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ABSTRACT

Plant population responses are key to understanding the effects of threats
such as climate change and invasions. However, we lack demographic data for
most species, and the data we have are often geographically aggregated. We
determined to what extent existing data can be extrapolated to predict pop-
ulation performance across larger sets of species and spatial areas. We used
550 matrix models, across 210 species, sourced from the COMPADRE Plant
Matrix Database, to model how climate, geographic proximity and phylogeny
predicted population performance. Models including only geographic prox-
imity and phylogeny explained 5-40% of the variation in four key metrics
of population performance. However, there was poor extrapolation between
species and extrapolation was limited to geographic scales smaller than those
at which landscape scale threats typically occur. Thus, demographic infor-
mation should only be extrapolated with caution. Capturing demography
at scales relevant to landscape level threats will require more geographically
extensive sampling.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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INTRODUCTION

Global threats to biodiversity such as climate change, invasive species and
land conversion for agriculture affect multiple species at regional and global
scales (McGeoch et al., 2010; Hartmann et al., 2013). Invasion and extinc-
tion are fundamentally demographic processes, regulated by the vital rates of
the population (e.g. survival, growth, reproduction). Consequently, we are
pressed to understand and predict how demography responds to environmen-
tal conditions across multiple taxa worldwide (Sutherland et al., 2013). His-
torically, developing such a predictive framework has proven difficult. Even
describing demographic patterns across species and regions is challenging
due to the lack of both detailed demographic data for multiple species at
large geographic scales, and high resolution comparative approaches (but see
Blomberg & Garland 2002, Buckley et al. 2010, Salguero-Gómez et al. 2016).
Another challenge is that we often do not understand the underlying factors
that drive population responses to environmental gradients (Ehrlén & Mor-
ris, 2015). Further, determining the response of every population of every
species is impractical. Consequently, we frequently generalize important as-
pects of population ecology, such as life history strategy (Silvertown et al.,
1996; Salguero-Gómez et al., 2016) and invasiveness (Ramula et al., 2008),
from a handful of well studied species and populations to wider areas and
other species.

Even though demographic studies have been carried out on thousands of
species, most of those species have only been studied in a few locations. It
is common to then assume that those studies adequately capture the demo-
graphic performance of a species across an entire region (Burns et al., 2010;
Crone et al., 2011; Salguero-Gómez et al., 2016). However, it is currently un-
known how close, both geographically and phylogenetically, populations or
species must be before demographic performance can be extrapolated among
them. Likewise, it remains unknown which aspects of demographic perfor-
mance (e.g. population growth rate, recovery from perturbations) are most
transferable across populations.

Matrix population models (Caswell, 2001) provide an ideal means to test how
transferable population performance metrics are across a wide suite of re-
gions, life histories and taxa within the plant kingdom. To date, matrix pop-
ulation models have been developed for over 1,300 plant species (Salguero-

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

3



Distance and ancestry predict demography 4

Gómez et al., 2015). Matrix population models are typically constructed from
field measurements and summarise life histories ranging from simple to com-
plex in a standard format (Caswell, 2001). This allows the direct comparison
of ecologically and biologically meaningful demographic metrics across pop-
ulations, species and years (Silvertown et al., 1993; Caswell, 2001; Salguero-
Gómez & de Kroon, 2010). These metrics include population growth rate
(Tuljapurkar & Orzack, 1980; Caswell, 2001), the underlying impacts of de-
mographic processes (i.e. vital rates of survival, growth and reproduction) on
population performance (de Kroon et al., 1986; Caswell, 2001), or the ability
of populations to recover from perturbations (Stott et al., 2010).

We focused on the generalisability of four demographic metrics across species
and populations: the asymptotic population growth rate (λ), its variation
over time, elasticities of λ to demographic proccesses, and damping ratio
(ρ). Previous comparative studies have found that populations of the same
species tend to have similar values for λ (Doak & Morris, 2010; Villellas et al.,
2015), although other work has shown significant differences among popula-
tions of the same species (Silvertown et al., 1996). Comparative studies have
found that phylogenetic relationships above the species level do not predict
λ (Buckley et al., 2010; Burns et al., 2010). Environment has been found to
explain some variation in λ (Buckley et al., 2010). However, the effect of any
one environmental variable on λ may be reduced as multiple environmental
factors can affect λ. In addition, stable populations can be maintained across
environmental gradients by increasing some vital rates to offset decreases in
others (Doak & Morris, 2010; Villellas et al., 2015). Temporal variation of
population growth rates is expected to increase with increasing environmen-
tal constraints due to limitations on vital rates (Gerst et al., 2011). Less
evidence exists on how geographic proximity and phylogeny predict elastici-
ties and damping ratio. However, plant growth form affects which vital rates
are most important for population growth (Enright et al., 1995; Franco &
Silvertown, 2004; Salguero-Gómez et al., 2016). Further, we expect that in
general species which are closely related are more likely to have the same
growth form, although there are exceptions (Mack, 2003; Salguero-Gómez
et al., 2016). Thus, we expect that the elasticity structure of a population
will be predicted by its close relatives. Higher damping ratios (index of the
rate that populations return to an equilibrium after disturbance) are expected
to be advantageous in more frequently disturbed environments (Stott et al.,
2011). Supporting this conjecture, sensitivities of λ to vital rates (closely
related to elasticities) have been shown to have a high phylogenetic signal
(Burns et al., 2010). Because disturbance frequency can be spatially corre-

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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lated (Fox et al., 2008; Premoli & Kitzberger, 2005), we expect the damping
ratio to be predicted by geographically near populations.

Here we examine how transferable these four demographic metrics are across
space and phylogeny. We also estimate how far, on average, these demo-
graphic measures can be extrapolated. Using the largest dataset of geo-
located demographic models currently available, we show that while demo-
graphic metrics are predictable to some extent using neighbouring popula-
tions and related species, caution must be used in extrapolating demographic
data.

MATERIALS AND METHODS

We tested the cross-population, cross-species generalisability of four different
aspects of population performance using matrix population models (matrix
models, hereafter) from the COMPADRE Plant Matrix Database (COM-
PADRE henceforth; Salguero-Gómez et al. 2015). This version of COM-
PADRE (obtained 24th October 2014) is included in Appendix 1, Supporting
Information. The current version of COMPADRE Plant Matrix database is
available at http://www.compadre-db.org/Data/Compadre.

We used a set of selection criteria to choose matrix models from the 5,672
obtained from COMPADRE to allow fair comparisons and to ensure the
same set of predictor variables were available for each matrix model. Briefly,
matrix models had to (i) be parameterised with at least three years of data
to enable assessment of temporal variability, (ii) have GPS coordinates in
COMPADRE reported to at least arc minute precision so that the location
of each population could be matched up with climatic variables, (iii) have
a dimension of at least 3 × 3 to appropriately account for individual het-
erogeneity (Salguero-Gómez et al., 2016), (iv) be based on field data that
had not been purposefully manipulated so as to examine demographic per-
formance under unmanipulated conditions (to reduce variability unrelated
to natural environmental gradients), and (v) be from ’herbaceous perennial’
’tree’, ’palm’, ’shrub’ and ’succulent’ species. We did not include annuals as
their matrix models are based on a shorter temporal reference (i.e. months,
seasons) than perennials, where matrix models are built on annual transi-

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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tions. Further details on matrix model selection are described in Appendix
2. These criteria resulted in 550 matrix models for our analysis, covering 210
plant species from 156 genera and 66 families (Table S1, Appendix 2), with
populations from tropical regions to the high latitudes (Figure 1a).
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Figure 1. Locations of the 550 populations used in the analysis plotted on, a) world
map coloured with mean annual temperature (◦C) and temperature seasonality (standard
deviation over year). Redder areas are warm and non-seasonal (i.e. tropics), blue areas
are cold and seasonal, purple areas are warm and seasonal (continental temperate), and
dark areas are cold and non-seasonal. b) Populations plotted on to this temperature
environmental space. c) Frequency distribution of maximum between-population distance
within each of the 112 species (out of 210 total), that were represented by more than one
population in our dataset. Bins are 25km wide in larger plot and 2km wide in the inset.
d) Phylogenetic distance (in millions of years since last common ancestor) between each
of the 210 species in the dataset and the closest relative to that species in the dataset.
Bins are 15 million years wide.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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The demographic data are confounded in three different ways. First, some
matrix models were built with data from almost the same geographic lo-
cation and those populations are likely to experience similar environmental
conditions (Figure 1c). Secondly, some species have closer phylogenetic re-
lationships to others, thus, any demographic signatures that may be due to
phylogenetic constraints must be separated from those that are due to envi-
ronmental filtering (Blomberg & Garland, 2002). Further, populations of the
same species tended to be at similar geographic locations. Of the 112 species
in our dataset that were represented by more than one population, over half
(70) had a maximum distance between populations ≤ 2 km, and all but five
had a maximum distance between populations ≤ 100 km (Figure 1c). Finally,
most (92% of species) of the matrix models for a given species come from
a single study. Thus, geographic location, phylogeny and methodological
differences between studies are all confounded to some extent, necessitating
careful modelling of the data and cautious interpretation of results.

Metrics of demographic performance

We test the transferability of four fundamental metrics of short- and long-
term population performance: asymptotic population growth rate, λ, its
coefficient of variation through time, CV(λ), the damping ratio, ρ, and a
composite axis of matrix element elasticities, the Stasis-Progression Gradient
(hereafter SPG).

The population growth rate, λ, is an index of how a population is projected
to grow (λ > 1) or decline (λ < 1) in the long-term, if the a/biotic conditions
under which the population was studied do not change (Caswell, 2001). λ is
one of the most widely used demographic metrics when assessing population
performance and extinction risk (Tuljapurkar & Orzack, 1980; Caswell, 2001;
Ramula et al., 2008; Buckley et al., 2010; Crone et al., 2011). The coefficient
of variation in λ indicates how much population performance varies interan-
nually. Greater CV(λ) is expected to increase local extinction risk (Lande &
Orzack, 1988; Fieberg & Ellner, 2001). Note that CV(λ) does not, in gen-
eral, inform on the realized temporal variation in population growth rate,
because populations are unlikely to be at their stable stage distribution over
the entire measurement period (Williams et al., 2011).

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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The damping ratio, ρ, is an index of the rate that a population converges to
its stable age or stage distribution after it has been perturbed (Stott et al.,
2011), and it has important implications for conservation (Koons et al., 2005;
Stott et al., 2011). Values of λ and ρ for each matrix model were calculated
with the ’popbio’ R package (Stubben & Milligan, 2007).

Matrix element elasticities of λ are the proportional changes in λ caused by
small proportional changes in corresponding matrix elements (Caswell, 2001).
Elasticities indicate the relative importance of the demographic transitions of
stasis, progression and retrogression, as well as the per capita contributions
from sexual reproduction, to λ (de Kroon et al., 1986). After the population
growth rate, elasticities are the most commonly used demographic metric in
plant population studies (Franco & Silvertown, 2004; Ramula et al., 2008).
This is especially true in conservation and invasion biology where stages and
demographic processes with the highest elasticities are typically targeted for
conservation across wider areas and similar species (Silvertown et al., 1996;
Shea & Kelly, 1998; Ramula et al., 2008).

In order to compare matrix element elasticities of λ across populations and
species, we classified each matrix element as belonging to the process of
reproduction (both asexual and sexual), progression, stasis or retrogression
(Silvertown et al., 1993), producing a vector of four elasticities. Because these
four elasticities must add up to one (de Kroon et al., 1986), a higher value for
one necessitates a lower value for the others. To overcome this limitation, we
used Principal Components Analysis (PCA) to reduce the four elasticities to
a single axis, PC1, which accounted for 59% of the variance. We term this
axis the Stasis-Progression Gradient, SPG. At high SPG scores elasticities
of λ to stasis transitions are large (loading 0.65), and elasticities of λ to
reproduction and progression transitions are small (loadings -0.48 and -0.56
respectively). The opposite applies to populations with low SPG scores (see
Appendix 3, Table S1 for loadings and variance explained by each axis).

Values of λn, ρn and SPGn are derived from Mn, the nth mean matrix model
in our dataset, where each element is the arithmetic mean of the transition
rate over the study period. CV(λ)n was calculated from several individual
matrix models (between 3 and 51), each built using data for a single annual
transition. Of the 550 matrix models in our dataset, 306 reported matrix
models for each year separately allowing us to calculate coefficient of variation
in λ across years.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Predictors of demographic performance

We explained variation in these four demographic metrics of population per-
formance using climate, demographic performance at neighbouring locations,
and performance in related species, along with matrix model and species
level attributes. The location of each matrix model is given by GPS coor-
dinates recorded in COMPADRE, which are sourced from publications or
through personal communication with the authors (R. Salguero-Gómez, un-
publ. data). GPS locations were used to calculate the distance between data
collection sites and to extract 16 climatic variables from the BioClim database
(bio_1, bio_3 - bio_9, bio_12 - bio_19; www.worldclim.org/bioclim) along
with an Aridity index from CGIAR-CSI (http://www.csi.cgiar.org). These
variables cover different aspects of the mean and seasonal variability of tem-
perature and precipitation, for more details see Table S3, Appendix 4. Cli-
mate predictors were extracted from raster files with 30 arc-second resolution.
For each location we averaged each climatic variable over a 2km buffer zone
to reduce the effect of uncertainty in study location.

Because the eight temperature variables (Table S3, Appendix 4) were highly
correlated with each other we created one composite temperature variable
using a Principal Component Analysis (PCA) with the prcomp function of
the ’stats’ R library (R Core Team, 2013). The first PC axis, which we refer
to as PC_temp, explains 71% of the variance in temperature variables and
represents a gradient from cooler seasonably variable temperate climates to
hot, non-seasonal tropical climates (see Appendix 3 for more details). The
Aridity Index (AI) is positively correlated with all the other precipitation
variables in BioClim (Appendix 4, Table S4), except for precipitation sea-
sonality (bio_15; Figure S1d, Appendix 3). Thus, we selected Aridity Index
and bio_15 to describe precipitation at each location. We log-transformed
AI because we expect small absolute differences in water availability have
larger effects on population vital rates when water is a limiting factor (i.e.
arid areas) (Levine et al., 2008).

We measured phylogenetic relatedness, ti,n, as millions of years since the last
common ancestor of species described by matrix models Mi and Mn. We used
the phylogeny supplied with COMPADRE (Appendix S5; Salguero-Gómez
et al. 2015). Phylogenetic relatedness was calculated with the ’cophenetic’
function from the ’stats’ R package (R Core Team, 2013). We measured the

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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geographic distance, di,n, as the shortest great arc distance between the loca-
tions of matrix models Mi and Mn, using the ’Ellipsoidal.Distance’ function
in the ’GEOmap’ R package (Lees, 2015).

To test if life history traits or matrix model attributes were correlated with
demographic performance we used matrix dimension, species’ growth form
and mean life expectancy as predictors. Growth form and mean life ex-
pectancy have life history trade-off implications that may be reflected in the
demographic metrics we test (Silvertown et al., 1993; Enright et al., 1995;
Salguero-Gómez & Plotkin, 2010; Stott et al., 2011). Matrix dimension has
also been shown to affect the calculation of demographic metrics like ρ and
elasticities (Enright et al., 1995; Salguero-Gómez & Plotkin, 2010; Stott et al.,
2010). The ’GrowthType’ variable retrieved from COMPADRE was used to
classify species as either herbaceous or non-herbaceous (trees, palms, shrubs,
succulents), as non-herbaceous growth forms apart from trees did not have
a large enough sample size to fit them individually. At the population level,
the fundamental matrix method was used to derive mean life expectancy
conditional on having germinated, from each mean matrix (Caswell, 2001,
pp. 120). We used the matrix dimension extracted from COMPADRE. See
Table S5, Appendix 4 for the list of predictors.

The predictor and response variables in the statistical models occur at three
hierarchical levels, as shown in Box 1. Briefly, phylogeny, matrix dimen-
sion and growth type are defined at the species level; the four demographic
metrics, geographic location, mean life expectancy and the environmental
variables are defined at the matrix model level; finally variation in popula-
tion growth rate over time is based on population matrix models constructed
with data from annual transitions.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Species
Predictors defined at the species level
● Phylogeny is defined at the species level, and thus 

the phylogenetic predictor term, ✁, is defined at the 
species level.

● Growth type

Matrix model
Each species is represented by one or 
more matrix models 

Predictors defined at 
the matrix model
level
● Geographic location is 

defined for each matrix
model, and thus the 
geographic predictor term, 
✂, is defined at the matrix
model level.

● Mean life expectancy
● Matrix dimension
● Aridity index
● Precip. seasonality
● Temperature

Responses defined 
at the matrix model
level
● Pop. growth rate, ✄
● Coefficient of variation in 
✄ across time, CV(✄)

● Damping ratio, ☎
● Stasis progression 

gradient, SPG 

Transitions
Each matrix model is based on transition 
rates from at least 3 years (two observed 
transitions)

The response variable CV(✄) is based on population 
growth rates calculated from each annual transition 
matrix 

Box 1. We use statistical models to explain 

variation in four demographic metrics 

(response variables) using environmental 

and species level predictors, along with 

neighboring populations and related 

species. Response and predictor variables 

in our statistical models are defined at three 

hierarchical levels:

Statistical analyses

We predicted transformed demographic metrics (ln(λn), ln(CV(λ)n + 1),
ln(ρn), SPGn) using a spatially and phylogenetically lagged, linear model
(Ward & Gleditsch, 2008). We transformed the demographic metrics to im-
prove their error distributions and model fitting. Parameters were estimated
in a Bayesian framework using MCMC sampler JAGS 3.4.0-1. Models were
fit in R (R Core Team, 2013) using the ’R2jags’ interface. The specific de-
tails of the MCMC sampling changes slightly from model to model but in
general we use three chains of 100,000 samples each, thinned to take every
100th sample, with a burn in of 50,000 samples (Appendix 1).

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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We define our model as

Yn ∼ N(µn, σa) (1a)

µn = β0 + βXn + θpΦn + θgΨn (1b)

where Yn is the predicted value for one of the transformed demographic met-
rics for matrix model n, drawn from a normal distribution with a standard
deviation of σa ∼ Gamma(0.0001, 0.0001) and a mean of µn. The parameter
β0 is the intercept and β is a column vector of slopes. Each slope corresponds
to an effect size of one of the aforementioned predictors or their interactions.

β =











β1
β2
...
βK











with K being the total number of climatic and species-level predictors in the
model. There are six main effect predictors (matrix dimension, growth type,
mean life expectancy, PC_temp, Aridity Index, precipitation seasonality),
including two-way interactions between the main effects resulted in K = 18.
Each slope in β, and the intercept β0, were drawn from wide prior distribu-
tions, βk ∼ N(0, 0.0001), where N(�) is a normal distribution. X is a K × J

matrix of K species-level and climatic predictors, and their interactions, for
all J matrix models.

To capture the effect of phylogeny and geographic location, we included a
phylogenetic predictor term θpΦn, and a geographic predictor term θgΨn,
respectively (Eq. 2). The terms θpΦn and θgΨn predict the value of Yn as a
weighted average of matrix model n’s relatives or neighbours respectively.

Φn =

∑

∀i 6=n

Yiexp[−φti,n]

∑

∀i 6=n

exp[−φti,n]
(2a)

Ψn =

∑

∀i 6=n

Yiexp[−ψdi,n]

∑

∀i 6=n

exp[−ψdi,n]
(2b)

where φ ∼ Unif(0, 1) (see Appendix 1 for minor modifications to these lim-
its) modulates how phylogenetically close vs. distant relatives contribute to

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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predicting Yn. Similarly ψ ∼ Unif(0, 1) controls how geographically near vs.
distant neighbours contribute to predicting Yn. When φ or ψ are 0, all popu-
lations contribute equally to the prediction of Yn regardless of distance, either
phylogenetic or geographic; as φ or ψ increase, more closely related species, or
geographically closer locations, have a greater contribution to the prediction
of Yn. The term ti,n is the phylogenetic distance between species represented
by matrix models i and n. di,n is the geographic distance between the lo-
cations of matrix models i and n. θp ∼ N(0, 0.0001) and θg ∼ N(0, 0.0001)
are coefficients that scale the phylogenetic and geographic predictions. Any
explanatory power from the geographic and phylogenetic predictor terms is
a result of spatial auto-correlation in both measured and unmeasured envi-
ronmental variables and phylogenetically conserved functional traits, rather
than distance per se. If demographic attributes are random with respect to
spatially auto-correlated environmental factors, or are not phylogenetically
constrained, the phylogenetic and geographic and predictor terms (Φ, and
Ψ respectively) will explain none of the variance in the four demographic
metrics tested.

Study, species and location are all to some extent confounded, due to many
populations of the same species being from the same study and similar ge-
ographic locations. To test the effect this had on the performance of our
models, we also tested models where the spatial and phylogenetic predic-
tor terms were based on a reduced, but less confounded set of neighbours
and relatives. We ran models where Yi in the geographic and phylogenetic
prediction terms (Eq. 2) were only based on matrix models from different
locations (that is, where di,n 6= 0) or which were based on a different species
(i.e. where ti,n 6= 0). We call these ’no_self’ models. In addition, we tested
five combinations of predictors so that the explanatory power of simplified
models could be tested. This led to eight different modifications of the gen-
eral model (Eq. 1), detailed in Table 1. These model versions were used to
predict the four demographic metrics outlined above, resulting in a total of
32 separate models.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Table 1. Statistical models used to predict the four demographic metrics, popula-
tion growth rate, its temporal varaition, damping ratio and the composite elasticites,
Statis Progression Gradient (SPG). Because the environmental and species level predic-
tors (matrix dimension, growth type, mean life expectancy, first principal component of
the temperature variables (PC_temp), Aridity Index, precipitation seasonality) are spa-
tially autocorrelated the ’main_int’ and ’main’ models were only fit using geographic and
phylogenetic predictor terms based on all 550 matrix models in our dataset.

model name environmental and

species level pre-

dictors

phylogenetic

predictor

geographic

predictor

main_int All six main effects

and 2-way inter-

actions, giving 18

terms

Based on all populations

main Only the six main ef-

fects

Based on all populations

phygeo-all_pops Not included Based on all populations

phygeo-no_self Not included Based only on popula-

tions that were not

of the same species

Based only on popula-

tions that were not

in the same location

phy-all_pops Not included Based on all popula-

tions

Not included

phy-no_self Not included Based only on popula-

tions that were not

of the same species

Not included

geo-all_pops Not included Not included Based on all popula-

tions

geo-no_self Not included Not included Based only on popula-

tions that were not

in the same location

Since geographic location was used to define our climatic predictors, those
predictors were geographically and phylogenetically correlated. Thus, we
carefully examined the simplification of the general model in Eq. 1. Models
that contained environmental and species level predictors (i.e. ’main_int’
and ’main’, see Table 1 for model names) also had to include the geographic
and phylogenetic predictor terms based on all populations (as opposed to
the ’no_self’ geographic and phylogenetic predictor term). When running
’no_self’ models containing environmental and species-level predictors we
could not know if any significantly non-zero coefficients in β represented a
real effect, or if that predictor was simply acting as a poor proxy for geo-
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graphic location. This raises the general point that these are phenomenolog-
ical models which find patterns in the data, patterns which are likely to be
caused by multiple related processes acting simultaneously.

RESULTS

None of the environmental, species- or matrix model level variables had a
significant effect on the demographic metrics tested (λ, CV(λ), ρ, and SPG)
over and above the effect of the geographic and phylogenetic predictor terms.
All of the credible intervals on the coefficients in β, Eq. 1 encompass 0. This
is further illustrated by Figure 2, where the full model containing all the
predictors did not explain much more variance in any of the demographic
metrics than the model that only contained the prediction terms based on
geographic and phylogenetic distance (phygeo-allpops). For this reason we
do not report results for the ’main’ model as it produced the same results
as the ’main_int’ and ’phygeo-all_pops’ models. The ’phygeo’ also had the
lowest (or equal lowest) DIC values (Figure 2), suggesting that having both
geographic and phylogenetic predictor terms was a good trade-off between
parsimony and explanatory power. Overall, models including only predictor
terms based on phylogenetic or geographic distance had R2 values between
20% and 65% depending of the demographic metric (Figure 2). This ex-
planatory power suggests that some environmental and species level factors
had important effects on population performance. See diagnostic plots in Ap-
pendix 1 for full breakdown of credible intervals and model performance (Ap-
pendix_1_analysis_pipeline/Appendix_1_model_code_and_plotting /pre-
run_model_output).
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                                 R
2

0% 10% 20% 30% 40% 50% 60% 70%

Metric Model DIC

SPG

main_int 1479

phygeo−all_pops 1468

geo−all_pops 1559

phy−all_pops 1508

phygeo−no_self 1873

geo−no_self 1899

phy−no_self 1967

λ

main_int −91

phygeo−all_pops −91

geo−all_pops −77

phy−all_pops −63

phygeo−no_self 9

geo−no_self 8

phy−no_self 29

ρ

main_int 396

phygeo−all_pops 388

geo−all_pops 475

phy−all_pops 421

phygeo−no_self 633

geo−no_self 712

phy−no_self 716

CV( λ )

main_int 743

phygeo−all_pops 724

geo−all_pops 746

phy−all_pops 738

phygeo−no_self 832

geo−no_self 838

phy−no_self 871

Figure 2. We use geographically and phylogenetically lagged statistical models to
explain the variance in four key demographic metrics. We use R2 to quantify explanatory
power, higher values indicate more variance explained. Median R2 (points) and 95% (solid
lines) quantiles were taken across 1,500 MCMC samples. Deviance Information Criteria
(DIC) is an index of model performance penalized by the number of parameters. Lower
DIC numbers indicate more parsimonious models that performed well relative to the other
models tested. Note that DIC cannot be compared between metrics, or between ’all_pops’
and ’no_self’ models for the same metric. Colour indicates the model structure. See Table
1 for definitions of ’main_int’, ’phygeo’, ’geo’ and ’phy’ models, and the difference between
models with spatial and phylogenetic prediction terms based ’all_pops’ and ’no_self’
predictions.

The best models had R2 values around 65%, however care must be taken
not to over interpret the predictive power of these models. In models where
the geographic and phylogenetic prediction terms were fit using all popu-
lations the effect of species, local environment and study methodology are
confounded. To test how much of an effect this had on the explanatory power
of our models we fitted ’no_self’ models (Table 1). Even after these self pre-
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dictions were removed several of the ’no_self’ models still explained 20-40%
of variation in the metrics of demographic performance (Figure 2).

Our models explained more variation in some metrics of population per-
formance than others; with relatively high explanatory power for a matrix
model’s position on the SPG continuum and damping ratio (ρ), and lower
explanatory power for asymptotic population growth rate (λ) and its tem-
poral variation. The best models explained around 65% of the variation in
SPG and damping ratio (’main_int’, ’main’ and ’phygeo-all_pops’ density
distributions 2) and only 25-45% of variation in CV(λ) and λ. The ’no_self’
models explained between 12-25% of the variation in SPG, 40% of the vari-
ation in damping ratio, 5% of the variation population growth rate (λ), and
15-25% of variation in CV(λ) (Figure 2).

For all demographic metrics, except ρ, the spatial term explained more vari-
ation than the phylogenetic term (Figure 2). The ’no_self’ models with only
a spatial term explain almost as much variation as models with both a ge-
ographic and phylogenetic prediction term (phygeo-no_self in Figure 2). In
contrast ’no_self’ models with only a phylogenetic term typically had an R2

about half that of the model including both spatial and phylogenetic terms.
Thus, both the spatial and phylogenetic terms are explaining much of the
same variance in the response, with the spatial term explaining some variance
not explained by phylogenetic term.

To examine the way predictive support drops off with geographic and phy-
logenetic distance, we plotted the negative exponential decay models that
underpin the geographic and phylogenetic prediction terms (Eq. 2). Here
we present decay curves for the ’phygeo-no_self’ model (Table 1), since this
model had the lowest DIC of the ’no_self’ models. Results were similar
across different models, although uncertainty around the decay curves varies
greatly between models (Appendix 5). For models predicting population
growth rates (λ) and SPG virtually all predictive support came from loca-
tions that were within 15 km of the target location (Figure 3a,c). Predictive
support for CV(λ) and damping ratio (ρ) came from locations within 35 km
(Figure 3b,d). Predictive support based on phylogeny came from species that
diverged <100 mya for SPG, < 20 mya for CV(λ) and < 10 mya for λ and
ρ (Figure 3).
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Figure 3. Decay curves are the basis of the geographic and phylogenetic predictor terms,
and show how quickly predictive support from neighbouring locations or other species
declines with distance (either geographic or phylogenetic). Decay curves for geographic
(a-d) and phylogenetic (e-h) predictive terms for each metric, population growth rate (λ),
its temporal variation (CV(λ)), Stasis Progression Gradient (SPG) and damping ratio (ρ).
The model presented here, phygeo-no_self, has no fixed effects, and predictions were based
on geographic locations and species that were different to that being predicted for. Lines
show the curve produced by the estimated decay parameter for each of the 1,500 MCMC
samples. Grey lines depict the average curve. Average decay curves for other models are
generally similar, although the uncertainty around decay curve can vary greatly between
different models for the same measure. Decay plots for all other models can be found in
Appendix 5.

DISCUSSION

Important aspects of plant population performance, data which are time-
consuming and expensive to collect for each population, can be inferred from
nearby locations and, to a lesser extent, from related species. Even after
removing predictions from the same location or the same species, we can
still explain 25%-40% of the variation in damping ratio, elasticities and tem-
poral variation in population growth rate. However, our results also suggest
that there are important limits to generalising population performance across
geographic locations and between species.
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It is common practice in demography, applied ecology and conservation to
measure the demography of a species in a few locations and then apply that
understanding to the species over a much wider region (Shea & Kelly, 1998;
Doak et al., 2005; Crone et al., 2011; Sæther et al., 2005; Salguero-Gómez
et al., 2016). In contrast, we often expect considerable geographic variation
in demographic performance of populations within species (e.g., Jongejans &
de Kroon 2005, Merow et al. 2014). In our dataset, species and geographic
location are too confounded to directly test how transferable demographic
information is within species because most populations of the same species
were geographically close to each other. However, in our analysis using a
dataset of unprecedented size in comparative plant demography, closely re-
lated species were much weaker predictors of population performance than
geographically close populations. The explanatory power of the geographic
predictor term suggests that something about the mid to small-scale envi-
ronment is predictive of demography, specifically elasticities of population
growth rate, damping ratio and temporal variation in population growth
rate. Mid- to small-scale environmental variables will likely include many lo-
cal drivers beyond climate, such as soil, anthropogenic impacts (Cole et al.,
2014), disturbances and biotic interactions (Silvertown et al., 1996; Thuiller
et al., 2014). It is this mid to small-scale signal that is often lost with global
comparisons (Salguero-Gómez et al., 2016).

Borrowing information across closely related species may be more useful for
some aspects of demography than others (Blomberg & Garland, 2002). The
phylogenetic term unambiguously explained around 10% of the variance
in damping ratio over and above the variance explained by the geographic
predictor term, much more than the other three demographic metrics. In the
case of the damping ratio, only species that diverged < 10 mya provided good
support for predicting the damping ratio of another species. In our dataset
38 genera were represented by two or more species; of these eight had at least
one species pair that diverged < 15 mya, and three had species that diverged
from each other < 10 mya. This suggests that, in our dataset at least, it is
uncommon for species in the same genus to have diverged recently enough
to help explain variation in each others damping ratio.

Why we were able to explain so much variation in damping ratio remains an
open question. It has been suggested that damping ratio is strongly influ-
enced by a limited set of traits and life history strategies (e.g. resprouting)
that help plant populations recover from, or take advantage of, disturbances
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(Pausas & Lavorel, 2003; Clarke et al., 2010). In contrast the other three
demographic metrics are strongly influenced by multiple environmental and
biotic factors (Silvertown et al., 1996), each of which will introduce noise into
the prediction. Further, populations at their stable stage distribution can
show up to a 16-fold difference in population growth rate compared to those
that have been perturbed (Williams et al., 2011). Given this large difference
in population performance, it is likely that traits and demographic strate-
gies which affect the time taken to return to the stable stage distribution
(measured by damping ratio) are under strong selective pressure (Lamont &
Downes, 2011), resulting in a high phylogenetic signal (Blomberg & Garland,
2002). In addition, variability in environmental conditions are spatially cor-
related (Fox et al., 2008; Premoli & Kitzberger, 2005), and thus we might
expect disturbance driven demography to be more spatially predictable.

An important caveat to our analysis is that most species were represented
in our dataset by a single location - although we used the most extensive
database of plant demography available (Salguero-Gómez et al., 2015). This
means that the decay curves are averages across many different species and
habitats, and could be different for any given species or location (Diez et al.,
2014). Geographic location and phylogeny are confounded to some extent
in our dataset and some of the signal in the geographic decay curves may
be due to phylogenetic signal. We can however see that the geographic
predictor term in our analysis does explain variation in the demographic
metrics that cannot be explained by the phylogenetic term. Our analysis
did not show which environmental and species level variables are driving
the explanatory power of the geographic and phylogenetic predictor terms.
Even those variables we included as predictors were highly spatially auto-
correlated, and so could have contributed to the explanatory power of the
geographic predictor term. The effect of climatic variables that vary at scales
smaller than the accuracy of study locations (e.g. soil properties) will be
impossible to test using comparative methods. Likewise, we could not say
much about the effect of growth type, aside from herbaceous perennials,
due to the small sample size of trees, palms and succulents. To get an
understanding of the drivers of demography across space and species, and
whether the same drivers are common between species and locations, we
need to sample multiple species, at multiple locations, at different scales.

Despite these caveats, our dataset covered a large number of species and
environments and the general results are clear: we can generalise from in-
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dividual demographic studies. However, even with the largest geo-located
dataset of demographic studies available we can only justify extrapolating
important aspects of demography at limited scales, especially compared to
the scales that threats such as species invasions and climate change occur
at. Thus, the initial assumption should be that any demographic results we
obtain are applicable to the population they were measured for and those in
the immediate environment. This does not mean that we will never be able
to extrapolate demographic results, but more spatially extensive sampling is
needed to understand how population performance changes between species
and in response to environmental drivers.

ACKNOWLEDGEMENTS

SRC was supported by the ARC Center of Excellence in Environmental De-
cisions and Trinity College Dublin. RS-G was supported by a DE140100505
grant of the Australian Research Council and a NERC IRF (R/142195-11-
1). YMB was supported in part by a research grant from Science Foundation
Ireland (SFI) under Grant Number 15/ERCD/2803 and a Marie-Curie Ca-
reer Integration Grant. We thank the Max Planck Institute for Demographic
Research for support in the development of and access to the COMPADRE
Plant Matrix Database.

SUPPORTING INFORMATION

Appendix 1: Statistical analysis and plotting scripts
Appendix 2: Selection criteria applied to COMPADRE Plant Matrix Database
Appendix 3: PCA loadings and variance explained by each axis
Appendix 4: Environmental variables and predictors used in the analysis
Appendix 5: Phylogenetic and geographic decay curves for all models and
demographic metrics

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

21



Distance and ancestry predict demography 22

References

1.
Blomberg, S.P. & Garland, T. (2002). Tempo and mode in evolution:
phylogenetic inertia, adaptation and comparative methods. Journal of

Evolutionary Biology, 15, 899–910.

2.
Buckley, Y.M., Ramula, S., Blomberg, S.P., Burns, J.H., Crone, E.E.,
Ehrlén, J., Knight, T.M., Pichancourt, J.B., Quested, H. & Wardle, G.M.
(2010). Causes and consequences of variation in plant population growth
rate: a synthesis of matrix population models in a phylogenetic context.
Ecology Letters, 13, 1182–1197.

3.
Burns, J.H., Blomberg, S.P., Crone, E.E., Ehrlen, J., Knight, T.M.,
Pichancourt, J.B., Ramula, S., Wardle, G.M. & Buckley, Y.M. (2010).
Empirical tests of life-history evolution theory using phylogenetic analysis
of plant demography. Journal of Ecology, 98, 334–344.

4.
Caswell, H. (2001). Matrix population models: Construction, analysis and

interpretation. 2nd edn. Sinauer Associates Inc., Sunderland, MA, USA.

5.
Clarke, P.J., Lawes, M.J. & Midgley, J.J. (2010). Resprouting as a key
functional trait in woody plants–challenges to developing new organizing
principles. New Phytologist, 188, 651–654.

6.
Cole, E.M., Bustamante, M.R., Almeida-Reinoso, D. & Funk, W.C. (2014).
Spatial and temporal variation in population dynamics of andean frogs:
Effects of forest disturbance and evidence for declines. Global Ecology and

Conservation, 1, 60–70.

7.
Crone, E.E., Menges, E.S., Ellis, M.M., Bell, T., Bierzychudek, P., Ehrlén,
J., Kaye, T.N., Knight, T.M., Lesica, P., Morris, W.F. et al. (2011). How
do plant ecologists use matrix population models? Ecology Letters, 14,
1–8.

8.
Diez, J.M., Giladi, I., Warren, R. & Pulliam, H.R. (2014). Probabilistic

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

22



Distance and ancestry predict demography 23

and spatially variable niches inferred from demography. Journal of ecology,
102, 544–554.

9.
Doak, D.F., Gross, K. & Morris, W.F. (2005). Understanding and pre-
dicting the effects of sparse data on demographic analyses. Ecology, 86,
1154–1163.

10.
Doak, D.F. & Morris, W.F. (2010). Demographic compensation and tip-
ping points in climate-induced range shifts. Nature, 467, 959–962.

11.
Ehrlén, J. & Morris, W.F. (2015). Predicting changes in the distribution
and abundance of species under environmental change. Ecology Letters,
18, 303–314.

12.
Enright, N., Franco, M. & Silvertown, J. (1995). Comparing plant life
histories using elasticity analysis: the importance of life span and the
number of life-cycle stages. Oecologia, 104, 79–84.

13.
Fieberg, J. & Ellner, S.P. (2001). Stochastic matrix models for conservation
and management: a comparative review of methods. Ecology Letters, 4,
244–266.

14.
Fox, J.C., Bi, H. & Ades, P.K. (2008). Modelling spatial dependence in an
irregular natural forest. Silva Fennica, 42, 35.

15.
Franco, M. & Silvertown, J. (2004). A comparative demography of plants
based upon elasticities of vital rates. Ecology, 85, 531–538.

16.
Gerst, K.L., Angert, A.L. & Venable, D.L. (2011). The effect of geographic
range position on demographic variability in annual plants. Journal of

Ecology, 99, 591–599.

17.
Hartmann, D., Klein Tank, A., Rusticucci, M., Alexander, L., Brönni-
mann, S., Charabi, Y., Dentener, F., Dlugokencky, E., Easterling, D.,

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

23



Distance and ancestry predict demography 24

Kaplan, A., Soden, B., Thorne, P., Wild, M. & Zhai, P. (2013). Observa-
tions: Atmosphere and surface. In: Climate Change 2013: The Physical

Science Basis. Contribution of Working Group I to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change (eds. Stocker,
T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A.,
Xia, Y., Bex, V. & Midgley, P.). Cambridge University Press, Cambridge,
United Kingdom and New York, USA.

18.
Jongejans, E. & de Kroon, H. (2005). Space versus time variation in the
population dynamics of three co-occurring perennial herbs. Journal of

Ecology, 93, 681–692.

19.
Koons, D.N., Grand, J.B., Zinner, B. & Rockwell, R.F. (2005). Transient
population dynamics: relations to life history and initial population state.
Ecological Modelling, 185, 283–297.

20.
de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. (1986). Elas-
ticity: the relative contribution of demographic parameters to population
growth rate. Ecology, 67, 1427–1431.

21.
Lamont, B.B. & Downes, K.S. (2011). Fire-stimulated flowering among
resprouters and geophytes in australia and south africa. Plant Ecology,
212, 2111–2125.

22.
Lande, R. & Orzack, S.H. (1988). Extinction dynamics of age-structured
populations in a fluctuating environment. Proceedings of the National

Academy of Sciences of the United States of America, 85, pp. 7418–7421.

23.
Lees, J.M. (2015). GEOmap: Topographic and Geologic Mapping. R pack-
age version 2.3-5.

24.
Levine, J.M., McEachern, A.K. & Cowan, C. (2008). Rainfall effects on
rare annual plants. Journal of Ecology, 96, 795–806.

25.
Mack, R.N. (2003). Phylogenetic constraint, absent life forms, and

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

24



Distance and ancestry predict demography 25

preadapted alien plants: a prescription for biological invasions. Inter-

national Journal of Plant Sciences, 164, S185–S196.

26.
McGeoch, M.A., Butchart, S.H.M., Spear, D., Marais, E., Kleynhans, E.J.,
Symes, A., Chanson, J. & Hoffmann, M. (2010). Global indicators of bio-
logical invasion: species numbers, biodiversity impact and policy responses.
Diversity and Distributions, 16, 95–108.

27.
Merow, C., Latimer, A.M., Wilson, A.M., McMahon, S.M., Rebelo, A.G.
& Silander, J.A. (2014). On using integral projection models to generate
demographically driven predictions of species’ distributions: development
and validation using sparse data. Ecography, 37, 1167–1183.

28.
Pausas, J.G. & Lavorel, S. (2003). A hierarchical deductive approach for
functional types in disturbed ecosystems. Journal of Vegetation Science,
14, 409–416.

29.
Premoli, A.C. & Kitzberger, T. (2005). Regeneration mode affects spatial
genetic structure of nothofagus dombeyi forests. Molecular Ecology, 14,
2319–2329.

30.
R Core Team (2013). R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.

31.
Ramula, S., Knight, T.M., Burns, J.H. & Buckley, Y.M. (2008). General
guidelines for invasive plant management based on comparative demogra-
phy of invasive and native plant populations. Journal of Applied Ecology,
45, 1124–1133.

32.
Sæther, B.E., Engen, S., Møller, A.P., Visser, M.E., Matthysen, E.,
Fiedler, W., Lambrechts, M.M., Becker, P.H., Brommer, J.E., Dickinson,
J. et al. (2005). Time to extinction of bird populations. Ecology, 86,
693–700.

33.
Salguero-Gómez, R., Jones, O.R., Archer, C.R., Bein, C., Buhr, H., Farack,

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

25



Distance and ancestry predict demography 26

C., Gottschalk, F., Hartmann, A., Henning, A., Hoppe, G. et al. (2016).
Comadre: a global data base of animal demography. Journal of Animal

Ecology.

34.
Salguero-Gómez, R., Jones, O.R., Archer, C.R., Buckley, Y.M., Che-
Castaldo, J., Caswell, H., Hodgson, D., Scheuerlein, A., Conde, D.A.,
Brinks, E. et al. (2015). The COMPADRE plant matrix database: an
open online repository for plant demography. Journal of Ecology, 103,
202–218.

35.
Salguero-Gómez, R. & de Kroon, H. (2010). Matrix projection models
meet variation in the real world. Journal of Ecology, 98, 250–254.

36.
Salguero-Gómez, R. & Plotkin, J.B. (2010). Matrix dimensions bias demo-
graphic inferences: implications for comparative plant demography. The

American Naturalist, 176, 710–722.

37.
Salguero-Gómez, R., Jones, O.R., Jongejans, E., Blomberg, S.P., Hodgson,
D.J., Mbeau-Ache, C., Zuidema, P.A., de Kroon, H. & Buckley, Y.M.
(2016). Fast–slow continuum and reproductive strategies structure plant
life-history variation worldwide. Proceedings of the National Academy of

Sciences, 113, 230–235.

38.
Shea, K. & Kelly, D. (1998). Estimating biocontrol agent impact with
matrix models: Carduus nutans in new zealand. Ecological Applications,
8, 824–832.

39.
Silvertown, J., Franco, M. & Menges, E. (1996). Interpretation of elasticity
matrices as an aid to the management of plant populations for conserva-
tion. Conservation Biology, 10, 591–597.

40.
Silvertown, J., Franco, M., Pisanty, I. & Mendoza, A. (1993). Compar-
ative plant demography–relative importance of life-cycle components to
the finite rate of increase in woody and herbaceous perennials. Journal of

Ecology, pp. 465–476.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

26



Distance and ancestry predict demography 27

41.
Stott, I., Franco, M., Carslake, D., Townley, S. & Hodgson, D. (2010).
Boom or bust? a comparative analysis of transient population dynamics
in plants. Journal of Ecology, 98, 302–311.

42.
Stott, I., Townley, S. & Hodgson, D.J. (2011). A framework for study-
ing transient dynamics of population projection matrix models. Ecology

Letters, 14, 959–970.

43.
Stubben, C.J. & Milligan, B.G. (2007). Estimating and analyzing de-
mographic models using the popbio package in r. Journal of Statistical

Software, 22.

44.
Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Ben-
ton, T., Cameron, D.D., Carmel, Y., Coomes, D.A., Coulson, T., Em-
merson, M.C., Hails, R.S., Hays, G.C., Hodgson, D.J., Hutchings, M.J.,
Johnson, D., Jones, J.P.G., Keeling, M.J., Kokko, H., Kunin, W.E., Lam-
bin, X., Lewis, O.T., Malhi, Y., Mieszkowska, N., Milner-Gulland, E.J.,
Norris, K., Phillimore, A.B., Purves, D.W., Reid, J.M., Reuman, D.C.,
Thompson, K., Travis, J.M.J., Turnbull, L.A., Wardle, D.A. & Wiegand,
T. (2013). Identification of 100 fundamental ecological questions. Journal

of ecology, 101, 58–67.

45.
Thuiller, W., Münkemüller, T., Schiffers, K.H., Georges, D., Dullinger, S.,
Eckhart, V.M., Edwards, T.C., Gravel, D., Kunstler, G., Merow, C. et al.

(2014). Does probability of occurrence relate to population dynamics?
Ecography, 37, 1155–1166.

46.
Tuljapurkar, S. & Orzack, S.H. (1980). Population dynamics in variable
environments i. long-run growth rates and extinction. Theoretical Popula-

tion Biology, 18, 314–342.

47.
Villellas, J., Doak, D.F., García, M.B. & Morris, W.F. (2015). Demo-
graphic compensation among populations: what is it, how does it arise
and what are its implications? Ecology letters, 18, 1139–1152.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

27



Distance and ancestry predict demography 28

48.
Ward, M.D. & Gleditsch, K.S. (2008). Spatial regression models. vol. 155
of Quantitative Applications in the Social Sciences. Sage, Thousand Oaks,
CA.

49.
Williams, J.L., Ellis, M.M., Bricker, M.C., Brodie, J.F. & Parsons, E.W.
(2011). Distance to stable stage distribution in plant populations and
implications for near-term population projections. Journal of ecology, 99,
1171–1178.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

28



Distance and ancestry predict demography 29

Appendix 1: Analysis Pipeline

The data extraction, analysis code, model diagnostics and some pre-run
model objects can be found at this github repository. This repository con-
tains two folders, this first ’Appendix_1_data_extraction_proccessing’, con-
tains code that:

1. Takes data from the COMPADRE Plant Matrix Database (R object
downloaded on the 24th of October 2014 included in file) and filters
out the populations that do not meet our selection criteria.

2. Calculates the four demographic metrics we focus on, Population growth
rate (λ), temporal variation of λ (CV(λ)), damping ratio (ρ) and a com-
posite variable for elasticities of λ (SPG).

3. Extract data from BioClim (http://worldclim.org/current) and Aridity
Index (CGIAR-CSI GeoPortal; http://www.csi.cgiar.org) raster layers
and perform PCA analysis on the relevant variables

4. Combine all the filtered data from COMPADRE with the demographic
metrics and environmental variables and saves the resulting data frame
as
’combined_bc_ai_all_responses.Rdata’

The second folder ’Appendix_1_model_code_and_plotting’ contains code
that takes the data frame in ’combined_bc_ai_all_responses.Rdata’ and
fits statistical models using JAGS 3.4.0-1. The statistical models used in the
analysis are defined in the file ’non_elast_predict
_models.R’. These models are called using the ’r2jags’ interface in the file
’pop_metric
_prediction.R’. the resulting model objects are saved and called by ’plot-
ting_functions.R’ to produce diagnostic and trace plots for the models, along
with the results plots for the paper and Appendices.

WARNING: Several steps (in particular the BioClim data extraction and the
MCMC sampling) take hours, days, or weeks to run. If one were to try and
run this code as is, it will take a long time. Secondly this analysis pipeline
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has multiple steps, each of which requires several libraries and dependencies
to work. It would be surprising if anybody could get it to work on the first
attempt.
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Appendix 2: Data extraction

We sourced matrix models from the COMPADRE Plant Matrix Database
(Salguero-Gómez et al., 2015), downloaded on the 24th of October 2014,
this version is included in Appendix 1. For the most recent version of the
COMPADRE Plant Matrix Database see this link). We used a set of con-
straining criteria to choose matrix models from the 5,672 contained in this
version of COMPADRE to allow fair comparisons and to ensure the same set
of predictor variables are available for each matrix model.

Each matrix had to:

1. have all relevant meta-data available, namely GPS coordinates, GrowthType,
MatrixTreatment, SurvivalIssue, StudyDuration, MatrixEndYear and
MatrixStartYear.

2. be parameterised with at least three years of data to enable assessment
across temporal variability.

3. have GPS coordinates in COMPADRE reported to at least arc minute
precision so that the location of each population could be matched up
with climatic variables.

4. have a dimension of at least 3 × 3 to appropriately account for indi-
vidual heterogeneity

5. be based on field data that had not been purposely manipulated so as
to examine demographic performance under natural conditions

6. be for a species classified as ’herbaceous perennial’ ’tree’, ’palm’, ’shrub’
and ’succulent’, because sample size of other growth types was too low
for our allow analyses. We did not include annuals as their matrix
models are based on a shorter temporal reference (i.e. months, seasons)
than perennials, where matrix models are built on annual transitions.

7. be denoted as ’Divided’ in the ’MatrixSplit’ COMPADRE variable.

8. be denoted ’Mean’ in the ’MatrixComposite’ COMPADRE variable.

9. refer to a single population (i.e. not refer to more than one named
population).
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10. have a value ≤ 1.05 for the ’SurvivalIssue’ COMPADRE variable.

11. we removed populations where the ’MatrixTreatment’ COMPADRE
variable indicated they were mowed, burnt or had seeds added.

12. we also removed matrices where the ’Observation’ COMPADRE vari-
able indicated there was uncertainty in the GPS coordinates or esti-
mates of the vital rates.

13. We remove species Chamaecrista keyensis as it was unclear where these
populations were located.

14. the species had to be in the phylogeny provided in Appendix 5 of
Salguero-Gómez et al. (2015).

15. the location of some populations were not represented in the BioClim
raster layers (often populations near coast lines), as a result environ-
mental predictors could not be extracted for these populations and they
had to be excluded from our data.

These filtering criteria are largely implemented in lines 130–155 of the file
’∼/Appendix_1_data_extraction_proccessing/data_extraction_and_clean_up.R’,
Appendix 1. These criteria resulted in 550 matrix models for our analysis,
covering 210 plant species from 156 genera, covering both angiosperms and
gymnosperms, with populations from tropical regions to the high latitudes.
The full list of species in the resulting data set is given in Table S1.

Table S1. List of species used in the analysis

Geuns-Species Family Order Class Phylum

Actaea elata Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Actaea spicata Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Agrimonia eupatoria Rosaceae Rosales Magnoliopsida Magnoliophyta
Agropyron cristatum Poaceae Poales Liliopsida Magnoliophyta
Alliaria petiolata Brassicaceae Brassicales Magnoliopsida Magnoliophyta
Allium tricoccum Amaryllidaceae Asparagales Liliopsida Magnoliophyta
Anemone patens Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Anthyllis vulneraria Leguminosae Fabales Magnoliopsida Magnoliophyta
Aquilegia chrysantha Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Boechera fecunda Brassicaceae Brassicales Magnoliopsida Magnoliophyta
Arisaema serratum Araceae Alismatales Liliopsida Magnoliophyta
Aristida bipartita Poaceae Poales Liliopsida Magnoliophyta
Armeria maritima Plumbaginaceae Caryophyllales Magnoliopsida Magnoliophyta
Artemisia genipi Compositae Asterales Magnoliopsida Magnoliophyta
Aster amellus Compositae Asterales Magnoliopsida Magnoliophyta
Astragalus michauxii Leguminosae Fabales Magnoliopsida Magnoliophyta
Astragalus scaphoides Leguminosae Fabales Magnoliopsida Magnoliophyta
Astragalus tyghensis Leguminosae Fabales Magnoliopsida Magnoliophyta
Dioscorea chouardii Dioscoreaceae Dioscoreales Liliopsida Magnoliophyta
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Bouteloua rigidiseta Poaceae Poales Liliopsida Magnoliophyta
Brassica insularis Brassicaceae Brassicales Magnoliopsida Magnoliophyta
Calathea micans Marantaceae Zingiberales Liliopsida Magnoliophyta
Calathea ovandensis Marantaceae Zingiberales Liliopsida Magnoliophyta
Calochortus albus Liliaceae Liliales Liliopsida Magnoliophyta
Calochortus lyallii Liliaceae Liliales Liliopsida Magnoliophyta
Calochortus obispoensis Liliaceae Liliales Liliopsida Magnoliophyta
Calochortus pulchellus Liliaceae Liliales Liliopsida Magnoliophyta
Calochortus tiburonensis Liliaceae Liliales Liliopsida Magnoliophyta
Carduus nutans Compositae Asterales Magnoliopsida Magnoliophyta
Centaurea horrida Compositae Asterales Magnoliopsida Magnoliophyta
Actaea cordifolia Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Cirsium acaule Compositae Asterales Magnoliopsida Magnoliophyta
Cirsium dissectum Compositae Asterales Magnoliopsida Magnoliophyta
Cirsium palustre Compositae Asterales Magnoliopsida Magnoliophyta
Cirsium pannonicum Compositae Asterales Magnoliopsida Magnoliophyta
Cirsium pitcheri Compositae Asterales Magnoliopsida Magnoliophyta
Cirsium vulgare Compositae Asterales Magnoliopsida Magnoliophyta
Cryptantha flava Boraginaceae Lamiales Magnoliopsida Magnoliophyta
Cynoglossum officinale Boraginaceae Lamiales Magnoliopsida Magnoliophyta
Cynoglossum virginianum Boraginaceae Lamiales Magnoliopsida Magnoliophyta
Cypripedium calceolus Orchidaceae Asparagales Liliopsida Magnoliophyta
Cypripedium fasciculatum Orchidaceae Asparagales Liliopsida Magnoliophyta
Dactylorhiza lapponica Orchidaceae Asparagales Liliopsida Magnoliophyta
Danthonia sericea Poaceae Poales Liliopsida Magnoliophyta
Daucus carota Apiaceae Apiales Magnoliopsida Magnoliophyta
Dicerandra frutescens Lamiaceae Lamiales Magnoliopsida Magnoliophyta
Digitalis purpurea Plantaginaceae Lamiales Magnoliopsida Magnoliophyta
Disporum sessile Colchicaceae Liliales Liliopsida Magnoliophyta
Echinacea angustifolia Compositae Asterales Magnoliopsida Magnoliophyta
Eryngium alpinum Apiaceae Apiales Magnoliopsida Magnoliophyta
Eryngium cuneifolium Apiaceae Apiales Magnoliopsida Magnoliophyta
Erythronium japonicum Liliaceae Liliales Liliopsida Magnoliophyta
Eupatorium perfoliatum Compositae Asterales Magnoliopsida Magnoliophyta
Eupatorium resinosum Compositae Asterales Magnoliopsida Magnoliophyta
Gentiana pneumonanthe Gentianaceae Gentianales Magnoliopsida Magnoliophyta
Geum reptans Rosaceae Rosales Magnoliopsida Magnoliophyta
Geum rivale Rosaceae Rosales Magnoliopsida Magnoliophyta
Pyrrocoma radiata Compositae Asterales Magnoliopsida Magnoliophyta
Heliconia acuminata Heliconiaceae Zingiberales Liliopsida Magnoliophyta
Himantoglossum hircinum Orchidaceae Asparagales Liliopsida Magnoliophyta
Potentilla congesta Rosaceae Rosales Magnoliopsida Magnoliophyta
Hyparrhenia diplandra Poaceae Poales Liliopsida Magnoliophyta
Hypericum cumulicola Hypericaceae Theales Magnoliopsida Magnoliophyta
Ipomopsis aggregata tenuituba Polemoniaceae Solanales Magnoliopsida Magnoliophyta
Lepanthes eltoroensis Orchidaceae Asparagales Liliopsida Magnoliophyta
Lepanthes rubripetala Orchidaceae Asparagales Liliopsida Magnoliophyta
Lepanthes rupestris Orchidaceae Asparagales Liliopsida Magnoliophyta
Lepidium davisii Brassicaceae Brassicales Magnoliopsida Magnoliophyta
Liatris scariosa Compositae Asterales Magnoliopsida Magnoliophyta
Limonium carolinianum Plumbaginaceae Caryophyllales Magnoliopsida Magnoliophyta
Linum catharticum Linaceae Malpighiales Magnoliopsida Magnoliophyta
Lobularia maritima Brassicaceae Brassicales Magnoliopsida Magnoliophyta
Lomatium bradshawii Apiaceae Apiales Magnoliopsida Magnoliophyta
Lomatium cookii Apiaceae Apiales Magnoliopsida Magnoliophyta
Lupinus tidestromii Leguminosae Fabales Magnoliopsida Magnoliophyta
Minuartia obtusiloba Caryophyllaceae Caryophyllales Magnoliopsida Magnoliophyta
Nardostachys jatamansi Caprifoliaceae Dipsacales Magnoliopsida Magnoliophyta
Neotinea ustulata Orchidaceae Asparagales Liliopsida Magnoliophyta
Anogra deltoidea Onagraceae Myrtales Magnoliopsida Magnoliophyta
Ophrys sphegodes Orchidaceae Asparagales Liliopsida Magnoliophyta
Orchis purpurea Orchidaceae Asparagales Liliopsida Magnoliophyta
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Oxalis acetosella Oxalidaceae Oxalidales Magnoliopsida Magnoliophyta
Paronychia pulvinata Caryophyllaceae Caryophyllales Magnoliopsida Magnoliophyta
Pinguicula villosa Lentibulariaceae Lamiales Magnoliopsida Magnoliophyta
Pinguicula vulgaris Lentibulariaceae Lamiales Magnoliopsida Magnoliophyta
Poa alpina Poaceae Poales Liliopsida Magnoliophyta
Potentilla anserina Rosaceae Rosales Magnoliopsida Magnoliophyta
Primula elatior Primulaceae Ericales Magnoliopsida Magnoliophyta
Primula veris Primulaceae Ericales Magnoliopsida Magnoliophyta
Primula vulgaris Primulaceae Ericales Magnoliopsida Magnoliophyta
Pyrrocoma radiata Compositae Ericales Magnoliopsida Magnoliophyta
Ramonda myconi Gesneriaceae Lamiales Magnoliopsida Magnoliophyta
Ranunculus acris Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Ranunculus peltatus Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Rubus rigidus Rosaceae Rosales Magnoliopsida Magnoliophyta
Rubus vitifolius ursinus Rosaceae Rosales Magnoliopsida Magnoliophyta
Saponaria bellidifolia Caryophyllaceae Caryophyllales Magnoliopsida Magnoliophyta
Sarcocapnos baetica Papaveraceae Ranunculales Magnoliopsida Magnoliophyta
Sarcocapnos pulcherrima Papaveraceae Ranunculales Magnoliopsida Magnoliophyta
Sarracenia purpurea Sarraceniaceae Ericales Magnoliopsida Magnoliophyta
Saussurea medusa Compositae Asterales Magnoliopsida Magnoliophyta
Saxifraga aizoides Saxifragaceae Saxifragales Magnoliopsida Magnoliophyta
Saxifraga cotyledon Saxifragaceae Saxifragales Magnoliopsida Magnoliophyta
Scabiosa columbaria Caprifoliaceae Dipsacales Magnoliopsida Magnoliophyta
Setaria incrassata Poaceae Poales Liliopsida Magnoliophyta
Silene spaldingii Caryophyllaceae Caryophyllales Magnoliopsida Magnoliophyta
Sporobolus heterolepis Poaceae Poales Liliopsida Magnoliophyta
Succisa pratensis Caprifoliaceae Dipsacales Magnoliopsida Magnoliophyta
Themeda triandra Poaceae Poales Liliopsida Magnoliophyta
Tragopogon pratensis Compositae Asterales Magnoliopsida Magnoliophyta
Trillium smallii Melanthiaceae Liliales Liliopsida Magnoliophyta
Trillium camschatcense Melanthiaceae Liliales Liliopsida Magnoliophyta
Trillium grandiflorum Melanthiaceae Liliales Liliopsida Magnoliophyta
Trollius laxus Ranunculaceae Ranunculales Magnoliopsida Magnoliophyta
Viola sagittata ovata Violaceae Malpighiales Magnoliopsida Magnoliophyta
Zea diploperennis Poaceae Poales Liliopsida Magnoliophyta
Astrocaryum mexicanum Arecaceae Arecales Liliopsida Magnoliophyta
Borassus aethiopum Arecaceae Arecales Liliopsida Magnoliophyta
Calamus rhabdocladus Arecaceae Arecales Liliopsida Magnoliophyta
Ceratozamia norstogii Zamiaceae Cycadales Cycadophyta Cycadopsida
Chamaedorea elegans Arecaceae Arecales Liliopsida Magnoliophyta
Chamaedorea radicalis Arecaceae Arecales Liliopsida Magnoliophyta
Dioon merolae Zamiaceae Cycadales Cycadophyta Cycadopsida
Encephalartos cycadifolius Zamiaceae Cycadales Cycadophyta Cycadopsida
Euterpe edulis Arecaceae Arecales Liliopsida Magnoliophyta
Euterpe oleracea Arecaceae Arecales Liliopsida Magnoliophyta
Euterpe precatoria Arecaceae Arecales Liliopsida Magnoliophyta
Geonoma brevispatha Arecaceae Arecales Liliopsida Magnoliophyta
Geonoma deversa Arecaceae Arecales Liliopsida Magnoliophyta
Dypsis decaryi Arecaceae Arecales Liliopsida Magnoliophyta
Pseudophoenix sargentii Arecaceae Arecales Liliopsida Magnoliophyta
Rhopalostylis sapida Arecaceae Arecales Liliopsida Magnoliophyta
Sabal yapa Arecaceae Arecales Liliopsida Magnoliophyta
Adesmia volckmannii Leguminosae Fabales Magnoliopsida Magnoliophyta
Ambrosia deltoidea Compositae Asterales Magnoliopsida Magnoliophyta
Ambrosia dumosa Compositae Asterales Magnoliopsida Magnoliophyta
Dubautia sandwicensis Compositae Asterales Magnoliopsida Magnoliophyta
Atriplex acanthocarpa Amaranthaceae Caryophyllales Magnoliopsida Magnoliophyta
Atriplex canescens Amaranthaceae Caryophyllales Magnoliopsida Magnoliophyta
Atriplex vesicaria Amaranthaceae Caryophyllales Magnoliopsida Magnoliophyta
Banksia ericifolia Proteaceae Proteales Magnoliopsida Magnoliophyta
Calluna vulgaris Ericaceae Ericales Magnoliopsida Magnoliophyta
Cassia nemophila Leguminosae Fabales Magnoliopsida Magnoliophyta

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691

34



Distance and ancestry predict demography 35

Eremophila maitlandii Scrophulariaceae Lamiales Magnoliopsida Magnoliophyta
Gardenia actinocarpa Rubiaceae Gentianales Magnoliopsida Magnoliophyta
Helianthemum juliae Cistaceae Malvales Magnoliopsida Magnoliophyta
Lindera umbellata Lauraceae Laurales Magnoliopsida Magnoliophyta
Magnolia salicifolia Magnoliaceae Magnoliales Magnoliopsida Magnoliophyta
Miconia albicans Melastomataceae Myrtales Magnoliopsida Magnoliophyta
Mulinum spinosum Apiaceae Apiales Magnoliopsida Magnoliophyta
Petrophile pulchella Proteaceae Proteales Magnoliopsida Magnoliophyta
Purshia subintegra Rosaceae Rosales Magnoliopsida Magnoliophyta
Schmaltzia copallinum Anacardiaceae Sapindales Magnoliopsida Magnoliophyta
Senecio filaginoides Compositae Asterales Magnoliopsida Magnoliophyta
Viburnum furcatum Adoxaceae Dipsacales Magnoliopsida Magnoliophyta
Echeveria longissima Crassulaceae Saxifragales Magnoliopsida Magnoliophyta
Echinocactus platyacanthus Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Coespeletia spicata Compositae Asterales Magnoliopsida Magnoliophyta
Coespeletia timotensis Compositae Asterales Magnoliopsida Magnoliophyta
Mammillaria crucigera Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Mammillaria gaumeri Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Mammillaria huitzilopochtli Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Neobuxbaumia macrocephala Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Neobuxbaumia mezcalaensis Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Neobuxbaumia tetetzo Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Opuntia macrocentra Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Pterocereus gaumeri Cactaceae Caryophyllales Magnoliopsida Magnoliophyta
Abies concolor Pinaceae Pinales Pinopsida Pinophyta
Abies magnifica Pinaceae Pinales Pinopsida Pinophyta
Acer palmatum Sapindaceae Sapindales Magnoliopsida Magnoliophyta
Acer mono Sapindaceae Sapindales Magnoliopsida Magnoliophyta
Acer rufinerve Sapindaceae Sapindales Magnoliopsida Magnoliophyta
Acer saccharum Sapindaceae Sapindales Magnoliopsida Magnoliophyta
Aquilaria crassna Thymelaeaceae Malvales Magnoliopsida Magnoliophyta
Araucaria hunsteinii Araucariaceae Pinales Pinopsida Pinophyta
Araucaria laubenfelsii Araucariaceae Pinales Pinopsida Pinophyta
Avicennia germinans Acanthaceae Lamiales Magnoliopsida Magnoliophyta
Bertholletia excelsa Lecythidaceae Ericales Magnoliopsida Magnoliophyta
Calocedrus decurrens Cupressaceae Pinales Pinopsida Pinophyta
Chlorocardium rodiei Lauraceae Laurales Magnoliopsida Magnoliophyta
Dacrydium elatum Podocarpaceae Pinales Pinopsida Pinophyta
Dicymbe altsonii Leguminosae Fabales Magnoliopsida Magnoliophyta
Duguetia neglecta Annonaceae Magnoliales Magnoliopsida Magnoliophyta
Entandrophragma cylindricum Meliaceae Sapindales Magnoliopsida Magnoliophyta
Fagus grandifolia Fagaceae Fagales Magnoliopsida Magnoliophyta
Khaya senegalensis Meliaceae Sapindales Magnoliopsida Magnoliophyta
Magnolia macrophylla dealbata Magnoliaceae Magnoliales Magnoliopsida Magnoliophyta
Manilkara zapota Sapotaceae Ericales Magnoliopsida Magnoliophyta
Pentaclethra macroloba Leguminosae Fabales Magnoliopsida Magnoliophyta
Phyllanthus emblica Phyllanthaceae Malpighiales Magnoliopsida Magnoliophyta
Phyllanthus indofischeri Phyllanthaceae Malpighiales Magnoliopsida Magnoliophyta
Pinus lambertiana Pinaceae Pinales Pinopsida Pinophyta
Pinus nigra Pinaceae Pinales Pinopsida Pinophyta
Pinus palustris Pinaceae Pinales Pinopsida Pinophyta
Pinus sylvestris Pinaceae Pinales Pinopsida Pinophyta
Platymiscium filipes Leguminosae Fabales Magnoliopsida Magnoliophyta
Prioria copaifera Leguminosae Fabales Magnoliopsida Magnoliophyta
Prosopis glandulosa Leguminosae Fabales Magnoliopsida Magnoliophyta
Prosopis laevigata Leguminosae Fabales Magnoliopsida Magnoliophyta
Prunus africana Rosaceae Rosales Magnoliopsida Magnoliophyta
Prunus serotina Rosaceae Rosales Magnoliopsida Magnoliophyta
Quercus mongolica crispula Fagaceae Fagales Magnoliopsida Magnoliophyta
Quercus rugosa Fagaceae Fagales Magnoliopsida Magnoliophyta
Rhizophora mangle Rhizophoraceae Malpighiales Magnoliopsida Magnoliophyta
Rhododendron ponticum Ericaceae Ericales Magnoliopsida Magnoliophyta
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Triadica sebifera Euphorbiaceae Malpighiales Magnoliopsida Magnoliophyta
Scaphium macropodum Malvaceae Malvales Magnoliopsida Magnoliophyta
Stryphnodendron microstachyum Leguminosae Fabales Magnoliopsida Magnoliophyta
Swietenia macrophylla Meliaceae Sapindales Magnoliopsida Magnoliophyta
Tachigali vasquezii Leguminosae Fabales Magnoliopsida Magnoliophyta
Tsuga canadensis Pinaceae Pinales Pinopsida Pinophyta
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Appendix 3: Elasticity and climatic Principal

Component Analysis

Here we provide the loadings and variance explained by each axis in the
Principal Component Analysis (PCA) describing the elasticities of the 550
transition matrices used in our analysis (Table S2).

Table S2. Rotations and variance explained for each axis of the Principle Compo-
nent Analysis performed on matrix element elasticies, zn

Axis
Rotation on PC1 PC2 PC3 PC4

δprogr,n -0.561 0.082 0.676 0.470
δretro,n -0.177 0.878 -0.396 0.204
δstasis,n 0.650 -0.038 0.015 0.759
δrepro,n -0.482 -0.471 -0.621 0.401

Importance of components

Standard deviation 1.540 1.047 0.730 0.009
Proportion variance 0.593 0.274 0.133 0.00002

Cumulative proportion 0.593 0.867 1 1

We used eight BioClim temperature variables to describe the climate of each
location (shown in Appendix 4, Table S4) which were highly correlated with
each other. We summarise eight BioClim temperature variables (Table S3)
using a PCA, carried out with the prcomp function in R (R Core Team,
2013). All variables were centred on 0 and scaled to have unit variance
so that the units a variable was reported in did not influence the results.
This PCA revealed that mean annual temperature is positively correlated
with all the other temperature variables except seasonality (bio_4), and
temperature range (bio_7), with which it is negatively correlated (Figure
S1c). The first PC axis, which we refer to as PC_temp, explains 71% of
the variance in temperature variables. PC_temp represents a gradient from
cooler seasonably variable temperate climates to hot, non-seasonal tropical
climates (Figure S1a). See Table S3 for loadings and variance explained by
each axis. We use aridity index (AI) and and precipitation seasonality to
describe precipitation at each location. AI is positively correlated to some
degree with all the other precipitation variables in BioClim (Appendix 4,
Table S4), except for precipitation seasonality (bio_15), with which it has

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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little correlation (Figure S1d). We took the natural log of AI because small
differences in water availability have large ecological and biological effects in
very arid areas, while that same small difference in water availability would
have almost no affect in a high precipitation region.

Table S3. Rotations and variance explained for each axis of the Principle Com-
ponent Analysis performed on the temperature BioClim variables. See Table S4,
Appendix 4 for a definition of each BioClim variable.

Axis
Rotation on PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC 8

bio_1 0.405 -0.207 0.020 -0.148 0.226 -0.089 0.844 0.000
bio_3 0.380 0.088 -0.086 0.831 -0.078 -0.378 -0.032 0.000
bio_4 -0.373 -0.371 -0.039 -0.179 -0.098 -0.825 -0.003 0.000
bio_5 0.270 -0.619 -0.267 -0.005 0.399 0.124 -0.370 0.402
bio_6 0.414 0.069 0.039 -0.266 0.315 -0.199 -0.334 -0.708
bio_7 -0.318 -0.513 -0.233 0.321 -0.108 0.328 0.152 -0.581
bio_8 0.273 -0.402 0.733 -0.017 -0.454 0.080 -0.120 -0.000
bio_9 0.365 -0.008 -0.571 -0.286 -0.676 0.008 -0.032 -0.000

Importance of components

Standard deviation 2.379 1.181 0.799 0.493 0.206 0.123 0.077 0.000
Proportion of variance 0.708 0.174 0.080 0.030 0.005 0.002 0.001 0.000
Cumulative Proportion 0.708 0.882 0.962 0.992 0.997 0.999 1.000 1.000

We map the location of each population in geographic and environmental
space, defined by two important environmental variables in the temperature
PCA, mean temperature and seasonality (bio_1 and bio_4, Figure S1b and
c). There are multiple, geographically spread populations in both temperate
and tropical regions (Figure S1a).

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Figure S1. Study locations in geographic and temperature space. Full caption on next page.
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Figure S1. Study locations in geographic and temperature space for the 550 transition
matrices, pertaining to 210 species, used to test how generalisable demographic perfor-
mance is between species and locations. a) World map with a two channel colour palette,
with red representing mean annual temperature and blue representing seasonal variability
in temperature (environmental space shown in b). Red areas are characterised by high
temperatures year-round (tropics), whereas blue areas by lower mean temperatures, but
large seasonal fluctuations in temperature (high latitude continental). Purple represents
regions with both high temperatures and high seasonality while dark regions have low
temperatures year-round. Points show the geographic location of the studies used (a) and
their position in the 2 dimensional temperature space (b). In a) and b) colour of the
points show their Principal Component score on the first axis (PC1) based on a principal
component analysis using BioClim temperature variables. PC1 explained 71% of variation
in the data. Ticks on the PC1 legend in a) show the score of each transition matrix on
PC1 axis. c) shows the intensity (arrow length) and loading (angle onto each PC) for the
temperature PCA (Table S5, Appendix 4). d) shows intensity (arrow length) and loading
(angle onto each PC) for the precipitation PCA (see variables in Table S4, Appendix 4).

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Appendix 4: Predictor variables

The three environmental predictor variables used in our statistical analysis
were chosen or derived from the environmental variables in Table S4.

Table S4. Raw environmental covariates. All temperature and precipitation val-
ues were extracted from BioClim (http://worldclim.org/current) for each GPS-
location reported in the COMPADRE Plant Matrix Database. Values for AI were
taken from CGIAR-CSI GeoPortal (http://www.csi.cgiar.org). All values were
averaged over the surrounding 2km to help buffer uncertainty in the reported loca-
tions. Source label indicates the name of the covariate in the respective date source.

source

label

Units Description

Temperature

bio_1 C0× 10 annual mean temperature

bio_3 ratio Isothermality = mean diurnal range
annual range

× 100

bio_4 stdev ×100 temperature seasonality
bio_5 C0× 10 max temperature of warmest month
bio_6 C0× 10 min temperature of coldest month
bio_7 C0× 10 temperature annual range (bio_5 - bio_6)
bio_8 C0× 10 mean temperature of wettest quarter
bio_9 C0× 10 mean temperature of driest quarter

Precipitation

AI ratio Aridity index = mean annual precipitation
Mean Annual Potential Evapo-Transpiration

bio_12 mm annual precipitation
bio_13 mm precipitation of wettest month
bio_14 mm precipitation of driest month
bio_15 coef var precipitation seasonality
bio_16 mm precipitation of wettest quarter
bio_17 mm precipitation of driest quarter
bio_18 mm precipitation of warmest quarter
bio_19 mm precipitation of coldest quarter

Temperature variables were reduced to one axis with a Principal Component
Analysis (PCA) (see Table S2, Appendix 3 for rotations and importance of
each PCA axis). A PCA on the precipitation variables showed that they were
all positively correlated with each other, except precipitation seasonality,
which was not correlated with the other variables. We therefore used aridity

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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index and precipitation seasonality to represent precipitation in the models.
These three environmental predictors, along with three non-environmental
predictors, spatial location and phylogenetic relationships are used to predict
all four demographic metrics, ln(λ), ln(CV(λ) + 1), ln(ρ) and SPG. These
predictors are briefly outlines in Table S5.

Table S5. Non-evironmental and environmental covariates. See Table S4 for details
of environmental covariate sources and extraction. Source label gives the name of the
covariate in the respective date source.

Predictor Units Description source

Non-environmental predictors

geo_loc degrees latitude and longitud of study site CPMDN

phylogeny position of each species in a phyloge-
netic tree

Salguero-Gómez
et al. (2015)

dimension number of rows in matrix CPMD
life_expect years average life expectancy in the sample

populations
calculated
from ma-
trices
in CPMD

growth_form binary
factor

indicates if species is a herbaceous
perennial

CPMD

Environmental predictors

PC_temp unitless
scale

principle component score on the first
axis that combines 8 correlated temper-
ature variables. The PC scores reflect
a gradient from tropical (warm sta-
ble temperatures), to temperate loca-
tions (cooler, seasonally variable tem-
peratures)

worldclim.org/
bioclim�

Aridity
index

measure of water stress that includes
precipitation and temperature

CGIAR-CSI�

precip_
seasonality

CV coefficient of variation in precipitation
over a year

worldclim.org/
bioclim

NDate from COMPADRE Plant Matrix Database retrieved from
www.compadre-db.org/ on 4/12/2013
�Date from worldclim.org/bioclim retrieved from
http://worldclim.org/current, using ESIR 30 arc-seconds grids on 27/2/2014
�Consortium for Spatial Information CGIAR-CSI, from
http://www.csi.cgiar.org on 27/2/2014

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Appendix 5: Phylogenetic and spatial decay curves

for all models and demographic metrics

Figures S2 - S5 show the decay curves for each demographic metric, for each
model structure we tested. Negative exponential decay models underpin the
spatial and phylogenetic prediction terms. The way predictive support de-
creases with distance suggests the spatial and phylogenetic scale at which
demographic processes are influenced. Colour indicates the model structure.
The ’main_int’ model includes all predictors and two-way interactions, along
with spatial and phylogenetic predictor terms, with predictions based on all
populations. The ’main’ model includes only the six main effects, along with
geographic and phylogenetic predictor terms, with predictions based on all
populations. Models denoted ’phygeo’ only includes the spatial and phyloge-
netic predictor terms, models denoted ’geo’ only include the spatial predictor
term, and models denoted ’phy’ only include the phylogenetic predictor term.
The spatial and phylogenetic prediction terms of models denoted ’allpops’
have predictions based on all populations. Those denoted ’noself’ have spa-
tial predictions based only on populations that were not in the same location
and the phylogenetic predictions based only on populations that were not
the same species.

Note that uncertainty around the estimated curve can change dramatically
between model structures predicting the same demographic metric. However,
the explanatory power of some models is much higher than others (i.e. they
have higher R2). It is also important to remember that these curves represent
a average across all species and environments. A curve based on populations
in different environments (e.g. mountainous regions), or any single species,
might look very different.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Figure S2. Decay curves of the spatial and phylogenetic predictive terms for each model
for SPG. Coloured lines show the curve produced by the estimated decay parameter for
each of the 1500 MCMC samples. Grey lines show the average curve, taken over all 1500
MCMC samples.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Figure S3. Decay curves of the spatial and phylogenetic predictive terms for each model
for ln(λ). Coloured lines show the curve produced by the estimated decay parameter for
each of the 1500 MCMC samples. Grey lines show the average curve, taken over all 1500
MCMC samples.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Figure S4. Decay curves of the spatial and phylogenetic predictive terms for each model
for ln(ρ). Coloured lines show the curve produced by the estimated decay parameter for
each of the 1500 MCMC samples. Grey lines show the average curve, taken over all 1500
MCMC samples.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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Figure S5. Decay curves of the spatial and phylogenetic predictive terms for each model
for CV(λ). Coloured lines show the curve produced by the estimated decay parameter for
each of the 1500 MCMC samples. Grey lines show the average curve, taken over all 1500
MCMC samples.

Coutts SR, Salguero-Gómez R, Csergő AM, Buckley YM (2016) Extrapolating demography with
climate, proximity and phylogeny: approach with caution. Ecology Letters doi: 10.1111/ele.12691
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