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Abstract

We address the task of annotating images with semantic

tuples. Solving this problem requires an algorithm which

is able to deal with hundreds of classes for each argument

of the tuple. In such contexts, data sparsity becomes a

key challenge, as there will be a large number of classes

for which only a few examples are available. We propose

handling this by incorporating feature representations of

both the inputs (images) and outputs (argument classes)

into a factorized log-linear model, and exploiting the flex-

ibility of scoring functions based on bilinear forms. Ex-

periments show that integrating feature representations of

the outputs in the structured prediction model leads to bet-

ter overall predictions. We also conclude that the best out-

put representation is specific for each type of argument.

1 Introduction

Many important problems in machine learning can be

framed as structured prediction tasks where the goal is to

learn functions that map inputs to structured outputs such

as sequences, trees or general graphs. A wide range of ap-

plications involve learning over large state spaces, i.e., if

the output is a labeled graph, each node of the graph may

take values over a potentially large set of labels. Data

sparsity then becomes a major challenge, as there will be

∗Corresponding author: ariadna.quattoni@xrce.xerox.com

a potentially large number of classes with few training ex-

amples.

Within this context, we are interested in the task of pre-

dicting semantic tuples for images. That is, given an input

image we seek to predict what are the events or actions

(predicates), who and what are the participants (actors)

of the actions and where is the action taking place (loca-

tives). Fig. 1 shows two examples of the kind of results we

obtain. To handle the data sparsity challenge imposed by

the large state space, we will leverage an approach that has

proven to be useful in multiclass and multilabel prediction

tasks [1, 22]. The main idea is to represent a value for an

argument a using a feature vector representation φ ∈ IRn.

We will later describe in more detail the actual represen-

tations that we used and how they are computed but for

now imagine that we represent an argument by a real vec-

tor where each component encodes some particular prop-

erties of the argument. We will integrate this argument

representation into the structured prediction framework.

More specifically, we consider standard factorized lin-

ear models where the score of an input/output pair is the

sum of the scores, usually called potentials, of each fac-

tor. In our case we will have unary potentials that measure

the compatibility between an image and an argument of a

tuple, and binary potentials that measure the compatibil-

ity between pairs of arguments in a tuple. Typically, both

unary and binary potentials are linear functions of some

feature representation of the input/output pair. In contrast,

we will consider a model that exploits bilinear unary po-
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<act=puppy,*pre=sit,*loc=house>*

<act=dog,*pre=sit,*loc=bed>*

Our$Approach$(Generated$Tuples)$

Top$5$sentences$generated$using$CNNS$

<act=boy,*pre=sit,*loc=street>*

<act=boy,*pre=sit,*loc=soccer>*

Our$Approach$(Generated$Tuples)$

a*man*and*woman*laying*down*to*the*couch*

with*a*bed.*

a*man*laying*on*top*of*a*sofa*with*his*dog.*

a*man*laying*on*the*couch*with*his*dog.*

a*man*is*laying*on*the*bed*of*a*sofa.*

a*man*and*dog*bed*in*the*back*of*a*sofa.**

a*young*woman*wearing*a*pink*and*standing*

in*front*of*a*metal*shoe.*

a*boy*in*blue*shirt*and*shorts*is*holding*a*

sword*to*pick*up*two*children*in*a*ba<ng*

posi=on.*

a*young*boy*holding*something*in*a*ba<ng*

cage.*

a*boy*standing*in*a*gym*with*a*toy*gun.*

a*li>le*boy*is*holding*a*basketball,*looking*at*

the*ground.**

Top$5$sentences$generated$using$CNNS$

Figure 1: Automatic Tuple Generation. The proposed approach allows generating semantic tuples that have not been

jointly observed before. For instance, in the left test image, the joint tuples 〈puppy, sit, house〉 and 〈dog, sit, bed〉
are not present in the training set, but our compositional approach can generate them.

tentials φ(y, x) of the form v⊺yWx, where vy ∈ IRn is

some real vector representation of an argument l ∈ L and

x ∈ IRd is a d dimensional feature representation of an

image. Similarly, the binary potentials α(y, y′) will be of

the form v⊺yZv′y for a pair of arguments (y, y′). The rank

of W and Z can be interpreted as the intrinsic dimension-

ality of a low-dimensional embedding of the inputs and

arguments feature representation. Thus, if we want com-

putationally efficient models (i.e. few features) it is natu-

ral to use the rank of W and Z as a complexity penalty.

Since using the rank would lead to a non-convex problem,

we use instead the nuclear norm as a convex relaxation.

We conduct experiments with two different feature rep-

resentations of the outputs and show that integrating an

output feature representation in the structured prediction

model leads to better overall predictions. We also con-

clude from our results that the best output representation

is different for each argument type.

Training'Image'x (From!Q)'

Training'Senten2al'Descrip2ons'(From'Q)'

Seman2c'Tuple'Extractor'

(Trained)using)L)))

Seman2c'Tuples'

Image'Features'

A)brown)dog)is)running)in)a)grassy)plain.)

A)brown)dog)runs)along)a)path)in)the)grass.)

Dog)running)in)field.))

Dog)running)in)narrow)dirt)path.)

The)dog)is)running)through)the)uncut)grass.)

<act=dog,)pre=run,)loc=plain>)

<act=dog,)pre=run,)loc=grass>)

<act=dog,)pre=run,)loc=field>)

<act=dog,)pre=run,)loc=path>)

<act=dog,)pre=run,)loc=grass>))

< ϕA(x), ϕP(x), ϕL(x) >  

Convolu2onal'NN'

(Trained)using)U))

Image'to'

Seman2c'Tuple'

Predictor'

U) (Imagenet):) Images) annotated) with)

keywords) (cheap,) exploits) readily) available)

dataset))

Q) (Flickr8K):) Images) annotated) with)

descripJve) sentences) (relaJvely) cheap,)

exploits)readily)available)resources))

L) (SPMDataset):) Images) annotated) with)

descripJve) sentences) and) semanJc) tuples)

(this) is) a) small) subset) of) Q,) expensive)

annotaJon,)requires)experJse))

Training'Data'

Embedded'CRF''

(Implicitly)induces)

embedding)of)image)

features)and)arguments))

Figure 2: Overview of our approach.

2 Semantic Tuple Image Annotation

2.1 Task

We will address the task of predicting semantic tuples for

images. Following [4], we will focus on a simple semantic

representation that considers three basic arguments: pred-
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icate, actors and locative. For example, an image might be

annotated with the semantic tuples: 〈run, dog, park〉 and

〈play, dog, grass〉. We call each field of a tuple an argu-

ment. For example, in the tuple t = 〈play, dog, grass〉,
“play” is the argument of the predicate field, “dog” is the

actor and “grass” the argument of the locative field.

Given this representation, we can formally de-

fine our problem as that of learning a function

θ : X × P × A × L → IR that scores the com-

patibility between images and semantic tuples. Here, X
is the space of images, P is a discrete set of predicate

arguments, A is a set of actor arguments and L is a set

of locative arguments. We are particularly interested in

cases where |P |, |A| and |L| are reasonably large. We

will use T = P ×A×L to refer to the set of possible tu-

ples, and denote by 〈p a l〉 a specific instance of the tuple.

To learn this function we are provided with a training set

Q. Each example in this set consists of an image x and a

set of corresponding semantic tuples {tc} which describe

the events occurring in the image. Our goal is to use Q
to learn a model for the conditional probability of a tu-

ple given and image. We will use this model to predict

semantic tuples for test images by computing the tuples

that have highest conditional probability according to our

learnt model.

2.2 Dataset

While some datasets of images associated with seman-

tic tuples are already available [4], they only consider

small state spaces for each argument type. To address this

limitation we decided to create a new dataset of images

annotated with semantic tuples. In contrast to previous

datasets, we consider a more realistic range of possible

argument values. In addition, our dataset has the advan-

tage that every image is annotated with both the under-

lying semantics in the form of semantic tuples and natu-

ral language captions that constitute different lexical real-

izations of the same underlying semantics. To create our

dataset we used a subset of the Flickr8k dataset, proposed

in Hodosh et al. [7]. This dataset consists of 8,000 im-

ages taken from Flickr of people and animals performing

some action, with five crowd-sourced descriptive captions

for each one. These captions are sought to be concrete de-

scriptions of what can be seen in the image rather than ab-

stract or conceptual descriptions of non-visible elements

(e.g., people or street names, or the mood of the image).

This type of language is also known as Visually Descrip-

tive Language [5].

We asked human annotators to annotate 1,544 image

captions, corresponding to 311 images (approximately

one third of the development set), producing more than

2,000 semantic tuples of predicates, actors and loca-

tives. Annotators were required to annotate every cap-

tion with their corresponding semantic tuples without

looking at the referent image. We do this to ensure

an alignment between the information contained in the

captions and their corresponding semantic tuples. Cap-

tions are annotated with tuples that consist of a predi-

cate, a patient, an agent and a locative (indeed the pa-

tient, the agent and the locative could themselves con-

sist of multiple arguments but for simplicity we regard

them as single arguments). For example, the caption “A

brown dog is playing and holding a ball in a crowded

park” will have the associated tuples: 〈 predicate =
play, agent = dog, pacient = null, locative = park〉
and 〈 predicate = hold, agent = dog, pacient =
ball, locative = park〉. Notice that while these anno-

tations are similar to PropBank style semantic role anno-

tations, there are also some differences. First, we do not

annotate atomic sentences but captions that might actu-

ally consist of multiple sentences. Second, the annotation

is done at the highest semantic level and annotators are

allowed to make logical inferences to resolve the argu-

ments of a predicate. For example we would annotate the

caption: “A man is standing on the street. He is hold-

ing a camera” with 〈 predicate = standing, agent =
man, pacient = null, locative = street〉 and

〈 predicate = hold, agent = man, pacient =
null, locative = street〉. Figure 3 shows two sample

images with captions and annotated semantic tuples. For

the experiments we partitioned the set of 311 images (and

their corresponding captions and tuples) into a training set

of 150 images, a validation set of 50 (used to adjust pa-

rameters) and a test set of 100 images.

To enlarge the manually annotated dataset we first used

the data of captions paired with semantic tuples to train

a model that can predict semantic tuples from image cap-

tions. Similar to previous work we start by computing

several linguistic features of the captions, ranging from

shallow part of speech tags to dependency parsing and se-
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Senten%al(Descrip%ons(

guy,%man,%ride,%rollerblade,%

pole,%night%%

A%guy%on%inline%skates%with%a%white%hat%on%a%yellow%rail%

A%male%skater%is%riding%a%yellow%rail.%

A%man%rollerblades%across%a%yellow%pole%at%night.%

A%inline%skater%boy%balances%on%a%yellow%rail.%

A%skater%does%a%trick%on%a%yellow%handrail.%%%

<act=guy,%pre=be,%loc=rail>%

<act=skater,%pre=ride,%loc=rail>%

<act=man,%pre=rollerblade,%loc=pole>%

<act=man,%pre=rollerblade,%loc=night>%

<act=skater,%pre=do,%loc=handrail>%

Seman%c(Tuples(Keywords(

dog,%water,%s<ck,%

run,%play%

A%black%dog%chases%a%brown%dog%with%a%s<ck%through%the%water.%

A%brown%dog%is%running%through%water%with%a%s<ck%in%its%mouth.%

Two%dogs%playing%in%the%water%with%a%s<ck.%

Two%dogs%playing%with%a%s<ck%in%the%water.%%

Two%dogs%running%through%the%water%with%a%s<ck.%

<act=dog,%pre=chase,%loc=water>%

<act=dog,%pre=run,%loc=water>%

<act=dog,%pre=play,%loc=water>%

<act=s<ck,%pre=play,%loc=water>%

<act=dog,%pre=run,%loc=water>%

Figure 3: Sample images, keywords, sentences and semantic tuples from the augmented Flickr-8K dataset.

mantic role labeling 1. We extract the predicates by look-

ing at the words tagged as verbs by the POS tagger. Then,

the extraction of arguments for each predicate is resolved

as a classification problem. More specifically, for each

detected predicate in a sentence we regard each noun as

a positive or negative training example of a given relation

depending on whether the candidate noun is or is not an

argument of the predicate. We use these examples to train

a discriminative classifier that decides if a candidate noun

is or is not an argument of a given predicate in a given

sentence. This classifier exploits several linguistic fea-

tures computed over the syntactic path of the dependency

tree connecting the candidate noun and the predicate. As a

classifier we trained a linear SVM. We run the learnt tuple

predictor model on all the remaining 6,000 training im-

ages and corresponding captions of the Ficker8k dataset

and produced a larger dataset of images paired with se-

mantic tuples 2.

1We use the linguistic analyzer of [16]
2In the experimental section we actually build models to predict

coarser triplets that consist of a locative a predicate and an actor. To

convert from the finer 〈predicate, agent, patient, locative〉 anno-

tations to the coarser annotations 〈predicate, actor, locative〉 we

simply map the finer annotation to two coarser tuple annotations, one

tuple for the actor and one tuple for the patient.

3 Incorporating Output Feature

Representations into a Factorized

Linear Model

For simplicity we will consider factorized sequence mod-

els over sequences of fixed length. However, all the

ideas we present can be easily generalized to other struc-

tured prediction settings. In this section we first describe

the general model and learning algorithm (Sections 3.1

and 3.2, respectively), and then, in Section 3.3, we focus

on the specific problem of learning tuples given input im-

ages.

3.1 Bilinear Models with Output Feature

Representations

Let x be an input, and let y = [y1 . . . yT ] be some output

sequence where yi ∈ L for some set of states L. We are

interested in learning a model that computes P (y|x), i.e.

the conditional probability of a sequence y given some

input x. We will consider CRF-like factorized log-linear

models that take the form:

P (y|x) =
exp θ(x, y)∑
y exp θ(x, y)

(1)

The scoring function θ(x, y) is modeled as a sum of

unary and binary bilinear potentials and is defined as:

θ(x, y) =

T∑

t=1

v⊺yt
Wtφ(x, t) +

T∑

t=1

v⊺yt
Ztvyt+1

(2)

4



where vy ∈ IR|n| is a feature representation of label y ∈
L, and φ(x, t) ∈ IRd is a feature representation of the t-th
input factor of x.

The first set of terms in the above equation are usually

refered as unary potentials and measure the compatibility

between a single state at t and the feature representation

of input factor t. The second set of terms are the binary

potentials and measure the compatibility between pairs of

states at adjacent factors. The scoring function θ(x, y) is

fully parameterized by the unary parameter matrices W ∈
IR|n|×d and the binary parameter matrices Z ∈ IR|n|×|n|.

We will later describe the actual label feature represen-

tations that we used in our experiments. But for now, it

suffices to say that the main idea is to define a feature

space so that semantically similar labels will be close in

that space. Like in the multilabel scenario [1, 22], having

full feature representations for arguments will allow us to

share information across different classes.

One of the most important advantages of using feature

representations for the outputs is that they give us the abil-

ity to generalize better. This is because with a good output

feature representation, our model should be able to make

sensible predictions about pairs of arguments that were

not observed at training. This is easy to see: consider a

case were we have a pair of arguments represented with

feature vectors a1 and a2 and suppose that we have not

observed the factor a1, a2 in our training data but we have

observed the factor b1, b2. Then if a1 is close in the fea-

ture space to argument b1 and a2 is close to b2 our model

will predict that a1 and a2 are compatible. That is, it will

assign probability to the pair of arguments a1, a2 which

seems a natural generalization from the observed training

data.

This kind of representation also has interesting inter-

pretations in terms of the ranks of W and Z. Let W =
UΣV be the singular value decomposition of W . We can

then write the unary potential v⊺yWφ(x, t) as:

v⊺yU Σ [V φ(x, t)]. (3)

Thus, we can regard the bilinear form as a function com-

puting a weighted inner product between some real em-

bedding v⊺yU representing state y, and some real embed-

ding [V φ(x, t)] representing input factor t. The rank of

W gives us the intrinsic dimensionality of the embedding.

Therefore, if we seek to induce shared low-dimensional

Inputs: D, η, γ, c
Output: W
Initialize W = 0
while t ≤ MaxIter do

Gt = ∂(Loss(D, {W}))/∂W ;

Wt+0.5 = Wt − νtGt; // νt is the

learning rate

Wt+0.5 = UΣV ⊺;

∀ unary potentials define a diagonal matrix Σ′

such that: σ′
i = max[σi − νtη];

Wt+1 = UΣ′V ⊺;

∀ binary potentials define a diagonal matrix Σ′

such that: σ′
i = max[σi − νtγ];

Wt+1 = UΣ′V ⊺;

end

Algorithm 1: Learning Algorithm

embeddings across different states it seems reasonable to

impose a low rank penalty on W .

Similarly, let Z = UΣV be the singular value decom-

position of Z. We can write the binary potentials v⊺yZvy′

as:

v⊺yU Σ V vy′ (4)

and thus the binary potentials compute a weighted inner

product between a real embedding of state y and a real

embedding of state y′. Again, the rank of Z gives us the

intrinsic dimensionality of the embedding and, to induce a

low dimensional embedding for binary potentials, we will

impose a low rank penalty on Z. In practice, imposing

low-rank constraints, would lead to a hard optimization

problem, so instead we will use the nuclear norm as a

convex relaxation of the rank function.

3.2 Learning Algorithm

After having described the type of scoring functions we

are interested in, we now turn our attention to the learn-

ing problem. That is, given a training set D = {〈x y〉}
of pairs of inputs x and output sequences y we need to

learn the parameters {W} and {Z}. For this purpose we

will do standard max-likelihood estimation and find the

parameters that minimize the conditional negative log-

likelihood of the data in D. That is, we will find the

{W} and {Z} that minimize the following loss function
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Loss(D, {W}, {Z}):

−
∑

〈x y〉∈D

logP (y|x; {W}, {Z})

It can be shown that this loss function is convex on {W}
and {Z} whenever θ(x, t; {W}, {Z}) is convex, which is

the case for our scoring function.

Recall that we are interested in learning low-rank unary

and binary potentials. To this end we follow the standard

approach which is to use the nuclear norm |W |∗ and |Z|∗
(i.e. the l1 norm of the singular values) as a convex ap-

proximation of the rank function. Putting all this together,

the final optimization problem becomes:

min
{W}

Loss(D, {W}) + c1
∑

t

|Wt|∗ + c2
∑

t

|Zt|∗ (5)

where Loss(D, {W}) =
∑

d∈D Loss(d, {W}) is the

negative log likelihood function and c1 and c2 are two

constants that control the trade off between minimizing

the loss and the implicit dimensionality of the embed-

dings.

In recent years, many algorithms have been proposed

for optimizing trace norm regularized problems (e.g., see

[8, 17, 9]). We use a simple optimization scheme known

as Forward Backward Splitting, or FOBOS [3]. It can be

shown that FOBOS converges to the global optimum at a

O(1/ǫ2) rate.

The main steps of the optimization involve computing

the gradient of the loss function and performing singular

value decomposition on each W and Z. In our case, com-

puting the gradient involves computing marginal proba-

bilities for unary and binary potentials which has a cost of

O(|L|2) and the cost of the SVD computation for each W
in {W} and each Z in {Z}.

3.3 Bilinear CRF for Predicate Prediction

For our task we will consider a simple factorized scor-

ing function θ(x, 〈p a l〉) that has unary terms relat-

ing arguments of the same kind, and binary factors as-

sociated with the locative − predicate pair and with

the predicate − actor pair. Since this corresponds to

a chain structure, argmaxt∈T θ(x; 〈p a l〉) can be effi-

ciently computed using Viterbi decoding in time O(N2),
where N = max(|P |, |A|, |L|). Similarly, we can also

find the top k predictions in O(kN2). Alternatively, we

could have defined the relationship between arguments

via a fully connected graph and use approximate infer-

ence methods.

More specifically, the scoring function of the bilinear

CRF we contemplate takes the form:

θ(x, 〈p a l〉) = λloc(l)
⊺Wlocφloc(l)

+λpre(p)
⊺Wpreφpre(p)

+λact(a)
⊺Wactφact(a)

+φloc(l)
⊺W loc

preφpre(p)

+φpre(p)
⊺W pre

act φact(a) (6)

where the λ’s are the image representations and the φ’s

the textual ones. The unary potentials (first three terms

in Eq. 6) measure the compatibility between image and

semantic arguments; the first binary potential measures

the compatibility between the semantic representations of

locatives and predicates, and the second binary potential

measures the compatibility between predicates and actors.

The scoring function is fully parameterized by the unary

parameter matrices Wloc ∈ IRd×nl, Wpre ∈ IRd×np

and Wa ∈ IRd×na and by the binary parameter matrices

W loc
pre ∈ IRnl×np and W pre

act ∈ IRnp×na. The parameters

nl, np and na are the dimensionalities of feature repre-

sentations for the locatives, predicates and actors.

Note that if we let the argument representation φ(r)
be an indicator vector in IR|L| we obtain the usual

parametrization of a standard factorized linear model:

θ(x, 〈p a l〉) = λloc(l)
⊺wl

loc

+λpre(p)
⊺wp

pre

+λact(a)
⊺wa

act

+W loc
pred(l, p) +W pred

act (p, a)

Like in the multilabel scenario [1, 22], having full fea-

ture representations for arguments instead of indicator

vectors will allow us to share information across different

classes. In fact, we will use the model that uses indicator

vectors as a baseline in our experiments.
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4 Representing Semantic Argu-

ments

Recall that in order to handle the large number of possible

arguments per field (i.e. data sparsity) our model assumes

the existence of some feature representation for each ar-

gument and type φpred(p) ∈ IRnp, φact(a) ∈ IRna and

φloc ∈ IRnl. It is then that by learning an embedding of

these vectors we will be able to share information across

different classes. Intuitively, the feature vectors should

describe properties of the arguments and should be de-

fined so that feature vectors that are close to each other

represent arguments that are semantically similar.

We will conduct experiments with two different

feature representations: 1) Fully unsupervised Skip-

Gram based Continuous Word Representations (SCWR)

and 2) a feature representation computed using the

〈caption, semantic− tuples〉 pairs, that we call Seman-

tic Equivalence Representation (SER). We next describe

in more detail each of these representations.

4.1 Semantic Equivalence Representation

We want to exploit the dataset of captions paired with se-

mantic tuples to induce a useful feature representation for

arguments. For this we will propose a way to illustrate

the fact that any pair of semantic tuples associated with

the same image will likely be describing the same event.

Thus, they are in essence different ways of lexicalizing

the same underlying concept.

Let’s look at a concrete example. Imagine that we have

an image annotated with the tuples: 〈play, dog, water〉
and 〈play, dog, river〉. Since both tuples describe

the same image, it is quite likely that both “river” and

“water” refer to the same real world entity, i.e, “river”

and “water” are ’semantically equivalent’ for this image.

Using this idea we build a representation φloc(i) ∈ IR|L|

where the j-th dimension corresponds to the number of

times the argument j has been semantically equivalent to

argument i.
More precisely, we compute the probability that argu-

ment j can be exchanged with argument i as:
[i,j]sr∑
j
[i,j]sr

,

where [i, j]sr is the number of times that i and j have

appeared as annotations of the same image and with the

same other arguments. For example, for the actor argu-

ments [i, j]sr represents the number of time that actor

i and actor j have appeared with the same locative and

predicate as descriptions of the same image. Here is a

concrete example of the feature vector for the locative

‘water’ (we report the non-zero dimensions and their cor-

responding value): φloc(water)=[ air 0.03, beach 0.06,

boat 0.03, canoe 0.03, dock 0.13, grass 0.06, kayak 0.06,

lake 0.06, mud 0.03, ocean 0.16, platform 0.03, pond

0.06, puddle 0.1, rock 0.03, snow 0.03, tree 0.03, waterfall

0.03]. Thus, according to the computed representation,

‘water’ is semantically most similar to ‘ocean’.

4.2 Skip-Gram based Continuous Word

Representations

Recently, there has been interest in learning word-

representations, which have been proven to be useful for

many structure prediction tasks [20, 12, 19]. We use con-

tinuous word representations (also known as distributed

representations) to tailor a task-specific embedding. Con-

tinuous word representations consist of neural network-

based low-dimensional real valued vectors of each word.

We use [15]’s skip-gram based approach for inducing con-

tinuous word representations. Skip-gram based repre-

sentations are essentially a single layer neural network,

and are based on inner products between two word vec-

tors. The objective function in a skip-gram is to pre-

dict a word’s context given the word itself. We use the

trained continuous word representations computed over

the Google News dataset(100 billion words), that is pub-

licly available3, in our experiments.

5 Related Work

In recent years, some works have tackled the problem of

generating rich textual descriptions of images. One of

the pioneers is [13], where a CRF model combines the

output of several vision systems to produce input for a

language generation method. This seminal work, how-

ever, only considered a limited set of a few tens of labels,

while we aim at dealing with potentially hundreds of la-

bels simultaneously. In [4], the authors find the similar-

ity between sentences and images in a “meaning” space,

3https://code.google.com/p/word2vec/
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represented by semantic tuples which are very similar to

ours: triplets of object, action and scene. The main differ-

ence with this work is that it uses a ruled based system to

extract semantic tuples from dependency trees where we

train a model that predicts semantic tuples and, most im-

portantly, it uses a standard factorized linear model while

we propose a model that leverages feature representations

of arguments, and can therefore handle significantly larger

state spaces.

Other works focus on the simplified problem of rank-

ing human-generated captions for images. In [7] the au-

thors propose to use Kernel Canonical Correlation Anal-

ysis to project images and their captions into a joint rep-

resentation space, in which images and captions can be

related and ranked to perform illustration and annotation

tasks. However, the system cannot be used to generate

novel image descriptions for new images and, since a ker-

nel is necessary, it has limitations on the number of im-

age/caption pairs that can be used to define the subspace.

In a follow-up work, the authors address improving the

text/image embeddings with abundant weakly-annotated

data from Flickr and similar sites using a stacked repre-

sentation [6]. To cope with the large amounts of data, Nor-

malized Canonical Correlation Analysis is used. Socher

et al. [18] also address the ranking of images given a

sentence and vice-versa using a common subspace, also

known as zero-shot learning. Recursive Neural Networks

are used to learn this common representation. The work

of [14] performs natural text generation from images us-

ing a bank of detectors to find objects and compressing the

text to retrieve ‘generalizable’ small fragments. On top of

this, a tree approach is used to construct sentences given

the observations and fragments. However, the sentences

produced this way can be easily corrupted by wrongly re-

trieved segments.

Recent works use deep networks to address the prob-

lem: [21] propose a pure deep network approach, where

convolutional neural networks are used both to extract im-

age features and recursive deep network to generate the

text. The system is trained to maximize likelihood end-

to-end. [11] use a common multi-modal embedding to

align text and images, and a recurrent neural network is

trained to generate sentences directly from the image pix-

els. Although these methods report good results in terms

of BLEU score agreement with gold captions, they do not

model the underlying visual predicates which is the goal

of this paper.

Using label embeddings and its combination with bi-

linear forms has been previously proposed in the context

of multiclass and multilabel image classification [1, 22],

but to the best of our knowledge there is no previous work

on leveraging output embeddings in the context of struc-

tured prediction. Thus, besides the concrete application

to semantic tuple image generation, this paper presents

a useful modeling tool for handling structured prediction

problems in large state spaces. Our model can be used

whenever we have some means of computing a feature

representation of the outputs.

6 Experiments

As it is standard practice, in order to compute image

representations (λ-vectors in Eq.6), we use the 4,096-

dimensional second to last layer of a Convolutional Neu-

ral Network (CNN). The full network has 5 convolu-

tional layers followed by 3 fully connected layers, and

obtained the best performance in the ILSVRC-2012 chal-

lenge. The network is trained on a subset of ImageNet [2]

to classify 1,000 different classes and we use the publicly

available implementation and pre-trained model provided

by [10]. The features obtained with this procedure have

been shown to generalize well and outperform traditional

hand-crafted features, thus they are already being used in

a wide diversity of tasks [18, 23].

To test our method we used the 100 test images that

were annotated with ground-truth semantic tuples. For

locatives, predicates and actors we consider the 400 most

frequent. To measure performance we first compute the

top 5 tuples for each image. Then, we define the set of

predicted locatives to be the union of all predicted loca-

tives and we do the same for the other argument types.

Finally, we compute the precision for each type, for ex-

ample, for the locatives this is the percentage of predicted

locatives that were present in the gold tuples for the cor-

responding image.

The regularization parameters of each model were set

using the validation set. We compare the performance of

several models:

• Baseline KCCA: This model implements the Kernel

Canonical Correlation Analysis approach of [7]. We

8



<act=girl,pre=sit,loc=pool>3

<act=dog,pre=run,loc=grass>3

<act=man,3pre=ride,3loc=street>3

<act=boy,pre=play,loc=field>3

<act=people,pre=sit,loc=camera>3

<act=dog,pre=run,loc=water>3

<act=dog,3pre=run,3loc=water>3 <act=dog,pre=stand,loc=field>3<act=dog,pre=perform,loc=air>3 <act=woman,pre=sit,loc=pool>3 <act=player,pre=hold,loc=football>3

Incorrect(loca+ve(&(ac+on( Incorrect(actor( Incorrect(actor( Incorrect(actor(&(ac+on( Incorrect(actor(&(loca+ve(

TRAINING(SENTENCES(

A3guy3is3doing3a3skateboard3trick3in3front3of3a3crowd3

A3man3is3skateboarding3in3front3of3a3group3of3people.3

A3skateboarder3performs3a3trick3in3front3of3a3large3crowd3.3333

A3skateboarder3leaping3from3a3pool3in3front3of3a3crowd.333

Skateboarder3does3tricks3in3front3of3crowd3while3photographer33

watches3333

3

3

3

3

3

3

3

<act=people,pre=perform,loc=air>3

<act=people,pre=jump,loc=air>3

<act=people,pre=wear,loc=air>3

<act=people,pre=watch,loc=air>3

<act=people,pre=perform,loc=pool>3

<act=people,pre=sit,loc=air>3

<act=people,pre=gather,loc=air>3

Figure 4: Samples of predicted tuples. Top-left: Examples of visually correct predictions. Bottom: Typical errors on

one or several arguments. Top-right: Sample image and its top predicted tuples. The tuples in blue were not observed

neither in the SP-Dataset nor in the automatically enlarged dataset. Note that all of them are descriptive of what is

occurring in the scene.
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Figure 5: Performance as a function of the size of the intrinsic embedded space for predicate (left) and locative (right)

arguments.

first note that this approach is able to rank a list of

candidate captions but cannot directly generate tu-

ples. To generate tuples for test images we first find

the caption in the training set that has the highest

ranking score for that image and then extract the cor-

responding semantic tuples from that caption. These

are the tuples that we consider as predictions of the

KCCA model.

9



• Baseline Separate Predictors (SPred): We also con-

sider a baseline made of independent predictors for

each argument type. More specifically we train one-

vs-all SVMs (we also tried multi-class SVMs but

they did not improve performance) to independently

predict locatives, predicates and actors. For each

argument type and candidate label we have a score

computed by the corresponding SVM. Given an im-

age we generate the top tuples that maximize the sum

of scores for each argument type.

• Embedded CRF with Indicator Features (IND), this

is a standard factorized log-linear model that does

not use any feature representation for the outputs.

• Embedded CRF with a model that uses the skip-gram

continuous word representation of outputs (SCWR).

• Embedded CRF with a model that uses that semantic

equivalence representation of outputs (SER).

• A combined model that makes predictions using the

best feature representation for each argument type

(COMBO).

Table 1 reports the results for the baselines and of the

different CRF schemes. The first observation is that the

best performing output feature representation is different

for each argument type. For the locatives the best repre-

sentation is SER, for the predicates is the SCWR and for

the actors using an output feature representation causes

a drop in performance. The largest improvement from

using an output feature representation that we obtain is

on the predicate arguments, where we improve almost by

10% over the indicator representation by using the skip-

gram representation. Overall, the model that uses the best

representation performs better than the indicator baseline.

Finally, Figure 5 shows performance as a function of

the dimensionality of the learnt embedding, i.e. rank of

parameter matrices, as we can see the learnt models are

efficient in the sense that they can work well with low-

dimensional projections of the features.

7 Conclusion

In this paper we have presented a model for exploiting

input and output embeddings in the context of structured

Spred KCCA IND SCWR SER COMBO

LOC 15 23 32 28 33

PRED 11 20 24 33 25

ACT 30 25 52 51 50

MEAN 18.6 22.6 36 37.3 36 39.3

Table 1: Precision of baseline and CRFs with different

output embeddings.

prediction. We have applied this framework to the prob-

lem of predicting compositional semantic descriptions of

images. Our results show the advantages of using output

embeddings for handling large state spaces. We have also

seen that regularizing with the nuclear norm we can obtain

computationally efficient low-rank models with compara-

ble performance.
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