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Abstract—In this paper, we present a comprehensive

comparison of different structures for broadband

beamforming. We focus on both the tapped delay line

(TDL) and the least squares (LS), beamspace approaches.

Through simulations we confirm the superiority of

the beamspace method (i.e., less complex and better

frequency invariance). However, its anti-jamming ability

is reduced due to non-orthogonal beams. We show how

to mitigate this via a reduced rank approximation of the

autocorrelation matrix.
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I. INTRODUCTION

Adaptive beamforming is one of the major

implementations of array signal processing and

has wide applications in various areas such as radar,

sonar, communications and medical diagnosis, to name

just a few [1]. While most research in the past has

mainly focused on narrowband signals, in recent past

broadband signals have received more attention. This

can be mainly attributed to superior beamforming

performance. For the reason that each broadband signal

consists of many different frequency components,

the beamforming weights should be different for

different frequencies, which unavoidably increases the

computational complexity [2]. Nevertheless, broadband

beamspace adaptive beamforming is an effective method

to alleviate this problem. In this approach, the array

elements are initialized with fixed weights to form

several beams pointing in different directions; thereafter

the output of each beam is followed by a single variable

weight to adjust the output adaptively [3]. Since only

one adaptive weight is required in each beam, it is

computationally more efficient.

The key problem in broadband beamspace

beamforming is the design of the transfer matrix,

which transforms the received signal from the element

space into the beam space by forming several beams.

All these beams should meet two conditions: one is to

be frequency invariant and the other is to be linearly

independent [4]. The frequency invariant beamformer

(FIB), which has been extensively studied, can form

beams pointing to the signal of interest with a constant

beamwidth. In recent years two main approaches to FIB

design have emerged. (i) The first method is the Inverse

Discrete Fourier Transform (IDFT) based method, and

in [5] two-dimensional (2-D) FIR fan filters are used

to construct a multibeam forming network in a tapped

delay line (TDL) structure. This idea is then extended

to 3-D structures based on the multi-dimensional IDFT

[6]. Subsequently, a broadband beamspace adaptive

beamformer based on this technique is proposed in

[4]. (ii) The second approach is the Spatial Response

Variation (SRV) based method. In [7] the SRV approach

is defined to measure the fluctuation of the array spatial

response within the desired frequency band. Recently,

a least squares (LS) cost function is first combined

with SRV constraints to control the frequency invariant

property in the frequency band of interest [8]. This

method can provide a closed-form solution and reduces

the computational complexity. Moreover, it can easily

be applied to different array structures. Therefore, we

adopt the LS approach to design linearly independent

frequency invariant beams. But it is worth noting that

there is a trade-off between the frequency invariance

and the output performance [4]. When the beams are

not exactly orthogonal, the output will deteriorate.

However, using eigendecomposition of the correlation

matrix is an effective way to alleviate this problem [3].

So this paper is organized as follows. An introduction

to the traditional TDL structure for broadband

beamforming and a review about the LS approach

to the FIB design are first provided in Section 2.

Afterwards, beamspace adaptive beamforming and the

eigendecomposition technique are introduced in Section

3. Then, a design example is presented in Section 4 to

verify the proposed method and conclusions are drawn

in Section 5.



II. THE LEAST SQUARES APPROACH TO BROADBAND

FREQUENCY INVARIANT BEAMFORMING

A. Broadband beamforming with a TDL structure

A broadband beamformer with a TDL structure is

shown in Fig. 1. Here M is the number of elements

of the uniform linear array and N is the number of

taps associated with each sensor. Suppose the direction

of arrival (DOA) of the received signal is θ, the inter-

element spacing is d, and the sampling period of the

TDL is Ts, then the output can be expressed as:

y[n] =
M−1∑

m=0

N−1∑

k=0

w∗

m,kxm,k[n] (1)

where ∗ denotes the conjugate operation and xm,k[n]
is the output signal of the m-th antenna and the k-th

tap. The angle and frequency dependent response can be

written as:

P (ω, θ) =

M−1∑

m=0

N−1∑

k=0

w∗

m,ke
−jω(τm+kTs) (2)

where ω is the angular frequency and τm = m(d/c)sinθ
(m = 1, 2, ...,M − 1) is the delay between the m-

th sensor and the zero-phase reference point. It can be

expressed in vector form as:

P (ω, θ) = wHs(ω, θ) (3)

where “H” denotes the conjugate transpose operation,

w is the coefficient vector, and s(ω, θ) is the steering

vector, where:

w = [w0,0, ..., wM−1,0, ..., w0,N−1, ..., wM−1,N−1]
T

s(ω, θ) = sTs
(ω)⊗ sτm(ω, θ)

(4)

and ⊗ denotes the Kronecker product with

sTs
(ω) = [1, e−jωTs , ..., e−jω(N−1)Ts ]T

sτm(ω, θ) = [e−jωτ0 , e−jωτ1 , ..., e−jωτM−1 ]T .
(5)

Fig. 1: Broadband beamforming with a TDL structure.

Then the Frost beamformer [9] to calculate the

weights can be formulated as follows:

min
w

wHRxxw subject to CHw = f (6)

where Rxx = E[x[n]xH [n]] is the covariance

matrix of the received array signal x[n] =
[x0[n], x1[n], ..., xM−1[n]]

T , E[.] represents the

expectation, C is the constraint matrix, and f is the

response vector with one entry being unity and the rest

being zero.

The well-known solution to (6) can be obtained by the

standard Lagrange multiplier method, and is given by:

wopt = R−1
xxC(CHR−1

xxC)−1f . (7)

B. The LS approach to FIB design

In order to design an FIB, the response variation (RV)

is first introduced. This is a parameter to control the

frequency invariant property, and is given by [8]:

RV =
∑

fn∈Ωi

∑

θk∈ΘFI

|wHs(fn, θk)−wHs(fr, θk)|
2 (8)

where Ωi and ΘFI represent respectively the frequency

range of interest and the direction range in which fre-

quency invariance is considered, and fr denotes the

fixed reference frequency. Then we sample the frequency

and angle ranges uniformly to get the sample points

(fn, θk), and the frequency invariance can be realized

by minimizing RV over w. Note that if we minimize

RV in the whole angle range, we only need to minimize

the spectrum energy of the beamformer at the reference

frequency fr over the sidelobe region Θs, while max-

imizing the response at the reference frequency in the

look direction θr (θr ∈ Θm), where Θm represents the

mainlobe region. This can be written as:

min
w

∑

θk∈Θs

|wHs(fr, θk)|
2 subject to wHs(fr, θr) = 1.

(9)

Then we can add the RV element to the LS cost function

with a trade-off coefficient β and combine (8) and (9)

together to get [8]:

min
w

I−1∑

i=0

K−1∑

k=0

|wHs(fi, θk)−wHs(fr, θk)|
2

+ β
∑

θk∈Θs

|wHs(fr, θk)|
2

subject to wHs(fr, θr) = 1

(10)

where I and K represent the number of samples over

the frequency and the angle ranges in which frequency

invariance is considered. Then we can rewrite (10) as:

min
w

wHQw subject to CHw = f (11)



with:

Q =

I−1∑

i=0

K−1∑

k=0

(s(fi, θk)− s(fr, θk))(s(fi, θk)− s(fr, θr))
H

+ β
∑

θk∈Θs

s(fr, θk)s(fr, θk)
H .

(12)

The solution (similar to (7)) is:

wopt = Q−1C(CHQ−1C)−1f (13)

where C = s(fr, θr) and f = 1.

III. BROADBAND BEAMSPACE ADAPTIVE

BEAMFORMING

A. Broadband beamspace processor

In this section, we extend the technique presented in

previous section to form P fixed independent frequency

invariant beams to cover the range of azimuthal angles of

interest. One of these beams is the main beam pointing in

the direction of the signal of interest and the remaining

P − 1 beams are the auxiliary beams pointing in the

remaining directions. The appropriate structure is shown

in Fig. 2 (with x[n] as defined for Fig. 1), where FIB0 is

the main beam followed by an arbitrarily fixed weight g0,

and the other FIBp (p = 1, ..., P − 1) are the auxiliary

beams which are connected to variable weights (gp). The

output is given by:

y[n] = g∗0b0[n] + gHb[n] (14)

where

g = [g1, g2, ..., gP−1]
T

b[n] = [b1[n], b2[n], ..., bP−1[n]]
T .

(15)

Then the output power can be written as:

Pout = E[|y[n]|2] = E[|g∗0b0[n] + gHb[n]|2]. (16)

Fig. 2: Broadband beamspace processor structure [4].

The weights can be calculated by minimizing Pout while

maintaining the constraint main beam weight, which can

be expressed as:

min
g

E[|g∗0b0[n]+gHb[n]|2] subject to g0 = constant.

(17)

This gives:

gopt = −R−1
bb r0g0 (18)

where Rbb = E[b[n]bH[n]] and r0 = E[b[n]b∗0[n]].
Finally, note that each FIB block in Fig. 2 is designed

using the LS approach in section II.B.

B. Eigendecomposition

The broadband beamspace structure can show good

results as regards both frequency invariance and

the anti-jamming performance when the beams are

completely orthogonal as shown in Fig. 3. However, the

incomplete orthogonality of beams in Fig. 4 can lead

to the deterioration of the output. In order to alleviate

this problem, the eigendecomposition of the correlation

matrix Rbb is employed.

Suppose that the number of interferers is J , then the

first J largest eigenvalues of Rbb represent the effect

of the interferers, and the remaining smaller P − 1− J
eigenvalues approximately represent the effects of leak-

age and noise. So the correlation matrix can be rewritten

as:

Rbb =

P−1∑

j=1

λjzjz
H
j (19)

where zj is the eigenvector corresponding to λj . And

the inverse matrix is given by:

R−1
bb =

P−1∑

j=1

1

λj

zjz
H
j . (20)
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Fig. 3: Nine completely orthogonal beams in Fig. 2 for

P = 9.
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Fig. 4: Nine beams, not all orthogonal in Fig. 2 for P =
9.

By examining the magnitude of the eigenvalues {λj}
P
j=1

we can estimate J and thus divide the signals received

by the auxiliary beams into interference space and noise

plus signal leakage space. Then using just the largest J
eigenvalues we approximate R−1

bb by the reduced rank

version:

R̂−1
bb =

J∑

j=1

1

λj

zjz
H
j (J < P ). (21)

And so the new weights become:

ĝopt = −R̂−1
bb r0g0. (22)

IV. DESIGN EXAMPLE

The simulation is based on a uniform linear array

with M = 12 sensors, N = 5 taps, and the inter-

element spacing d = λ/2 where λ is the wavelength

corresponding to the highest frequency component.

Suppose there is one desired linear frequency modulated

(LFM) signal arriving from 30◦ with a bandwidth of

10MHz (40MHz to 50MHz), a signal-to-noise-ratio

(SNR) of 0dB. The interference has a bandwidth of

10MHz (40MHz to 50MHz), a SNR of 30dB that comes

from the direction of −40◦. The sampling frequency

is twice the highest frequency and the number of

snapshots is 512. Fig. 5 shows how the 2-D beam

patterns vary with frequency when we use a traditional

TDL structure. We can see that although it has a

good anti-jamming property, the beam patterns are

different at different frequencies. Additionally, when the

number of sensors (M ) and the number of delays (N )

increase, the computational complexity increases rapidly.

But if we adopt the frequency invariant beamspace

method, then the dimension of the correlation matrix

(Rxx) can be reduced from MN ×MN to P × P (for

Rbb). Moreover, since the RV constraint is employed,

this method can also achieve a good frequency invariant

property. Fig. 6 shows the beam patterns at different

frequencies when the LS based frequency invariant

beamspace method is adopted. From this result, we

can see that it has good frequency invariance, but the

anti-jamming performance has deteriorated.

However if we employ eigendecomposition to the

beamspace method, then the new result is shown in

Fig. 7. Here we can see that now it not only achieves

good frequency invariance but also maintains the

anti-jamming property.

V. CONCLUSION

In this paper, we gave an overview of the general

problem of broadband beamforming and focused on
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Fig. 5: 2-D beam patterns at different frequencies using

the TDL structure.
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Fig. 6: 2-D beam patterns at different frequencies using

the frequency invariant beamspace structure.
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Fig. 7: 2-D beam patterns at different frequencies using

the frequency invariant beamspace structure with eigen-

decomposition.

published results for both the TDL structure and the

beamspace method. We looked at three possibilities:

(i) TDL design; (ii) LS beamspace design; (iii) LS

beamspace design with reduced rank autocorrelation

matrix.

Our simulations showed that while (ii) has reduced

complexity and better frequency invariance than (i),

its anti-jamming performance is inferior. This was

remedied in (iii) by using a reduced rank approximation

of Rbb to mitigate the effect of the non-orthogonal

beams (see Fig. 4).
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