is applied to linear fractional transformation

0093-9994 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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(LFT)-based uncertain system models [10]–[12]. In addition to

being a deterministic approach, SSV can provide a direct mea-

sure of stability robustness of a system with respect to its uncer-

tain elements. Furthermore, SSV analysis is founded on the con-

cept of an uncertain systemmodel, which defines system param-

eters not only in respect of their nominal values but also in terms

of their possible variation about the nominal values. Hence, by

working directly on an uncertain model, µ analysis eliminates
the burden from a user of performing exhaustive iterations.

However, the SSV method is generally applied for robust

stability analysis of a linear uncertain model with respect to a

particular operating point. In view of applying the SSV method

to nonlinear systems over a range of operating points, a num-

ber of methods have been proposed in the literature [13], [14].

A combined numerical and symbolic linearization technique is

presented in [13]. Another approach identifies the elements of

state-space matrices that vary with changes in operating condi-

tions and system parameters and then approximates those vary-

ing elements by polynomial functions [14]. Yet, these methods,

similarly to the classical approach, cannot take into account de-

pendences of operating points on parameter uncertainties and

may lead to conservative results. Nonetheless, it should be noted

that these techniques were proposed for larger power systems.

The work proposed in this paper is based solely on symbolic

linearization around an arbitrary equilibrium point. It develops

a general modeling approach to represent a nonlinear system

by an equivalent linear state-space model in symbolic form

that contains all defined system variability [13]. The approach

explicitly expresses dependences of operating points on system

parameters, which can also be modeled as uncertainties. When

compared to the aforementioned modeling approaches for SSV

analysis, the developed modeling approach is less conservative,

since it preserves all parameter dependences. In addition, it

eliminates the need for exhaustive linearization that is required

by classical techniques.

The proposedmodeling approach is applied to assess stability

of a 4-kW permanent magnet (PM) machine drive. The method-

ology is validated through µ analysis of the system, which is
used to predict the destabilizing torque over a range of different

operating points and under parameter variations. The stability

of the PM machine system was analyzed based on the classical

eigenvaluemethod and also tested experimentally by the authors

in [15]. The experimental results have been used to validate the

predictions from µ analysis, presented in this paper [15].

II. THEORETICAL BACKGROUND

In this study, the SSV approach is employed to determine

whether a system remains robustly stable in the face of paramet-

ric uncertainties. The system to be analyzed must be expressed

in the LFT form prior to SSV analysis [10], [16].

A. Linear Fractional Transformation

LFT is a modeling technique which is employed to “pull

out” the indeterminate part from the known part of a system

model and place it in the feedback form. If a general uncertain

parameter P is considered to be bounded in the region

[Pmin ,Pmax ], it may be represented in its normalized form

Fig. 1. Uncertain parameter P as an LFT.

Fig. 2. Original uncertain system in state-space form.

Fig. 3. Uncertain system with indeterminate uncertainties “pulled” out of the
system.

δP bounded within [−1, 1]. It is easy to show that P can be

modeled as an LFT in δP in the expression (1) and in the matrix

form in Fig. 1 [11], [12], [16]

P = Po + PoPvarδP , δP ∈ [−1, 1] (1)

where Po = (Pmin + Pmax)/2

and Pvar = (Pmax + Pmin)/(Pmax + Pmin).

Similarly, the model of an entire system with parametric un-

certainties can be represented in the LFT form [16], [17]. For

the purpose of illustration, a general uncertain system expressed

in the state-space form with input u and output y, as shown in
Fig. 2, is considered. The elements of the state-space matrix

(
A B
C D

) are functions of either fixed or uncertain parameters.

For instance, elementAij of the state matrix A can be expressed

as Aij = f1(P1 , P2 ...Pm ), where P1–Pm denote uncertain pa-

rameters of the system [14]. Based on the technique of LFT, it

is possible to extract the set of uncertainties in their normalized

form and regroup them in the diagonal uncertainty matrix∆, as
shown in Fig. 3 where ∆ = diag{δP 1 , δP 2 , ..., δP m}. As a re-
sult, the initial state-space matrix is expanded to accommodate

two sets of inputs namely u∆ and us and two sets of output y∆

and ys , as shown in Fig. 3 [11], [18]. The expanded state-space

matrix can be simplified by absorbing the “states” through the

use of (2)–(5). In this manner, the state-space matrix in Fig. 3 is

converted into the N∆ configuration in Fig. 4

N11(s) = C1(sI − A0)
−1B1 + D11 (2)

N12(s) = C1(sI − A0)
−1B0 + D12 (3)

N21(s) = C0(sI − A0)
−1B1 + D21 (4)

N22(s) = C0(sI − A0)
−1B0 + D0 . (5)
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Fig. 4. Uncertain system in the N∆ or LFT form.

Further, the system matrices in Fig. 4 can be represented as

three distinct equations (6)–(8). By rearranging these equations

to eliminate u∆ and y∆ and expressing the output ys in terms

of the input us , the transfer function of the system is obtained

as (9). The uncertainty matrix∆ is clearly distinguishable in (9)

and is said to have been “pulled out” of the original uncertain

system. Equation (9) is known as the upper LFT Fu (N, ∆). It
is interesting to note that with the disturbance∆ being zero, the

system is equivalent to N22(s), which is exactly the nominal
transfer function of the uncertain system

y∆ = N11 u∆ + N12 us (6)

ys = N21 u∆ + N22 us (7)

u∆ = ∆ y∆ (8)

Fu (N, ∆) =
ys

us
= N22 + N21∆(I − N11∆)−1N12 . (9)

B. Structural Singular Value

Referring to the general LFT expression (9), it can be seen that

the only source that can cause the systemN∆ to become unsta-

ble is the feedback term (I − M∆)−1 , where M = N11 [16].

With the assumption that the closed loopM∆ is initially stable,

the SSV (µ∆ (M)), as defined by (10), identifies the smallest
uncertainty set, measured by σ̄(∆), that destabilizes the sys-
tem. At this point, the closed-loop poles, which are given by

det(I − M∆), are at the imaginary axis [11], [19]. The SSV is
a frequency-dependent matrix function, which depends on both

the system matrixM(s) and the structure of ∆ [11], [19]

µ∆ (M ) =
1

min[σ̄(∆) : det(I − M∆) = 0, ∆ structured]
. (10)

The SSV theory gives necessary and sufficient conditions for

stability robustness [10]. If µ∆ (M) is less than 1, it guarantees
stability for the entire uncertainty set. However, it is computa-

tionally hard to obtain the exact value ofµ∆ (M) [10], [20], [21].
Hence, lower and upper bounds on the structural singular value

are computed instead. For simplicity, µ∆ (M) will be denoted
as µ in the rest of this paper.

III. MODELINGMETHODOLOGY

This section describes the methodology for representing a

nonlinear system by an equivalent linear model which is valid

for all operating points and parameter variations. The approach

is illustrated by applying it to the PM machine drive system.

A. System Structure

The power system under study is depicted by the circuit

representation in Fig. 5. The system represents a hybrid

distribution topology considered for the MEA power sys-

tem [15]. The engine generator with the generator control

unit, which is assumed to have an infinitely fast controller, is

considered as an ideal three-phase balanced voltage source.

The transmission line from the power supply to the rectifier

is modeled by an RL circuit. The six-pulse uncontrolled

rectifier in Fig. 5 represents typically employed multiphase

autotransformer-rectifier units of a real on-board system. It

provides DC power to the surface mounted PM machine-based

electromechanical actuator (EMA) through an LC filter. The

EMA is a standard vector-controlled PM motor drive depicted

in Fig. 6 [15]. The parameters of the example power system are

defined in Table I. With the assumption that the amplitude of the

ac supply and the dc load current are constant and that commu-

tation occurs only once during a commutation period, the power

stage in Fig. 5 is modeled by the circuit in Fig. 7 by using the

average-value modeling method [5], [22]. The six-pulse diode

rectifier is modeled by the dc voltage source Ve in series with

the equivalent resistance Re and the equivalent inductance Le

which are given by (11)–(13). The transmission line inductance

causes an overlap angle and hence a commutation voltage drop,

which is represented on the dc side by rµ in (14) [15]

ve =
3
√

3
√

2

π
vs (11)

Re = rµ + rF + 1.824 Req (12)

Le = LF + 1.824 Leq (13)

rµ =
3wLeq

π
. (14)

B. Symbolic Linearization

The nonlinear equations for the PM machine drive

are given by (15)–(21), where KT = 3PFm /4 and icpl =
3 v∗

sqm isqm/4vf [15]. The voltage across the dc-link capaci-

tor is assumed to be equal to vout given that the voltage drop

across the ESR of the capacitor is very small

didc

dt
= − (rc + Re )

Le

idc +
rc

Le

icp l −
vout

Le

+
ve

Le

(15)

dvout

dt
=

1

CF

idc −
1

CF

icp l (16)

dwr

dt
=

KT

Jm

isqm − 1

Jm

T (17)

disqm

dt
= −PFm

2Lq

wr − Rs

Lq

isqm +
1

2Lq

v∗
sqm vout

vf

(18)

dvf

dt
= − 1

τf

vf +
1

2τf

vout (19)

dv∗
sqm

dt
= −KI im isqm + KI im i∗sqm − KP im

disqm

dt

+KP im

di∗sqm

dt
(20)

di∗sqm

dt
= −KI w wr + KI w w∗

r − KP w
dwr

dt

+ KP w
dw∗

r

dt
. (21)
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Fig. 5. Power system structure diagram.

Fig. 6. Block diagram of the PM motor drive system.

TABLE I
NOMINAL VALUES FOR SYSTEM PARAMETERS

Symbols Units Nominal Values Description

vs V rms-ph 223 phase source voltage

w rad/s 2π50 source frequency

R e q Ω 0.045 line resistance

L e q µH 60 line inductance

rF Ω 0.2 DC-link inductor resistance

LF mH 24.15 DC-link inductance

rc Ω 0.4 ESR of dc-link capacitor

CF µF 320 DC-link capacitance

w rated r/min 1140 rated speed

w ∗
r r/min 800 speed reference

T rated N·m 40 rated load torque

R s Ω 0.5 stator resistance

L q mH 2.3 stator leakage inductance

P poles 20 number of poles

Jm kg·m2 0.004 moment of inertia

Fm Wb 0.123 constant flux of PM machine

KPim - 4.124 current loop PI constant

K Iim - 3632 current loop PI constant

wn , current Hz 200 natural frequency of current loop

KP w - 0.02 speed loop PI constant

K I w - 0.863 speed loop PI constant

wn , speed Hz 10 natural frequency of speed loop

η % 88.83 Efficiency of the PM motor

Prior to the linearization of the system model, the nonlinear

equations are converted into a nonlinear state-space form, where

the vectors x, u, and y denote system states, inputs, and outputs,

Fig. 7. Averaged model of the system in Fig. 5.

respectively, and are given as

x: idc , vout , wr , isqm , vf , v
∗
sqm , i

∗
sqm

u: ve , w
∗
r , T

y: vout .

An arbitrary equilibrium point is defined byXo andUo which

denote steady-state values of state vector x and input vector u,
respectively, and are given as

Xo : Idco , Vouto , wro , Isqmo , Vf o , V
∗
sqmo , I

∗
sqmo

Uo : Ve , w
∗
r , To .

The input Ve and w∗
r are constant over all operating points.

The load torque T is denoted as To at steady state. Finally, the

nonlinear state-space system is linearized around equilibrium

point (Xo ,Uo ) by using the standard linearization technique.
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C. Expressing the State-Space Matrix Elements Explicitly in

Terms of System Parameters and Inputs

This step involves expressing explicitly all elements of the

resulting linearized state-space model as functions of only sys-

tem parameters and inputs. Any indeterminate elements in the

system model such as equilibrium points must be expressed in

terms of definable system parameters and inputs.

For the system under study, firstly,Xo , as given by (22)–(28),

is derived by setting (15)–(21) to zero

Idco = Icplo = 3V ∗
sqmoIsqmo/2Vouto (22)

Vouto = −ReIdco − Ve (23)

wro = w∗
r (24)

Isqmo = To/KT (25)

Vf o = Vouto/2 (26)

V ∗
sqmo = Vsqmo = RsIsqmo + PFm wro/2 (27)

I∗sqmo = Isqmo = To/KT . (28)

The steady-state variables Idco in (22) and V ∗
sqmo in (27)

are then further rearranged and expressed as (29) and (30). In

addition, Vouto in (23) is expressed as (31) by using the constant

power load equation Idco = Po/Vouto , where Po = Towro/η

Idco =
(3To/2KT )(RsTo/KT + PFm wro/2)

Vouto
(29)

V ∗
sqmo = RsTo/KT + PFm wro/2 (30)

Vouto =
Ve

2

[

1 +

√

1 − 4ReTowro

ηV 2
e

]

. (31)

The flexibility of the linearized model, which now contains

only determinate parameters and inputs in symbolic form, serves

to cater for the system nonlinearities.

Fig. 8. Polynomial approximation of the steady-state dc-link voltage Vouto .

D. Rational Approximation of Nonrational Terms

Next, all nonrational elements in the linearized system model

are expressed in their rational forms as is required for the con-

version of the system model in its corresponding LFT configu-

ration. In our case, the nonrational expression of Vouto in (31)

is estimated in its rational form as in (32) by using the first

two terms of the binomial expansion of the square root term in

(31). The expression (32) is a good approximation of Vouto with

respect to variations in torque as shown in Fig. 8

Vouto−est = Ve −
ReTowro

ηVe
. (32)

E. Equivalent Linear Model

After applying the above steps, the state-space model

(
A B
C D

), given bymatrices (33)–(36), is obtainedwhereV ∗
sqmo ,

Vouto−est, Asubs1 , and Asubs2 are given by (30), (32), (37), and

(38), respectively. The developed model represents with good

accuracy the system for all operating points and parameter vari-

ations and is directly suited for µ analysis, (33) as shown at

A =



























































−rc + Re

Le
− 1

Le
0

3rcV
∗
sqmo

2LeVouto−est

−
3rcToV

∗
sqmo

LeKT V2
outo−est

3rcTo

2KT LeVouto−est

0

1

CF
0 0

−3V ∗
sqmo

2CF Vouto−est

3V ∗
sqmoTo

CF KT V2
outo−est

−3To

2CF KT Vouto−est

0

0 0 0
KT

Jm
0 0 0

0
V ∗

sqmo

LqVouto−est

−PFm

2Lq

−Rs

Lq

−2V ∗
sqmo

LqVouto−est

1

Lq
0

0
1

2Tf
0 0 − 1

Tf
0 0

0
−KPimV ∗

sqmo

LqVouto−est

Asusb1 Asubs2

2KPimV ∗
sqmo

LqVouto−est

−KPim

Lq
KIim

0 0 −KIw
−KP w KT

Jm
0 0 0



























































(33)
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bottom of the page

B =









































1

Le
0 0

0 0 0

0 0 − 1

Jm

0 0 0

0 0 0

0 KPimKIw
KPimKP w

Jm

0 KIw
KP w

Jm









































(34)

C =





1

Le
0 0 0 0 0 0

0 1 0 0 0 0 0



 (35)

D =
[

0 0 0
]

(36)

Asusb1 =

(

−KPimKIw +
KPimPFm

2Lq

)

(37)

Asubs2 = −KIim − KPimKP w KT

Jm
+

KPimRs

Lq
. (38)

F. Equivalent Linear Model Suitable for µ Analysis Over a

Range of Operating Points and Parameter Variations

The equivalent linear model represents the nonlinear system

over a range of operating points and parameter variations. In

order to illustrate this point, in this section, the nominal val-

ues of Re and the speed reference w∗
r , denoted by Reo and w∗

ro ,

have deliberately been set to 3.6 Ω and 3000 r/min, respectively.
The nominal torque Too is kept at 20 N·m and the other system
parameters are defined as in Table I. These parameter values

introduce more nonlinearity in the system by causing a larger

voltage drop in the dc-link voltage vout . This increase in nonlin-

earity better serves the purpose of illustration. It is worth noting

that in practical systems, it is not improbable that the value of

Re is very high for cases where the lengths of interconnecting

cables and input impedance of the power supply are more sig-

nificant. Based on the new parameter values, the voltage Vouto is

now better estimated by the third order binomial approximation,

denoted by Vouto-est3 and shown in Fig. 9.
Fig. 10 depicts a number of operating points of the system

(Icplo ,Vouto-est3) when both To and Re are subject to variations.

With Re , w
∗
r , and To set to the aforementioned nominal values

and the rest of the system parameters defined as in Table I, the

nominal operating point can be shown to lie at the pointEq10 in

Fig. 10. IfRe varies within± 40% ofReo , say due to changes in

temperature, while To = Too = 20 N·m, the operating point is
seen to move to different positions along curve 1 in Fig. 10. On
the other hand, if To varies within ± 90% of its nominal value,

while Re = Reo = 3.6 Ω, the operating point moves between
Eq20 and Eq30 , Eq20 and Eq30 being the operating points cor-

responding to the minimum and maximum torque, respectively.

Fig. 9. Polynomial approximation of the steady-state dc-link voltage Vouto

with Re = 3.6 Ω and w∗
r = 3000 r/min.

Fig. 10. Operating points with varying torque To and line resistance Re .

TABLE II
TORQUE UNCERTAINTY

Parameter Average value Range of variation wrt average value

(To o ) (Tvar)

Torque (To ) 20 N·m ± 90%

Hence, when both To and Re vary, the operating points will lie

between curves 2 and 3.
Thus, the generalized linear model converts to specific linear

models about distinct operating points depending on the val-

ues assigned to the system parameters and inputs. Furthermore,

the developed system model being linear is now suitable for µ
analysis. Since the µ approach explicitly takes into account all
varying system parameters and inputs, it becomes clear that in

fact it assesses stability robustness of a nonlinear system over

all corresponding operating points, as will be demonstrated in

the subsequent section.

IV. ROBUST STABILITY ANALYSIS UNDER LOAD UNCERTAINTY

In this section, µ analysis is applied to determine stability
robustness of the power system shown in Fig. 5when it is subject

to uncertainty in load torque. The torque To is considered to

vary within ±90% of its nominal value of 20 N·m, as depicted
in Table II, while all other system parameters are assumed to

be constant and equal to their nominal values as defined in

Table I. The system is studied with no dc-link voltage filter.

The destabilizing load torque predicted by µ analysis is verified
against experimental results.
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Fig. 11. Relationship between torque and the normalized disturbance in
torque.

A. Application of LFT

The application of µ analysis requires that the equivalent lin-
ear model be first converted in the N∆ or LFT form. Although

the LFT operation can be done manually, the process can be la-

borious [12]. Fortunately, the LFT exercise as well as µ analysis
can be performed automatically by employing specialized soft-

ware tools.MATLABRobust Stability Toolbox has been used in

this study. The function “robuststab(sys, omega)” performs both

LFT operation and µ analysis on the state-space system model
denoted as “sys” over the defined grid of frequencies denoted

as “omega.” For this case study, “sys” is given by (33)–(36).

The operation of LFT involves first expressing all uncertain

parameters in the system model as LFTs. The torque To , which

is bounded in the interval [2 N·m, 38 N·m], can be represented
as a perturbation in its normalized form δT bounded within [−1,
1]. Thus, To can be expressed as an LFT in δT based on (39)

and the values in Table II [12], [23]

To = Too + TooTvarδT , δT = [−1, 1]. (39)

From Fig. 11, which is an illustration of (39), it can be seen

that when the “perturbation” in torque is absent, δT = 0, the
torque is equal to its average value of To = Too = 20 N·m.
When the “perturbation” is at its maximum, either δT = −1 at
the low end of the uncertainty range where To = Tmin = 2N·m
or δT = 1 at the high end of the uncertainty range where To =
Tmax = 38N·m. The critical torque, as represented by the point
(δTc r

, Tcr ) in Fig. 11, will be determined by µ analysis in the
next section.

Based on the LFT operation, all normalized parameters δT are

then extracted from the system model (33)–(36) and grouped in

a diagonal matrix in a feedback form. This results in the system

model being converted in its N∆ form as shown in Fig. 4. The

resulting disturbance matrix is given by (40) where δT appears

24 times, since To appears that number of times in the uncertain

system model

∆(jw) = δT I24×24 . (40)

It is worth noting that the order of an uncertainty matrix is de-

pendent on the number of uncertain parameters as well as on

the size and complexity of the power system being analyzed. It

also depends on the order of polynomial approximation of cer-

tain system elements such as Vouto in (32) for the system under

Fig. 12. µ chart for the determination of critical torque.

study. Unfortunately, the higher the order of the uncertainty ma-

trix, the higher is the computational burden [21]. Nevertheless,

there exist some order reduction methods that can be used to

minimize the size of these matrices [24].

B. Application of SSV

By applying SSV analysis to the system in its LFT form, the

smallest disturbance matrix that causes instability is identified.

MATLAB Robust stability toolbox has been employed to com-

pute µ bounds of the system under study [12], [17], [23]. The
results of µ analysis, as depicted in Fig. 12, show the peak val-
ues of the lower and upper bounds of µ, which are in this case
the same and equal to 2.38 at the frequency of 57 Hz. The crit-
ical frequency corresponds to the resonant frequency of the LC

filter which can be estimated as 1/(2π
√

LF CF ). Based on the
µ analysis results, the smallest destabilizing disturbance matrix
is extracted as in (41), and the robust stability margin is cal-

culated as min(σ(∆)) = 1/µ = 0.42. The destabilizing torque
Tcr , computed from (42) and δTc r

= 0.42, is equal to 27.6N·m,
which is equivalent to the critical power of 2.6 kW

∆cr (j2π57) = δTc r
I24×24 = 0.42 I24×24 (41)

Tcr = Too + TooTvarδTc r
. (42)

The result, µ > 1, indicates that the system is not robustly
stable. The system does not remain stable over the whole uncer-

tainty set (i.e., within 20 ± 18 N·m), but only from Tmin = 2
N·m up to Tcr = 27.6 Nm. In this way, µ operates as a measure
of stability robustness.

One known problem with µ analysis, as reported in the math-
ematical and engineering literature, is that the function µ can
be discontinuous in cases where all the uncertain parameters

are purely real [16], [17], [20]. This leads to a problem of con-

vergence in the computation of a lower µ bound which fails to
identify a critical disturbance matrix. It has been found that one

way to solve the convergence problem is to add a small complex

value (α) to the real parameters. This thus becomes a mixed µ
problem instead of a purely real µ problem. This approach can
significantly improve continuity and convergence of the lower

bound. This solution can be justified from the engineering view-

point given that some small dynamics are inherent and inevitable

in practical systems [20], [25]. This problem was encountered

at the outset of this study. Hence, a very small complexity

of α = 0.1% was added to the real parametric uncertainty by
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Fig. 13. Time-domain simulation of dc-link voltage vout (t) at (i) t = 4 s,
T = 0.95Tcr ; (ii) t = 8 s, T = Tcr ; and (iii) t = 12 s, T = 1.05Tcr .

using the command “complexify” in MATLAB Robust stabil-

ity toolbox. This was sufficient to make the µ lower bound

converge [12].

C. Simulation Results

The PM machine drive is modeled in the Simulink environ-

ment to enable time-domain verification of the result from µ
analysis. With the speed kept constant at 800 r/min, three values

of torque are applied in steps to the model. At time t = 4 s, 95%
of the critical torque (26.2 N·m) is applied to the system and
the dc-link voltage vout(t) stabilizes with time, as can be seen
in Fig. 13. At time t = 8 s, application of the critical torque
Tcr = 27.6 N·m causes the system to reach boundary stability
with sustained dc-link voltage oscillations. This confirms the

results from µ analysis which predicted the critical torque of
27.6 N·m. Applying an additional torque of 5% over its criti-

cal value at t = 12 s causes the system to become unstable, as
shown in Fig. 13.

D. Experimental Results

A number of experiments were undertaken on the PM ma-

chine drive test rig that is described in this work and were

reported in [15]. It was found in the experiment that when the

torque was increased to 26.7 N·m at a speed of 800 r/min, the
dc-link voltage showed sustained oscillations as depicted in [15,

Fig. 10]. This is in very close agreement with the critical torque

of 27.6 N·m determined from µ analysis. Thus, both experimen-
tal and simulation results confirm the validity of the proposed

modeling approach.

E. Discussion

µ analysis directly provides an explicit measure of the amount
of variability that is allowed in uncertain parameters for the sys-

tem to remain stable. For the case under study, the robust stability

margin equal to 0.42 implies that maintaining the normalized
torque within 42% of its nominal value ensures system stability.

This information is very useful and can directly be employed in

the design of the EPSs. For instance, in order to ensure that the

system under study remains stable over the whole uncertainty

range, µ should be less than 1. One way to do this is to limit the
operating range to To = 20 N·m ± 38%. However, if the oper-
ating range is to be maintained within 20 N·m± 90%, the input

filter parameters LF and CF can be modeled as uncertainties in

order to find their optimal values that will guarantee stability in

the whole operating range.

Furthermore, the SSV method is less demanding for a user.

The only inputs that are to be provided to the software are first

nominal values and a variation range of uncertain parameters,

and then an equivalent linear state-space model.

In contrast, the classical eigenvalue approach applied in [15]

to determine the critical torque of the PM machine drive is

not direct and involves an extensive process. First, the operat-

ing range is divided into a finite number of points. Then, for

each operating point, numerical linearization is performed and

eigenvalues are calculated. The iterative process has to be fur-

ther refined until the critical parameter value is obtained to a

satisfactory accuracy.

The modeling methodology proposed in this paper has been

successfully applied to the power system under study. It is still

to be tested on system-level architectures where source and

load subsystems, of the order of the EPS under consideration,

are interconnected. This aspect of the work is currently being

investigated.

V. EFFECT OF PARAMETER VARIATIONS ON

STABILITY ROBUSTNESS

In the previous section, we found that stability can be guar-

anteed for the system under study up to the maximum power

of 2.6 kW. In this section, the effect of parameter variations on
the destabilizing power is investigated by using the µ method
that was described in Section IV. In particular, this analysis in-

cludes variations in system frequency, bandwidth of the dc-link

voltage filter, and natural frequency of the speed loop. All the

other system parameters are kept constant as given in Table I un-

less specified otherwise. The results from µ analysis are verified
against experimental results reported in [15].

A. System Frequency

Some aircraft power system architectures are known to be

“frequency-wild” with frequency changing in a wide range. It

is important to analyze how stability robustness of the power

system is affected by variations in system frequency. µ analysis
is applied to determine the critical torque that destabilizes the

power system for system frequency ranging from 1 to 300 Hz.

For every frequency under study, the uncertain torque is as

defined in Table II. The system is investigated with no dc-link

voltage filter. The critical power is then computed from the

critical torque, determined from µ analysis at each frequency
point, based on P = Tcrwr/η. Fig. 14 depicts the results from
µ analysis. Further, a number of experiments were performed
on the system to identify the destabilizing power for frequencies

of 50, 100, 200, and 300 Hz. Fig. 14 shows the experimental

results which have also been reported in [15, Fig. 11]. There is

a close agreement between the µ analysis predictions and the
experimental results as can be seen in Fig. 14. It can be noted

that an increase in system frequency causes an improvement in

system stability.
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Fig. 14. Experimental and µ analysis-based critical power under conditions
of varying system frequency.

Fig. 15. Experimental and µ analysis-based critical power with varying band-
width of the dc-link voltage filter.

B. Bandwidth of the DC-Link Voltage Filter

The dc-link voltage vout is filtered for the computation of

the modulation index in the digital signal processor (DSP) as

shown in Fig. 6 [15]. The critical torque is determined for dif-

ferent values of the dc-link voltage filter (fcutoff) ranging from 0
to 300 Hz. The critical power is then computed from the critical
torque, predicted by µ analysis at the different values of fcutoff,
based on P = Tcrwr . Fig. 15 depicts the power stability thresh-

old obtained from µ analysis. In addition, the critical power was
measured experimentally at the shaft of the motor for fcutoff of
10, 25, 50, 200, and 300 Hz. Fig. 15 depicts the experimental

results, which have also been reported in [15, Fig. 12]. These

experimental results agree fairly well with µ analysis predic-
tions, as can be noted in Fig. 15. It can be noted that the effect

of the dc-link voltage filter bandwidth on stability robustness

is not monotonic and is around 75 Hz at the point where the
system is the least robustly stable.

C. Natural Frequency of the Speed Loop

µ analysis is applied to determine the destabilizing power
for different values of natural frequency of the speed loop (fn )

ranging from 1 to 25 Hz. The dc-link voltage filter bandwidth
is fixed at 50 Hz. Fig. 16 shows the results from µ analysis.
Moreover, the critical power was measured experimentally at

the shaft of the motor when fn was set at 5, 10, 15, and 20 Hz.
Fig. 16 shows the experimental results which have also been

reported in [15, Fig. 13]. The experimental results agree closely

with the µ analysis predictions, as can be seen in Fig. 16. The
system stability is seen to degrade with an increase in the natural

frequency of the speed loop.

Fig. 16. Experimental and µ analysis-based critical power with varying natu-
ral frequency of the speed loop.

D. Discussion

This section has demonstrated how parameter variations can

affect system stability. The µ analysis results match closely the
experimental results whichwere reported in [15] and also shown

in Figs. 14–16 for the sake of completeness. This validates the

methodology proposed in this paper.

VI. CONCLUSION

The aim of this study was to apply µ analysis to assess robust
small-signal stability of a nonlinear system over a range of op-

erating points and under parameter uncertainties. To that end, a

modeling methodology has been developed to represent a non-

linear system by an equivalent linear systemmodel that contains

all defined system variability. This approachwith respect to clas-

sical methods eliminates the need for exhaustive linearization

and extensive iterations under parameter variations. In addition,

the modeling approach reduces conservativeness in stability as-

sessment of a nonlinear system as the equivalent linear model

preserves all dependences of operating points on parameter un-

certainties of the system. The proposed modeling methodology

has been verified through the SSV (µ) analysis of a 4-kW PM

machine drive system, which successfully predicted the critical

torque that causes system instability. The investigation included

uncertainties in load and some system parameters. Further, all µ
analysis predictions have been validated based on experimental

results reported in [15]. Of note is that µ analysis, as compared
to classical methods, can be employed to evaluate the effect

of multiple parameter uncertainties acting simultaneously on

system stability. This topic will be discussed in a future paper.
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