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Circadian (�24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and phys-
iology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting,
can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular
activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles
are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject
to disruption. A large proportion of the world’s population is at increased risk of environmentally driven
circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian
misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound
and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary
choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health prob-
lems;therefore, implementationofthenumerousbehavioralandpharmaceutical interventionsthatcanhelprestore
circadian system alignment and enhance sleep will be important. (Endocrine Reviews 37: 584–608, 2016)
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I. Introduction

Mankind’s historic fascination with the temporal
world has taken many forms, from pilgrimages to

Stonehenge at the time of the summer solstice for over

5000 years to fanciful notions about time travel. This
world has shaped life by means of such rhythmic environ-
mental stimuli as the 24-hour light/dark (LD) cycle, stim-
uli that have made organisms evolve their own timing sys-
tems to anticipate and adapt to daily and seasonal cycles.
Thomas Edison’s seminal invention of the electric light
bulb in 1879 brought unprecedented possibilities, and the
American inventor is attributed with once remarking,
“The doctor of the future will give no medicine, but will
instruct his patient in the care of the human frame, in diet,
and in the cause and prevention of disease.” Little was
he aware that mistimed use of his great gift to the world
is now one of several human-imposed environmental
changes that predispose us to many diseases by way of
circadian rhythm and sleep disruption (Table 1, Glossary).
The purposes of this review are to detail our current
knowledge about the causes and metabolic consequences
of such disruption and to highlight strategies to counteract
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Abbreviations: AMPK, 5�AMP-activated protein kinase; BMAL1, brain and muscle aryl
hydrocarbon receptor nuclear translocator-like 1; BMI, body mass index; CCG, clock-
controlled gene; CK1, casein kinase 1; CLOCK, circadian locomotor output cycles kaput;
CRY, cryptochrome; GWA, genome-wide association; LD, light/dark; MTNR1B, melatonin
receptor 1B; NPAS2, neuronal period-aryl hydrocarbon receptor nuclear translocator
single-minded protein 2; OSA, obstructive sleep apnea; PER, period; REV-ERB, reverse-
erythroblastosis; RMR, resting metabolic rate; SCN, suprachiasmatic nuclei; SNP, single-
nucleotide polymorphism; SWS, slow wave sleep; T2DM, type 2 diabetes mellitus; TRF,
time-of-day-restricted feeding.
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these consequences. Although studies of other animals
have been pivotal in furthering our understanding of the
regulation of the circadian system and sleep, it may be
premature to extrapolate findings from commonly studied
model organisms, particularly nocturnal ones, to our own
diurnal species. Therefore, this review focuses on human

studies of healthy participants where possible, beginning
with observational studies that provide insights into the
prevalence of circadian rhythm and sleep disruption.

Table 2 provides an overview of sources and mecha-
nisms of circadian rhythm disruption, one source of which
is shift work. Because shift workers often work during the

Table 1. Glossary

Chronobiotic An agent capable of modifying a biological rhythm’s amplitude (the difference between a rhythm’s acrophase
[peak] or bathyphase [trough] and its mean value), period (the time after which a phase of the rhythm oscillation
recurs) or phase (the instantaneous state of an oscillation within a period).

Chronotype An individual’s phase angle of entrainment (for example, the timing of core body temperature nadir relative to dawn).
Circadian rhythm An endogenous rhythm with a period of approximately 24 hours that is entrainable, persists in the absence of

external time cues (1), and is temperature compensated. For most biological systems, the Q10 temperature
coefficient—a measure of the rate of change of a biological or chemical system after increasing the temperature
by 10°C—is approximately 2; for the circadian system, however, it is close to 1, allowing stable circadian rhythms
in different thermal environments (2). Circadian time (CT) is synonymous with internal time and is the time of one
full circadian period. CT 0 is commonly subjective dawn.

Circadian rhythm
disruption

Disruption of biological timing. This can occur from the level of the molecular clock (that temporally regulates
cellular activities) to misalignment between behavioral and environmental cycles. Circadian rhythm disruption
produces a loss of characteristic phase relationships in oscillatory subsystems, the nature of which is ill-defined.

Constant routine Constant routine experimental protocols attempt to enforce unchanging behavioral and environmental conditions,
such as constant dim lighting, evenly spaced isoenergetic snack consumption, semi-recumbent posture, and
wakefulness, to distinguish true endogenous circadian rhythms from diurnal rhythms arising from both
endogenous and exogenous factors.

Entrainment Coupling of an endogenous rhythm to a zeitgeber, such that the oscillations have the same frequency
(synchronization) or frequencies that are integral multiples (frequency demultiplication) (3). Entrainment is
achieved when internal period (�) matches external period (T). Because the mean free-running human � is
approximately 24.2 hours (4, 5), circadian rhythms must be entrained to the 24-hour LD cycle daily. A short or
long free-running � typically entrains earlier or later, respectively.

Forced desynchrony Forced desynchrony experimental protocols use LD cycles outside the range of entrainment to distribute sleep and
wakefulness across the circadian cycle and, hence, uncouple effects of behavioral cycles from effects of circadian
rhythms. An example protocol might involve 28-hour sleep/wake cycles, three cycles of which would produce
approximately 180° misalignment between the circadian clock and LD cycle.

Peripheral clocks Peripheral clocks comprise extra-suprachiasmatic nuclei (SCN) brain clocks and clocks in peripheral tissues. These
clocks produce circadian rhythms in local tissue processes.

Sleep disruption By sleep disruption, we refer to externally mediated changes in sleep continuity, timing, or duration (restriction
entails reduced sleep duration, whereas deprivation is the absence of sleep).

Zeitgeber The oscillation force that entrains a biological rhythm (3). The 24-hour LD cycle is the primary zeitgeber for humans.
High amplitude, relatively consistently timed zeitgebers help ensure stable entrainment (for example, high light
exposure during the day and minimal light exposure at night). Zeitgeber time (ZT) is the duration of one zeitgeber
cycle. ZT 0 is commonly dawn or the beginning of the warm phase.

Table 2. Sources and Primary Mechanisms of Circadian Rhythm Disruption

Source

Mechanism

Environmental
LD Cycle
Disruption

Behavioral Biological

Feeding/
Fasting Cycle
Disruption

Rest/Activity
Cycle
Disruption

Genetic Disruption
(eg, Clock Gene
Mutations)

Physiological
Disruption (eg,
Retinal Dysfunction)

Work schedules (eg, shift
work, social jetlag, early
school start times)

✓ ✓ ✓ � �

Jetlag ✓ ✓ ✓ � �
Unusual photoperiods (eg,

polar regions)
✓ � � � �

Circadian rhythm sleep/wake
disorders (eg, non-24-hour
sleep/wake disorder)

✓ � � ✓ ✓

Senescence � � � � ✓

Disease states (eg, Alzheimer’s,
Smith-Magenis syndrome)

� � � ✓ ✓
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night (the rest phase for humans, as diurnal organisms),
they are at particular risk of circadian rhythm and sleep
disruption (6–9). Shift workers are also predisposed to
other health disorders, such as gastrointestinal issues (10),
and shift work exposure is related to risk of some diseases
in a dose-response fashion, including breast cancer and
metabolic syndrome (11, 12). Findings from observa-
tional studies also suggest that circadian rhythm and sleep
disruption are intertwined with some of these disorders:
compared to day shift workers matched for body mass
index (BMI), for example, some of the adverse metabolic
consequences experienced by night shift workers are co-
incident with sleep disturbances (13). Because shift work-
ers make up approximately 17% of the European work-
force and approximately 15% of the U.S. workforce (14,
15), the societal implications of the health consequences of
shift work are substantial.

Like shift work, jetlag induces circadian rhythm and
sleep disruption. Although the health consequences of
frequent jetlag are equivocal (16), any deleterious ef-
fects of jetlag-induced circadian rhythm and sleep disrup-
tion will become more widespread because it has been
estimated that there will be approximately 831 million
more air-bound passengers globally in 2016 compared to
2011 (17).

Whereas shift work and jetlag entail overt disruption to
the circadian system and sleep, even “normal” working
hours can result in more subtle circadian rhythm misalign-
ment and sleep restriction, particularly among evening
chronotypes. This is because many individuals use alarms
to produce wakefulness when sleep would otherwise oc-
cur. Hence, bedtimes tend to differ between workdays and
non-workdays, and a discrepancy of at least 1 hour be-
tween midsleep time on workdays and non-workdays af-
fects approximately 87% of Northern Europeans. This
phenomenon is often termed “social jetlag” and is asso-
ciated with obesity and behavioral ramifications, such as
increased alcohol consumption and smoking (18, 19).
Similarly, greater intraindividual sleep timing variability
has been linked to higher fat mass and lower lean mass
(20), as well as cardiometabolic disease risk factors like
insulin resistance (21, 22).

Alarm clock use contributes to pervasive short sleep
duration among adults, and analysis of approximately
250 000 self-reports of sleep worldwide suggests that
sleep duration on workdays has declined by approxi-
mately 3.7 minutes per year in the last decade (18), the
significance of which is that sleep duration is associated
with numerous chronic diseases. For example, sleep du-
ration has a U-shaped association with type 2 diabetes
mellitus (T2DM) prevalence. The mechanisms underlying
the association between short sleep and increased T2DM

risk will be discussed subsequently; the reason why long
sleep is associated with increased T2DM risk is more con-
tentious, but low socioeconomic status, depression, and
other comorbidities are thought to contribute to this re-
lationship (23).

An inverse association between sleep duration and ad-
iposity is evident in observational studies (24, 25). In ad-
dition, findings from a recent meta-analysis indicate that
a negative association between sleep duration and waist
circumference is apparent (26). Importantly, fat mass dis-
tribution is particularly salient to metabolic health, with
central obesity linked to increased risk of several diseases.
The relationship between sleep duration and adiposity is
not limited to adults. Because chronotype delays during
growth and is latest on reaching physical maturity, enforcing
early school starts disrupts sleep timing and duration during
adolescence, a critical developmental period (27) and, once
more, short sleep during this period is prospectively associ-
ated with obesity development (28). Relationships between
sleep and adiposity are related to eating behaviors, and links
between circadian rhythm and sleep disruption, dietary hab-
its, and fat mass are further apparent in less common disor-
ders like night eating syndrome (29).

In contrast to effects of jetlag and working demands on
the circadian system and sleep, some individuals are at
increased risk of circadian rhythm and sleep disruption
regardless of cultural changes. At times this is environ-
mentally driven. All 24 time zones converge at the Poles,
for example, where low amplitude LD cycles and extreme
temperatures are associated with health ramifications
(30). In other instances, underlying pathologies are at
fault. This is true in the case of circadian rhythm disrup-
tion in blind individuals without light perception (31),
most of whom experience non-24-hour sleep/wake rhythm
disorder in which sleep quality is highly variable. Sleep qual-
ityalsodeteriorateswithadvancingage,asdoothercircadian
rhythms (32); thus,moreofourageingpopulation is likely to
experience circadian rhythm disruption. Furthermore, with
senescence comes a predisposition to various diseases also
characterized by circadian system disorganization, one of
which is Alzheimer’s disease (33).

Together, it appears that the pervasiveness of circadian
rhythm and sleep disruption is rising, and observational ev-
idence implicates this disruption in adverse health effects.
Our understanding of the mechanisms underlying these con-
sequences provides the foundation from which to intervene
appropriately, and disorganization of the circadian system is
at the center of many of these health problems.

II. The Circadian System

A. The suprachiasmatic nuclei
The two suprachiasmatic nuclei (SCN) of the anterior

hypothalamus primarily coordinate the oscillator systems
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that temporally regulate physiology and behavior (Figure
1). The preeminent roles of the SCN in locomotor, hor-
monal, and feeding circadian rhythms were demonstrated
by early ablation studies (34–36). SCN transplantation
into SCN-ablated hamsters confirmed their control of cir-
cadian rhythm period (37) and by encasing the SCN in

semipermeable membranes that pre-
vented synaptogenesis, the SCN
were shown to produce diffusible
signals sufficient to restore circadian
activity rhythms (38). Several of
these SCN secretions have since been
identified (39–41).

The foremost zeitgeber that en-
trains the SCN to the 24-hour day is
the LD cycle, and together with rod
and cone photoreceptor cells, mel-
anopsin-containing intrinsically pho-
tosensitive retinal ganglion cells in
the inner retinae relay photic infor-
mation to the SCN via a monosyn-
aptic pathway to permit synchro-
nization (43). In response to photic
stimuli, a multisynaptic pathway
from the SCN to adrenergic fibers in-
nervating the pineal gland regulates
norepinephrine release from these fi-
bers and hence melatonin synthesis
(44, 45). Melatonin conveys photo-
periodic information to the pituitary
pars tuberalis, a key nexus in the reg-
ulation of seasonal rhythms in phys-
iology in photoperiodic mammals,
which undergoes seasonal body mass
and reproductive changes (46, 47).
Although the human melatonin
rhythm is also sensitive to photope-
riod changes (48), the presence of ar-
tificial lighting suppresses seasonal
changes in circadian rhythms (such
as melatonin) that might otherwise
be evident (49). Because the SCN also
havethemelatoninreceptorsMT1and
MT2 (50, 51) (MTNR1A and
MTNR1B in humans, respectively),
melatonin feeds back to the master
clock.

The circadian system has central
roles in sleep/wake cycle regulation,
as seen by the gating of sleep at spe-
cific circadian phases; furthermore,
the circadian phase at which sleep

occurs influences sleep duration, continuity, and architec-
ture (52). In 1982, Borbély (53) proposed a two-process
model of sleep regulation in which a circadian process also
interacts with a homeostatic process to regulate sleep. The
circadian process influences alertness, and the sleep pro-
cess is hypnogenic, rising during wakefulness and falling

Figure 1.

Figure 1. Temporal control of physiology. Light exposure provides the primary time cue for the
central clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and suppresses melatonin
synthesis by the pineal gland. Artificial light exposure at night can therefore disrupt the SCN
clock and melatonin rhythm. As a diurnal species, melatonin is hypnogenic in humans, although
a recent prospective study of pinealectomy demonstrated that endogenous melatonin may not
have a strong regulatory role in sleep (42). The sleep/wake cycle has been effectively simulated by
a two-process model in which a circadian process (C) influences wakefulness and interacts with a
sleep-promoting process (S) that accumulates during wakefulness. Within the hypothalamus—a
nodal point of body temperature regulation—the SCN influences the circadian rhythm of body
temperature, a key synchronizer of clocks in peripheral tissues. The use of thermostats can
obviate daily oscillations in temperature, which could perhaps influence some circadian rhythms.
In addition to temperature mechanisms, the SCN influences clocks in peripheral tissues through
neural signals communicated via the autonomic nervous system (ANS), as well as the timely
secretion of signaling factors such as prokineticin 2. Hypothalamic-pituitary-peripheral organ axes
are important to hormonal regulation of the circadian system. For example, corticotropin-
releasing hormone (CRH) enters the portal system through the median eminence (ME) of the
hypothalamus and stimulates the secretion of adrenocorticotropic hormone (ACTH) by the
anterior pituitary gland. ACTH then regulates adrenal cortex production of cortisol, a hormone
with a robust circadian oscillation and important synchronizing effects in many peripheral clocks.
The timing of metabolic processes in peripheral clocks is also modified by nutritional status, and
peripheral clocks relay metabolic information back to the hypothalamus through the ME. Today,
around-the-clock access to food can distort the clear feeding/fasting cycles that typified much of
our history.
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during sleep in a manner akin to an hourglass timer. Bor-
bély’s model has proven effective in simulating sleep in
myriad experimental conditions (54), but many of the
mechanisms by which the circadian system and sleep/wake
states interact remain elusive.

B. Clock genes
Immediate early genes in the SCN respond to light ex-

posure, including clock genes (55), the genes that generate
approximately 24-hour gene transcription rhythms. These
same clock genes exist in cells throughout bodily tissues
and form delayed, interlocking gene transcription/trans-
lation negative feedback loops. The positive arm of the
core clock loop comprises the basic helix-loop-helix tran-
scription factors circadian locomotor output cycles kaput
(CLOCK) and brain and muscle aryl hydrocarbon recep-
tor nuclear translocator-like 1 (BMAL1). In tissues such as
the vasculature, CLOCK’s functions are replaced by its
paralogue neuronal period-aryl hydrocarbon receptor nu-
clear translocator single-minded protein 2 (NPAS2). Con-
trary to prior findings, it was recently shown that loss of
CLOCK does not produce arrhythmicity in peripheral
cells; rather, it appears that these cells only become ar-
rhythmic when Npas2 is knocked down in the presence of
CLOCK deficiency (56), indicating a more prominent role
of NPAS2 in the molecular clock than previously thought.
CLOCK and BMAL1 heterodimerize to activate tran-
scription of clock-controlled genes (CCGs). CCGs include
the negative limb of the clock, namely cryptochrome
(CRY) 1–2 and period (PER) 1–3 proteins. These then
accumulate in the cytosol, multimerize, translocate into
the nucleus, repress CLOCK-BMAL1 transactivating func-
tion, and terminate CRY1–2 and PER1–3 transcription.
PER-CRY complexes are then degraded by casein kinase
1 (CK1) �, CK1�, and F-box/LRR-repeat protein 3.
CLOCK-BMAL1 inhibition ends, thus closing the nega-
tive feedback loop. At least five auxiliary feedback loops
add robustness and couple the molecular clock to meta-
bolic status (57). Antiphasic to the core loop, the best
characterized of these modulates BMAL1 transcription:
RAR-related orphan receptor � activates BMAL1 tran-
scription, and reverse-erythroblastosis (REV-ERB) � and
REV-ERB� repress BMAL1 transcription.

The rhythmic transcription of clock genes persists even
in cultured fibroblast cells (58), and because fibroblast
gene expression periods may be consistent with whole-
body circadian rhythm periods (59), clock genes may be
key determinants of circadian period and hence chrono-
type and sleep phenotypes. This is supported by recent
genome-wide association (GWA) studies that have linked
genetic loci near established components of the molecular
clock with chronotype (60, 61). Nevertheless, not all stud-

ies have found that in vitro fibroblast period duration is
correlated with in vivo period (62). In adulthood, circa-
dian period advances with increasing age, but a difference
in in vitro fibroblast period has not always been found
between young and elderly individuals. In the presence of
sera from the elderly participants, however, fibroblast pe-
riod was reduced in comparison to treatment with sera
from the young adults, suggesting that circulating factors
are also determinants of oscillator periods and perhaps
chronotype (63). Interestingly, although sleep timing ad-
vances with age in adulthood, changes in body tempera-
ture rhythm periods are not so clear (64, 65). Because the
body temperature rhythm is partly regulated by the SCN,
it is plausible that humoral factors influence circadian os-
cillations in some peripheral cells but not the SCN, al-
though this hypothesis requires testing.

Clock genes regulate the transcription of CCGs, hun-
dreds of which control the timing of tissue-specific func-
tions (66). An aggregation of mouse studies has shown
that �50% of protein-coding genes have 24-hour gene
expression profiles in at least one set of conditions (67).
Although some genes may be rhythmic in multiple tissues,
their phases often differ between and even within tissues,
and rhythmic gene expression is largely organ-specific (68,
69). Our understanding of the range of healthy phase re-
lationships between these systems is poorly characterized,
however.

Target genes of circadian clock genes are enriched for
metabolic pathways, and metabolic genes that are direct
targets of CLOCK-BMAL1 heterodimer also feedback to
molecular clock components. These metabolic genes in-
clude D-box binding PAR bZIP transcription factor, dif-
ferentiated embryo-chondrocyte expressed genes 1 and 2,
estrogen-related receptor �, nicotinamide phosphoribo-
syltransferase, peroxisome proliferator-activated receptor
�, and proper homeobox 1 (57).

It is important to note that because the metabolic state
of the cell is coupled to the molecular clock (70), the per-
vasiveness of rhythmic cellular activities is modified by
factors such as diet. The circadian system reciprocally in-
teracts with feeding/fasting cycles via coupling between
the molecular clock and metabolic regulators. In the post-
absorptive state, decreased energy availability increases
5�AMP-activated protein kinase (AMPK) phosphoryla-
tion to enhance ATP formation; in the postprandial state,
increased energy availability stimulates anabolic cellular
processes via mechanistic target of rapamycin signaling.
This pathway is coupled to the molecular clock by phos-
phorylation of glycogen synthase kinase 3�, which in turn
regulates PER stability, and hence period length (71). Us-
ing AMPK to further exemplify how energy sensors im-
pinge on the molecular clock, AMPK interacts with the
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NAD(�)-dependent protein deacetylase SIRTUIN (SIRT)
1, which subsequently deacetylates and degrades PER2 to
ensure high amplitude daily transcription profiles of several
clock genes (72). Furthermore, SIRT1 and SIRT6 have par-
ticularly pivotal roles in the temporal control of metabolism
by controlling chromatin modifications and hence the rhyth-
mic transcription of distinct sets of genes in the liver, with
SIRT1 primarily regulating genes involved in peptide and
cofactor metabolism, and SIRT6 influencing genes integral
to carbohydrate and lipid metabolism (73).

Finally, although there is contention regarding whether
humans are seasonally photoperiodic (74), daily gene ex-
pression rhythms occur within the context of seasonal
changes in expression of protein-coding genes. Seasonal
gene expression changes have been shown in independent
populations and are linked to changes in the cellular com-
position of blood. Seasonal gene expression fluctuations
may underlie changes in immune function, and seasonal
variations in expression profiles of metabolic genes in adi-
pocytes are also apparent (75). Because the incidences of
some cardiometabolic diseases oscillate seasonally (76,
77), these findings may have implications for understand-
ing and treating such pathologies; however, seasonal
changes in disease risk may also be related to myriad other
factors, including changes in health behaviors and envi-
ronmental temperature.

C. Post-transcriptional clock regulation
Within a species, similar proportions of the transcrip-

tome, proteome and metabolome oscillate with 24 hour
profiles (78–80). Although there are mostly minimal de-
lays between gene transcription and translation, it has
been shown using a human cell model that some arrhyth-
mic gene transcripts produce rhythmic products via daily
translation profiles (81). Delays between gene transcrip-
tion and translation vary across the day, partly due to
RNA-binding proteins which modify processes such as
pre-mRNA splicing, polyadenylation and RNA decay (82,
83). Post-translational clock protein modifications in-
clude acetylation, O-GlcNAcylation, poly-ADP ribosyla-
tion, phosphorylation, SUMOylation, and ubiquitination
(84–89). Non-coding RNA expression also fluctuates in
similar proportions to protein-coding gene transcripts,
conferring another level of post-transcriptional regula-
tion, and therefore non-coding RNAs likely influence
molecular clock regulation (78). Collectively, such post-
transcriptional processes contribute to appropriate, tis-
sue-specific responses of peripheral clocks.

D. Non-transcriptional oscillators
Non-transcriptional oscillations in peroxiredoxins, re-

dox-sensitive antioxidant proteins involved in electron

transfer, respond to oxidation in cells such as erythrocytes
(90). These oscillations persist in the absence of zeitgebers,
and are temperature-compensated and entrainable. They
are sustained in the absence of clock gene expression feed-
back loops and are the most highly conserved clocks
known (91, 92). Their integration with the circadian sys-
tem, sleep homeostasis, and metabolic networks is little
understood, however.

E. Internal synchrony
Clock gene expression rhythms have divergent periods

that do not resonate without synchronizing agents (93).
Disruption of the SCN clock dampens and desynchronizes
peripheral tissue circadian rhythms (94), and uncoupling
of appropriate phase relationships between endogenous
rhythms (internal desynchronization) is hypothesized to
contribute to the deleterious metabolic effects of circadian
rhythm disruption. The SCN synchronize circadian rhythms
by autonomic, behavioral, humoral, and temperature mech-
anisms. The former comprise caudal efferents to the sub-
paraventricular zone and dorsomedial nucleus, dorsal ef-
ferents to the midline thalamic nuclei, and rostral efferents
to the anterior hypothalamus and preoptic area (95). The
paraventricular nucleus is particularly important in the
regulation of circadian rhythms in activity, autonomic
processes, and secretion of hormones including melatonin
and cortisol (96).

Multisynaptic efferents from the SCN to the periphery
help regulate the availability of nutrients like glucose in
the blood (97), as well as hormone secretion rhythms by
organs including the adrenal glands, adipose tissue,
pancreas, and thyroid gland (98 –101). In turn, humoral
factors from the periphery relay information back to
hypothalamic regions via the hypothalamic median em-
inence (102).

Some clock genes are directly regulated by glucocorti-
coids via glucocorticoid response elements (103). SCN
lesions nullify liver gene transcription rhythms, but glu-
cocorticoid receptor activation restores approximately
60% of these rhythms, demonstrating an important syn-
chronizing role for cortisol in some peripheral clocks
(104). The strength of effects of glucocorticoids on pe-
ripheral clock rhythms differs between tissues; the kid-
neys and lungs, for example, are yet more responsive to
glucocorticoids than the liver, which is more entrained
by feeding (105).

As homeothermic vertebrates, humans are resistant to
temperature entrainment by the environment, and exper-
iments in mice tissues have shown that the SCN are re-
sponsible for this resistance (106). Although thermoreg-
ulation is regulated by the interaction of many structures
located primarily in the hypothalamus, brainstem, and
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spinal cord, the SCN are integral to the core body tem-
perature rhythm, a rhythm that has important synchro-
nizing effects on oscillators throughout the body (106).
Furthermore, a specific component of the molecular
clock has been identified as a key connection between
the circadian and thermoregulatory systems because de-
letion of Rev-erb� in mice abolishes the core body tem-
perature rhythm by changing brown adipose tissue
activity (107).

F. Temporal partitioning of physiology
Internal synchrony temporally partitions physiology to

aid physical activity and energy harvesting during the bi-
ological day (active phase), inactivity and energy mobili-
zation during the rest phase, and time-of-day appropriate
changes in immune function (108, 109). Clock-regulated
changes in blood pressure, heart rate, and skeletal and
heart muscle contractile efficiency and substrate oxidation
ready the body for physical activity (110–112). As a result,
the circadian system ensures peak physical performance
during the active phase.

Historically, physical activity has been necessary to
procure food, and during the active phase, rhythms in the
gastrointestinal system support timely digestion. Gastric
emptying and colonic motility, for example, are slowest in
the evening, and the transit of indigestible food from the
stomach to the small intestine is powered by the migrating
motor complex, the speed of which is more than twice as
high during the day as at night (113–115). Rhythmic bile
acid production is central to cholesterol metabolism and
absorption of nutrients, including fat-soluble vitamins.
Kruppel-like factor 15 and fibroblast growth factor 15
have pivotal roles in this regulation (116). Rhythmic
changes in the activity of some intestinal nutrient trans-
port proteins (117) and temporal control of enzyme ac-
tivity are also important to metabolism. Using lipids to
exemplify this, reduced postprandial lipoprotein lipase ac-
tivity apparently contributes to impaired lipid tolerance in
the evening (118). It should be noted that it is unclear
whether the aforementioned gastrointestinal rhythms are
partly clock-regulated or exclusively artifacts of behav-
ioral cycles. Other enzymes involved in hepatic lipid me-
tabolism are known targets of the molecular clock and
shape rhythms in processes like lipid accumulation (119).
Nocturnin, for example, is clock-controlled and regulates
triacylglycerol synthesis and storage, as well as chylomi-
cron formation in intestinal enterocytes (120).

Gut microbiota composition changes with feeding and
fulfils time of day-specific functions in humans and mice,
with energy metabolism roles during the active phase and
detoxification processes during the rest phase (121). Rec-
iprocity between the circadian system and microbiota is

evident because Bmal1 deletion nullifies these oscillations
(122). Furthermore, clock gene expression is altered in
germ-free mice, and these mice do not gain body mass
compared to conventionally raised mice, perhaps due to
differences in microbe-derived metabolites like short-
chain fatty acids (123).

Whereas it is unclear whether rhythmic secretion of
several gastrointestinal hormones is shaped by the cir-
cadian system (such as gastric inhibitory polypeptide,
gastrin, and glucagon-like peptide-1) (124, 125), other
hormones are demonstrably clock-regulated. Constant
routine and forced desynchrony experiments have shown
that plasma glucose and triacylglycerol have clear circa-
dian rhythms, with an acrophase in the biological night
(126–128), indicating circadian system regulation of en-
ergy substrate metabolism. This is likely related to circa-
dian rhythms in important hormones in energy metabo-
lism, such as insulin. Insulinemia, like insulin sensitivity,
peaks in the daytime in humans to promote efficient en-
ergy storage (128), and an acrophase in the insulin-sensi-
tizing adipokine adiponectin in the middle of the active
phase supports this process (129).

Rhythmic growth hormone (GH) secretion is another
important determinant of daily changes in substrate oxi-
dation. Although a minor influence of the circadian system
has sometimes been detected, sleep has a dominant influ-
ence on GH secretion (5). GH has an acrophase near the
onset of slow wave sleep (SWS), and GH profiles are fur-
ther characterized by episodic surges a few hours after
meals (130, 131). The GH rhythm differs a little between
the sexes (132). Together with insulin and insulin-like
growth factor 1 (IGF-1), GH aids nitrogen retention dur-
ing high energy availability; during reduced energy avail-
ability, as occurs during sleep, GH stimulates lipolysis and
ketogenesis (133), inducing insulin resistance and thereby
sparing glucose and protein oxidation (134).

Like GH, prolactin is primarily synthesized and se-
creted by the anterior pituitary and fulfils �300 biological
actions, including roles in homeostasis, lactation, and re-
production (135). Prolactin also influences appetite in a
species-specific way, and chronic hyperprolactinemia is
associated with increased body mass in humans. Further-
more, prolactin has roles in lipid metabolism, largely re-
ducing lipid storage in adipocytes, and also affects glucose
metabolism by stimulating insulin secretion (136). A circa-
dian rhythm in prolactin is evident in constant routine pro-
tocols, of larger amplitude in women and with an acrophase
in the rest phase (137). Subcutaneous prolactin injections
prolong rapid eye movement sleep in rats (138), and prolac-
tin is also associated with SWS in humans (139).

Melatonin synthesis occurs during darkness and in-
creases sleep propensity in humans, which may be related
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to melatonin’s hypothermic effects (140). Melatonin may
have important roles in metabolic regulation, perhaps
helping prevent nocturnal hypoglycemia by inhibiting
insulin secretion (141). Because this was demonstrated in
mice, however, different responses may be apparent in
humans. Interestingly, the MTNR1B T2DM risk variant
rs10830963 (142–144) has been linked to prolonged mel-
atonin synthesis duration and delayed melatonin offset
phase in humans. Because melatonin inhibits glucose-
stimulated insulin secretion ex vivo, it is plausible that
extended melatonin synthesis into waking could contrib-
ute to T2DM risk, particularly among carriers with early
sleep times (145). As melatonin also exerts receptor-inde-
pendent effects in free radical scavenging (146), melatonin
perhaps also contributes to temporal regulation of im-
mune function, although further research is required.

Finally, an acrophase in leptin secretion during the rest
phase may contribute to reduced appetite for most food-
stuffs in the biological morning in humans, permitting
consolidated sleep despite declining energy availability
(147). This hypothesis is not supported by the finding that
nocturnal rats also have an acrophase in leptin secretion
during darkness (their active phase) (148), although it is
possible that leptin has different roles in diurnal and noc-
turnal species.

III. Consequences of Circadian Rhythm and
Sleep Disruption

A. Sleep restriction and sleep deprivation

1. Metabolic consequences
Sleep restriction is ubiquitous, and its metabolic con-

sequences are profound. One of the best-characterized
metabolic sequelae of sleep disruption is disrupted glucose
metabolism. This was first shown in 1999 in a study in
which participants experienced a 24% reduction in insulin
sensitivity after five nights of sleep restriction to 4 hours
per night. Altered 24-hour endocrine profiles were also
evident because TSH secretion was impaired and noc-
turnal cortisol secretion increased (149). This finding of
abnormal glucose metabolism has been consistently rep-
licated, and much progress has been made in understand-
ing the contributing mechanisms (Figure 2).

In the postprandial state, the brain accounts for roughly
half of whole-body glucose disposal, and sleep deprivation
reduces this use (150). Cephalic phase neurogenic signals
from the brain anticipate food consumption and stimulate
insulin secretion. Insulin resistance after sleep restriction is
not associated with altered cephalic phase insulin secre-
tion (151) but rather appears to result primarily from in-
sulin resistance outside the liver (152), and changes in

Figure 2.

Figure 2. Mechanisms linking circadian system and sleep disruption to hyperglycemia, insulin resistance, and obesity. With further research,
mechanisms that are currently listed as distinct may prove to be common.
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adipose tissue insulin signaling may be particularly im-
portant (153). Given the roles of the molecular clock in
glucose and lipid metabolism, reduced glucose tolerance
and metabolic dysregulation after sleep disruption may
also be related to epigenetic and transcriptional changes in
the molecular clock in peripheral tissues important to glu-
cose disposal, including adipose tissue and skeletal mus-
cle. Indeed, there is increased DNA methylation of the
promoter region of CRY1 and two regions near PER1 in
adipocytes, as well as reduced BMAL1 and CRY1 tran-
scription in myocytes after sleep deprivation (154). Con-
sistent with Randle’s glucose fatty-acid cycle (155), in-
creased release of nonesterified fatty acids from adipocytes
after sleep restriction likely also contributes to insulin re-
sistance (156). Further mechanisms reducing insulin sen-
sitivity after sleep disruption include stimulation of glu-
coneogenesis via increased sympathetic activity of the
autonomic nervous system (157) and a shift in cytokine
balance toward a more inflammatory state (158). Related
to this, sleep curtailment affects numerous aspects of im-
mune function. For example, 1 week of sleep restriction in
men increased circulating white blood cells and changed
their diurnal rhythm. Notably, altered cell counts had not
returned to baseline after 9 days of recovery sleep (159).
Such changes in immune function may contribute to the
development of diseases associated with immune system
changes, such as T2DM (160).

It has also been shown that changes in sleep architecture
during sleep disruption contribute to changes in glucose
metabolism. Indeed, restricting sleep to the first half of
the night produces distinct endocrine effects compared
to restriction to the second half (161), and different sleep
stages produce distinct physiological changes. Selective
SWS restriction, for example, reduces insulin sensitivity in
a dose-response manner in adults, independent of sleep
duration, although adolescents may be more resistant to
this effect (162, 163).

Many individuals, especially late chronotypes, use
alarm clocks to artificially curtail sleep during the work
week; simulating this behavior by enforcing 5 days of re-
striction to 5 hours of sleep with early waking during the
rest phase reduced intravenous and oral insulin sensitivity
by approximately 20% in healthy adults (164). Intrave-
nous insulin sensitivity was not restored by 3 days of re-
covery sleep; notably, 3 days is longer than most working
adults have to catch up on sleep each week. A limitation of
most experimental sleep restriction studies is that they of-
ten enforce large changes in sleep duration, but restriction
by 90 minutes per night—an amount similar to that ex-
perienced by many (18)—has also been shown to reduce
insulin sensitivity after 1 week in young men (165). In this

healthy population, impaired insulin sensitivity dissipated
with continued exposure to such restriction.

A detailed review of obstructive sleep apnea (OSA) is
beyond the scope of this review. However, because studies
have consistently shown that OSA is associated with im-
paired insulin and glucose metabolism, its features are
briefly outlined. OSA is a disorder in which individuals
experience episodic upper airway closure and hence in-
termittent hypoxia during sleep. OSA is further charac-
terized by reduced sleep duration, sleep fragmentation,
reduced SWS, and increased sympathetic nervous system
activity and oxidative stress, all of which can contribute to
insulin resistance (166). Obese individuals are at particu-
lar risk of OSA, and its prevalence has risen in recent years
in the United States, with estimates suggesting that 10% of
30- to 49-year-old men, 17% of 50- to 70-year-old men,
3% of 30- to 49-year-old women, and 9% of 50- to 70-
year-old women experience OSA (167). Although obesity
increases the risk of OSA and is itself associated with in-
sulin resistance, insulin resistance in OSA has been shown
to be independent of adiposity (168). Furthermore, OSA
is highly prevalent in people with T2DM (169), and a
meta-analysis has shown that OSA is a strong risk factor
for T2DM development (170). Pregnancy also predis-
poses women to OSA (171) and may worsen maternal
glucose metabolism and hence increase the risk of gesta-
tional diabetes (172). Continuous positive airway pres-
sure is used to treat OSA; whether it improves glucose
metabolism is contentious, but accumulating evidence
suggests that it may (173). We would also be remiss if we
did not mention that the metabolic consequences of in-
somnia have not been thoroughly studied, despite it being
the most common sleep disorder. Because sleep state mis-
perception (the mistaken perception of wakefulness dur-
ing sleep) is common in insomnia, it will be important to
measure sleep objectively in these studies.

Although conflicting evidence exists (174), a meta-
analysis of sleep restriction studies showed that sleep re-
striction increases energy intakes in adults, contributing to
its obesogenic effects (175). This finding is consistent with
an extended period in which food can be consumed to
compensate for the additional energetic cost of wakeful-
ness. Sleep restriction also increases energy intakes and the
appeal and consumption of desserts among adolescents
(176), and sleep deprivation has even been shown to in-
crease the energy content and mass of food purchased per
unit of money in a mock supermarket (177).

In light of these findings, it might be expected that sleep
restriction influences satiety hormones, of which the best-
studied are ghrelin and leptin. During ad libitum food
availability, however, documented effects of sleep restric-
tion on ghrelin and leptin are contradictory (149, 178,
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179). With that said, sleep restriction does appear to in-
crease ghrelin concentrations and hunger in adults con-
suming standardized hypoenergetic diets (180) and after
sleep restriction, ghrelin is subsequently positively corre-
lated with energy intake when eating ad libitum (181). It
is important to consider that a multitude of hormones
influence feeding behavior, and it was recently shown that
sleep restriction increases plasma concentrations of the
orexigenic endocannabinoids 2-arachidonoylglycerol and
2-oleoylglycerol, perhaps also contributing to increased
energy intakes (182).

The energy expenditure side of energy balance may also
be affected by sleep restriction, as a working week sleep
restriction simulation study showed that sleep restriction
reduces resting metabolic rate (RMR), particularly among
African Americans—a population highly susceptible to
the obesogenic effects of sleep restriction. Notably, this
effect was seen despite participants being in positive en-
ergy balance, which might be expected to have raised their
RMRs (183). Lean body mass is a key determinant of
RMR, and sleep restriction during hypoenergetic diet con-
sumption accelerates lean body mass losses and impairs
reductions in adiposity, providing a mechanism by which
chronic sleep disruption could detrimentally influence
body composition (184). The importance of adequate
sleep during energy restriction is supported by the finding
that longer sleep predicts greater reductions in BMI in
overweight and obese adults consuming hypoenergetic di-
ets (185).

Interestingly, within-participant effects of one night of
sleep restriction on energy intake and body mass changes
appear stable when repeated exposures are separated by
long periods of time, particularly among men, suggesting
trait-like responses to sleep disruption. Given large differ-
ences between individuals in changes in body mass (�2.3
to �6.5 kg) and energy intakes (�501 to �1178 kcal) after
one night of sleep restriction (186), and also given that
many sleep variables are highly heritable (187), there is a
need to find biomarkers that identify those most vulner-
able to adverse metabolic effects. Some gene variants, like
the Y362H variant of basic helix-loop helix family mem-
ber e41, have been shown to confer carriers with resistance
to other effects of sleep deprivation, such as less need for
recovery sleep (188); perhaps biomarkers that influence
resistance to the metabolic sequelae of sleep disruption
will also be identified. The use of “omics” technologies to
study sleep disruption is a particularly promising way of
revealing mechanisms underlying this interindividual
variability.

Tremendous advances have been made in various omics
techniques in recent years, including genomics, transcrip-
tomics, proteomics, and metabolomics. Their high through-

puthas particularly promising applications in studying the
circadian system and sleep, as exemplified by the charac-
terization of metabolites affected by sleep deprivation
by the use of liquid chromatography/mass spectrometry
metabolomics, a method that can also be applied in field
settings (189).

Studies applying metabolomics, proteomics, and tran-
scriptomics continue to unveil new insights into sleep and
the circadian regulation of metabolism. Circadian system
regulation of physiology is reflected in the human metabo-
lome, approximately 15% of which is clock-regulated.
Under constant routine conditions, approximately 75%
of oscillating blood plasma metabolites are lipids, gener-
ally with acrophases around lunchtime (190). A targeted
lipidomics study has shown that approximately 13% of
plasma lipids show 24-hour oscillations, including lipids
involved in energy storage, signaling, and transport. In-
terestingly, there is large heterogeneity among healthy
adults, and different lipid metabolic phenotypes have been
identified (191). In saliva, amino acids and associated me-
tabolites comprise over half of the oscillating metabolites
(190). When entrained to the LD cycle, the proportion of
rhythmic metabolites may be higher still, with 64% of
measured plasma metabolites found to have 24-hour
rhythms, 87% of which peaked during the day (189).

Omics techniques have also been applied to the study of
circadian rhythm and sleep disruption. Sleep restriction
primarily modifies lipid, neurotransmitter, oxidative stress,
and gut metabolites (192), effects that may help explain
increased cardiometabolic disease risk in sleep-restricted
individuals (193). Similarly, sleep deprivation alters rhythms
in plasma metabolites including lipids and acylcarnitines,
largely reducing the amplitude of metabolite rhythms in
comparison to when sleep is permitted (189). Discoveries
using transcriptomicscorroboratemanymetabolomics find-
ings: 1 week of sleep restriction in humans reduces the
number of genes with 24-hour expression profiles by
�20% in the blood, influencing genes involved in immu-
nity, gene expression regulation, stress responses, and me-
tabolism (194). The extent of these changes can be ex-
plained by the diversity of changes that occur during sleep,
including changes in physical activity, light exposure, re-
dox state, and temperature, all of which influence numer-
ous physiological processes. Furthermore, complete (180°)
circadian misalignment profoundly affects the human blood
transcriptome, producing a 6-fold reduction in genes with
24-hour expression profiles, an effect consistent with re-
duced core body temperature rhythm amplitudes (195).

The use of multiomics techniques has the potential to
reveal novel insights into the systems-level regulation and
integration of the circadian system and sleep homeostasis,
in addition to identifying novel biomarkers of metabolic
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dysfunction and circadian system and sleep disruption.
Online repositories for omics datasets (for example,
Circadi0mics; http://circadiomics.igb.uci.edu/) could fa-
cilitate discoveries by integrating multiple omics approaches
and displaying temporal aspects of verified and predicted
networkinteractionsbetweenkeymetabolic regulators, such
as enzymes and transcription factors (196).

There are conflicting findings regarding whether men
and women differ in their energy balance responses to
sleep disruption. A large study of five nights of sleep re-
striction (4 hours of time in bed) found that men are pre-
disposed to positive energy balances after sleep restriction
(197); however, a smaller, crossover study of five nights of
sleep restriction (5 hours of time in bed) in a more homo-
geneous group of younger adults indicated that women are
more susceptible (198). Further research is required to
understand these discrepant findings. Certainly, sex does
influence certain responses to sleep restriction, as seen in
menstrual cycle phase-dependent endocrine responses to
sleep restriction (199), and there is a general need to clarify
how the menstrual cycle influences responses to circadian
rhythm and sleep disruption.

Finally, it is likely that changes in sleep architecture
during sleep disruption influence eating behavior: The
final rapid eye movement period, for example, is hypoth-
esized to be protective against overeating (200). Experi-
ments should continue to assess associations between
sleep architecture, behavior, and physiology.

2. Effects on dietary choices
IthasbeenestimatedthatU.S.adultsmakeapproximately

230 food-related decisions daily (201). If sleep disruption
adversely influencesdietarychoices, itsdeleteriousmetabolic
effects could be compounded. Although sleep restriction has
sometimes been found to influence dietary macronutrient
proportions, conflicting evidence exists (197). Notably, ma-
cronutrient intakes depend on available foods, and limited
snack options are available in experimental settings. Rather
than altering macronutrient preferences, recent brain imag-
ing studies support the hypothesis that sleep disruption in-
creases nonhomeostatic eating propensity.

Sleep restriction accentuates increased activity in brain
regions involved in reward in response to food stimuli
(202), suggesting heightened sensitivity to rewarding
properties of food. Brain activity changes after sleep de-
privation are consistent with increased appetite (203), and
activity in one of these regions, the nucleus accumbens, is
particularly highly associated with energy-dense food se-
lection (204). Furthermore, sleep restriction strongly in-
fluences insula activation in response to images of food
perceived as “unhealthy,” a region involved in pleasure
seeking, even after a day in which sleep-restricted partic-

ipants consumed more energy than control participants
(205).

Finally, accurate recollection of food consumption in-
fluences short-term food ingestion, an extreme example of
which is seen in amnesiacs who will eat multiple meals
consecutively (206). Hippocampal changes after sleep de-
privation contribute to memory impairments (207), and
hippocampal activity helps prevent meal initiation in the
postprandial period (208). Although it is plausible that
sleep disruption may increase food intake by influencing
hippocampal activity, this hypothesis requires further
testing.

Collectively, these studies suggest that experimental
sleep restriction and deprivation induce a plethora of ad-
verse metabolic consequences that may be accentuated by
changes in food selection. Experimental sleep disruption is
often more severe than that experienced outside the lab-
oratory; therefore, studies of less marked sleep restriction
and further field studies are needed.

B. Limited daytime light exposure

People in industrialized societies typically spend ap-
proximately 88% of their time in enclosed buildings, shel-
tered from natural light (209). Time spent outdoors in
Canada, Great Britain, and the United States is commonly
1 to 3 hours daily (210–212), depending on season and
other factors, and compared to exposure to only natural
light, individuals in modern societies are perhaps exposed
to about four times less light during the day (213). Con-
sequently, many individuals, particularly those in urban
populations, are sheltered from the diverse beneficial ef-
fects of natural daytime light on behavior and physiology
(214).

Vitamin D is synthesized in response to UV-B irradia-
tion, and indoor living in industrialized areas is one con-
tributor to low vitamin D status. Although consistent
evidence linking vitamin D status to morbidity is conten-
tious, associations with some health parameters exist
(215). It is well established that the LD cycle is the primary
zeitgeber for humans; however, because vitamin D directly
influences clock gene transcription in vitro (216), it is pos-
sible that some of the associations between vitamin D sta-
tus and health may arise from effects of vitamin D status
on circadian rhythms and sleep. Negative associations be-
tween vitamin D status and sleep duration (217–219) and
sleep efficiency (217, 219) corroborate this contention;
nevertheless, this may simply reflect beneficial effects of
greater daytime light exposure on sleep rather than effects
of vitamin D on the molecular clock.
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C. Increased light exposure at night
Although outdoor light levels do not always reflect ret-

inal light exposure, about 75% of the world’s population
is exposed to artificial light at night (220), and it has been
estimated that individuals in modern societies commonly
experience light intensity levels over twice as high between
sunset and sleep compared to exposure to only natural
light (213). This appears to significantly influence sleep.
The introduction of electric lighting is associated with in-
creased light exposure shortly after dusk during work-
days, delayed sleep onset, and shortened sleep duration
among individuals of the same sociocultural background.
These effects may be particularly prominent during work-
days (221, 222). Although the authors of a recent study of
three hunter-gatherer communities living without electric-
ity suggested that individuals living without artificial
lighting may not sleep for longer than individuals with
lighting (223), this suggestion was not supported by a
comparison between the hunter-gatherer groups and in-
dividuals of similar ethnic origins with access to artificial
lighting (224).

Many electronic devices also now increase nighttime
light exposure. Given their compactness, it might be ex-
pected that any effects of these devices on the circadian
system and sleep would be benign. However, some of these
devices emit monochromatic blue light (�max, 460–480
nm), to which intrinsically photosensitive retinal ganglion
cells are especially sensitive. Indeed, irradiance levels as
low as 2 �W/cm2 of such light suppress nocturnal mela-
tonin production (225, 226). As a result, nighttime expo-
sure to even low levels of light from e-Book devices delays
sleep and dim-light melatonin onset, reduces melatonin
synthesis, and impairs next-morning alertness. Because
about 90% of Americans use electronic devices within an
hour of bedtime on multiple nights each week, these de-
vices are likely further contributing to circadian rhythm
and sleep disruption (227).

There are positive associations between nighttime illu-
mination and obesity prevalence in more than 80 countries
worldwide (228), and also between the mean timing of
light exposure above 500 lux and BMI in free-living adults
(229). Given the aforementioned discussion of the sleep-
disrupting effects of light exposure, as well as the multi-
tude of factors that conspire to increase energy balance
after sleep disruption, it seems likely that increased light
exposure at night is another contributor to the obesity
epidemic.

D. Shift work
Even when diet is controlled, night shift workers ex-

hibit poorer metabolic health than day workers. Night
workers, for example, have higher plasma triacylglycerol

(230), and field work has shown that this is related to
circadian system disruption because postprandial glucose
and lipid tolerance to standard test meals are impaired on
switching to night shifts (231). Like metabolic health, cog-
nitive function is frequently impaired by night shift work.
Transitioning from day to night shifts often entails sleep
deprivation, and performance decrements during this time
can be comparable to blood alcohol levels that exceed the
legal driving limit (232).

An important determinant of shift work tolerance is
entrainment to shift schedules. Isolated environments can
be more conducive to adaptation to shift work than more
common shift working scenarios, and in circumstances
such as workers experience on the British Antarctic base at
Halley or on oil rigs, most workers can synchronize their
circadian systems to night shifts within a week (233). Even
in these instances, however, it can take weeks for workers
to re-entrain to day shifts (234–236).

Workers who exclusively work night shifts might be
expected to completely entrain their circadian systems to
their work hours (6). However, disrupted endocrine cir-
cadian rhythms persist even among adults who have
worked night shifts for over 2 years. These chronic night
shift workers have altered TSH profiles, and reduced cor-
tisol secretion and increased prolactin secretion during
their waking hours may impair vigilance (237).

Laboratory experiments have attempted to simulate
shift work to clarify its metabolic consequences. As dis-
cussed previously, it is apparent that sleep restriction re-
duces insulin sensitivity; however, circadian misalignment
imposed by LD cycle shifts nearly doubles reductions in
insulin sensitivity after sleep restriction alone in males,
also furthering inflammation (238). Some shift work sim-
ulation experiments have produced conflicting findings
regarding several metabolic variables. During 6 days of
simulated night shift work in healthy adults, there was an
initial increase in fat oxidation and a reduction in carbo-
hydrate and protein oxidation. Diet-induced thermogen-
esis temporarily fell, and energy expenditure declined on
the second and third days, particularly during sleep. Par-
adoxically, appetite diminished despite reduced levels of
the orexigenic hormones leptin and peptide tyrosine ty-
rosine (239). However, in contrast to these findings, nei-
ther three consecutive 3-hour LD cycle advances nor three
consecutive 3-hour LD cycle delays influenced appetite or
energy expenditure in adults, and both shifts increased
carbohydrate oxidation and reduced protein oxidation. In
this study, LD cycle advances acutely reduced cortisol
rhythm amplitudes and increased insulinemia, whereas
LD cycle delays increased glycemia, and decreased gluca-
gon-like peptide-1 concentrations and sleeping energy ex-
penditure (240). Discrepancies between some of these
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findings likely reflect differences in experimental design,
emphasizing the need to compare a variety of shift sched-
ules when attempting to offset deleterious consequences of
shift work.

Other circadian misalignment protocols have provided
new insights into the short-term health consequences of
shift work. Circadian misalignment increases blood pres-
sure (particularly during sleep) and inflammatory mark-
ers, reverses cortisol rhythms, and reduces heart rate vari-
ability and insulin sensitivity in healthy adults (128, 241).
Furthermore, misalignment increases postprandial glyce-
mia despite enhanced late-phase insulin secretion (242).
Prolonged circadian misalignment reduces cortisol secre-
tion (243), and whereas acute circadian misalignment in-
creases insulin secretion (128), 3 weeks of combined sleep
restriction and circadian misalignment impairs insulin se-
cretion, indicating pancreatic dysfunction (244). An im-
portant question is whether chronic exposure to circadian
rhythm and sleep disruption produces adaptations that
mitigate the adverse effects of subsequent disruptions to the
endocrine system. It appears that this may not be the case,
however, because healthy chronic shift workers are still sub-
ject to the deleterious effects of circadian misalignment on
postprandial glucose tolerance and insulin action (245).

Collectively, these studies indicate possible mecha-
nisms linking shift work to increased metabolic disease
risk and show a need to optimize shift work schedules
(direction, duration, and frequency) to minimize deleteri-
ous health effects. In general, changing from backward to
forward shift rotation, shifting from slow to fast shift ro-
tation, and allowing self-scheduling of shifts appear to
benefit the health and quality of life of shift workers (246).
Superficially minor details can profoundly influence ad-
aptation to shift work, as demonstrated by delayed circa-
dian phase (�3 hours) and shortened sleep (�1 hour) in
offshore workers whose night shifts were just an hour later
(247). Because individual tolerance to shift work varies
widely (248), it will be important to find ways of deter-
mining those at highest risk of shift work-induced circa-
dian rhythm and sleep disruption. There is a need to study
further how to optimize shift work schedules based on
chronotype (249) because observational evidence suggests
that associations between shift work schedules and T2DM
are related to chronotype (250), and manipulating shift
work schedules based on chronotype can reduce circadian
rhythm and sleep disruption (251). Notably, because shift
work and jetlag are both initially characterized by at-
tempts to abruptly change sleep/wake cycle timing, many
of the metabolic aberrations seen in acute shift work may
be applicable to individuals experiencing jetlag.

IV. Circadian System Genetics and Metabolism

Because the circadian system is intertwined with metabolic
regulation, recent studies have focused on deciphering
whether circadian system gene single-nucleotide polymor-
phisms (SNPs) are associated with metabolic health in
adults. Studies of clock gene disruption in other animals
paved the way for these studies because whole-body and
tissue-specific clock gene mutation and knockout models
produce various feeding and metabolic aberrations in ro-
dents (252, 253). Perhaps the most severe example of this
is the abolition of behavioral and molecular circadian
rhythms in mice after Bmal1 knockout. These animals also
succumb to premature mortality (254).

In rare cases, genetic abnormalities produce develop-
mental disorders that entail circadian system disorganiza-
tion and metabolic dysfunction. Retinoic acid induced 1
(RAI1) transcriptionally regulates CLOCK, and haploin-
sufficiency of RAI1 is the primary contributor to the
Smith-Magenis syndrome phenotype, a disorder charac-
terized by circadian rhythm and sleep disruption, intellec-
tual disability, and obesity (255).

GWA studies provide the strongest evidence for roles of
more common circadian system gene variants in human
metabolism and disease risk. GWA studies have linked
PER3 to T2DM (256) and CRY2 with fasting glycemia
and insulin concentrations (257). In these studies, mela-
tonin receptor 1B (MTNR1B) variants are also consis-
tently associated with insulin secretion and T2DM risk
(142–144).

Less robust evidence for ties between circadian system
gene variants and metabolism comes from candidate gene
studies. In adults, two BMAL1 haplotypes have been
linked to hypertension and T2DM (258, 259). CLOCK
SNPs have been associated with nonalcoholic steatohepa-
titis, metabolic syndrome, small dense low-density lipo-
protein levels, obesity, and T2DM (260–264). Perhaps the
most studied of these associations is that of obesity; to
date, eight common SNPs have been linked to obesity, and
three have been associated with energy intakes (265).

An ultimate goal of candidate gene studies is to help
personalize healthcare. A recent meta-analysis of up to
28 190 participants from 15 cohort studies sought to iden-
tify whether nutrition and sleep modify associations
between select circadian system gene variants and cardio-
metabolic traits. Carbohydrate intake was positively as-
sociated with fasting glycemia in the presence of the T
allele of MTNR1B rs1387153 (266). Moreover, long (�9
hours) sleep was associated with increased BMI in the
presence of this allele. Finally, sleep duration was posi-
tively associated with high-density lipoprotein cholesterol
among carriers of the A allele of CRY2-rs11605924.
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CLOCK, CRY, and REV-ERB� variants were not found
to interact with nutrition to influence cardiometabolic
health, however.

Collectively, SNP studies suggest that the knowledge of
circadian gene SNPs may eventually help identify those at
greatest risk of some diseases and personalize interven-
tions. However, candidate gene studies are limited by their
sample sizes, their exclusionofall causativegenesandgene
variants, and their limited replicability. Hence, such stud-
ies need replicating in larger, unbiased GWA studies.

V. Countermeasures Against the Metabolic
Consequences of Circadian Rhythm and
Sleep Disruption

Several interventions have promise in mitigating the met-
abolic consequences of circadian rhythm and sleep dis-
ruption (Figure 2). It is important to note that circadian
rhythm and sleep disruption can have distinct effects, and
sleep timing per se has but small effects on the circadian
system phase (267); it is perhaps changes in light exposure
during sleep because of the closing of the eyes that is likely
to have the strongest effect on the circadian system. Never-
theless, the homeostatic regulation of sleep is intertwined
with the circadian pacemaker in the SCN, so strategies to
counter each should consider this interaction, and interven-
tions should be tailored to individual circumstances.

In the case of sleep restriction, sleep extension appears
to benefit many aspects of metabolic health. Among short-
sleeping adults, increased time in bed after a sleep exten-
sion intervention is associated with improvements in glu-
cose regulation and insulin sensitivity (268), and as little as
3 days of sleep extension may benefit insulin metabolism
and increase testosterone in habitually short-sleeping
men. Interestingly, sleep extension reduced the anorexi-
genic peptide hormones leptin and peptide tyrosine ty-
rosine, although effects on food intake were not assessed
(269). Although the need to nap during the daytime may
reflect less robust sleep/wake rhythms and hence be asso-
ciated with adverse health effects including excessive in-
flammation (270), the use of morning and afternoon nap-
ping after sleep restriction reduces increased afternoon
urinary norepinephrine excretion toward normal values
and also returns salivary IL-6 levels toward baseline from
suppression (271).

Sleep extension may also improve body composition.
Indeed, increased sleep duration is prospectively associ-
ated with attenuated increases in adiposity in short-sleep-
ers (272), and findings from a study of overweight, habit-
ually short-sleeping young adults suggest that this may be
related to increased energy expenditure. Among these in-

dividuals, 2 weeks of 2-hours of increased time in bed in
home environments increased sleep duration and daytime
energy expenditure, and reduced appetite and the desire
for highly palatable foods (273). One factor that may in-
fluence the effects of sleep extension interventions on di-
etary habits is chronotype. Using a crossover design to
change the time at which adolescents went to bed and
thereby compare a 6.5-hour to a 10-hour sleep opportu-
nity for five nights, longer sleep opportunity reduced eve-
ning eating among individuals with earlier chronotypes
only, despite similar sleep timing and duration between
chronotypes (274). Hence, there is a need to study further
the influence of chronotype on appropriate bedtime rec-
ommendations. Finally, sleep extension may benefit other
behaviors. A systematic review of naturalistic studies re-
cently found that delaying school start times increases stu-
dents’ sleep durations, and there was some evidence for
concomitant improvements in behavior and affect (275).
Improvements in sleep hygiene are a natural starting point
in attempts to achieve better sleep, and further research on
optimizing such variables as sound, bedding, mattresses,
and temperature may benefit sleep.

Pharmaceutical chronobiotics have potential in coun-
tering circadian rhythm disruption. For example, phar-
maceutical inhibition of CK1 helps synchronize mis-
aligned oscillators and hence speeds adaptation to LD
cycle shifts in mice (276, 277), as can therapeutic SCN
neuropeptide modulation (278). Furthermore, an array of
clock-enhancing small molecules may ultimately provide
effective therapies for disorders of the circadian system
(279). Intriguingly, a circadian clock was recently trans-
planted into a noncircadian organism for the first time,
and such methods could have chronotherapeutic applica-
tions, such as regulation of timely drug release (280). This
is particularly pertinent given that most of the highest-
selling drugs target the products of rhythmically tran-
scribed genes (78). Of note, pharmaceutical chronobiotics
may also benefit metabolic health. REV-ERB agonists, for
example, diminish adiposity, hyperglycemia, and hyper-
lipidemia in diet-induced obese mice (281). However,
none of these compounds has yet been tested for safety or
efficacy in humans.

Other well-established therapies like melatonin (282)
should be further studied for effects on food selection and
metabolism in humans. Interestingly, 1 year of melatonin
supplementationwas recently shownto increase leanbody
mass and reduce fat mass in postmenopausal women with
osteopenia (283), and daily ingestion of prolonged-release
melatonin reduced glycosylated hemoglobin in individu-
als with insomnia and T2DM (284). Finally, caffeine, the
most commonly consumed psychoactive substance world-
wide, changes the period of both the molecular clock in
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vitro and the melatonin rhythm in humans, and timely
caffeine ingestion may therefore help entrainment in such
circumstances as jetlag (285, 286).

Nonpharmaceutical interventions are also capable of
improving circadian system function and sleep, including
blue-blocking glasses and apps to filter short-wavelength
emissions from electronic devices (287, 288). Because the
brightness, color, duration, and timing of light exposure
influence many physiological functions (289–291), it is
feasible that these interventions could influence the phase
of the SCN and numerous other processes independent of
the SCN, including activity in other brain regions and en-
docrine networks that help regulate appetite. By enabling
consumers to have greater control of their light environ-
ments, developments in “smart” light technology may be
particularly important to improving circadian system
alignment and optimizing changes in sleep pressure to co-
incide with times appropriate for individual chronotypes.
In a similar vein, consideration should be given to light
exposure when designing buildings and their windows.

The timing, composition, and quantities of foods in-
gested influence the circadian system (292), as exemplified
by the restoration of behavioral and physiological
rhythms in SCN-ablated rats by a single, timed, hypoen-
ergetic daily meal (293). Time-of-day-restricted feeding
(TRF) limits feeding to a period of several hours and
thereby produces clear feeding/fasting cycles. Because the
molecular clock is intertwined with the metabolic state of
the cellular environment, TRF to the rest phase can invert
clock gene rhythms in many peripheral tissues (294).
When TRF is imposed with ad libitum food availability in
mice, SCN gene expression rhythms are similar to those
without TRF, and TRF can therefore change the phase
relationships between gene expression rhythms in periph-
eral tissues and the SCN. Hypoenergetic diets, however,
can phase-shift peripheral tissue gene expression profiles
and also have a small influence on SCN gene expression
rhythms (295). Whether similar effects of TRF schedules
are evident in humans is currently unclear; if evident, TRF
may too be a useful strategy in situations where resyn-
chronization with the external environment is desired.
TRF produces an array of metabolic health benefits in
various animals (296), but little research has explored
whether this is true of humans. It is apparent, however,
that many of us eat in a very erratic manner, and a pilot
study of eight overweight adults found that reducing the
habitual feeding period from �14 hours to 10–11 hours
reduced energy intake and body mass and improved per-
ceptions of sleep (297). Furthermore, there is some evi-
dence that the timing of food intake may influence the
effectiveness of weight loss interventions because greater
energy intake earlier in the day has been associated with

greater weight loss in prospective studies of overweight
and obese adults (298, 299).

Finally, reciprocity between physical activity and the
circadian system exists because both experimental circa-
dian rhythm disruption and diseases associated with SCN
dysfunction disrupt physical activity patterns (300, 301),
and physical activity influences melatonin rhythms a little,
as well as peripheral tissue gene expression rhythms (302,
303). Furthermore, the circadian system regulates auto-
nomic control of cardiovascular responses to exercise,
resulting in peak cardiac vagal tone withdrawal in the
morning, and a bimodal acrophase in epinephrine and
norepinephrine reactivity to exercise in both the morning
and evening, perhaps helping to explain the increased risk
of cardiovascular events at these times (304). The extent to
which the beneficial metabolic effects of exercise are me-
diated by the circadian system is unclear; regardless, the
health-promoting effects of exercise are extensive. Most
human circadian rhythm and sleep disruption experi-
ments to date have enforced minimal physical activity.
Rodent studies suggest that physical activity offsets some
adverse metabolic effects of light exposure at night (305).
Exercise may also offset some of the deleterious effects of
sleep disruption because resistance training attenuates
the catabolic effects of sleep deprivation on lean body
mass in rats, perhaps by offsetting changes in testoster-
one, IGF-1, and corticosterone (306). Because there is a
paucity of human studies on the subject, it will be im-
portant to study how to optimize exercise protocols to
mitigate metabolic dysfunction induced by circadian
rhythm and sleep disruption.

VI. Conclusions

In modern societies, circadian rhythm and sleep disruption
are perhaps more pervasive than ever. There is increasing
evidence of detrimental effects on metabolic function and
dietary choices, emphasizing the importance of bolstering
circadian system function and addressing sleep disruption.
Because an appreciation of the importance of circadian
system entrainment and sleep may significantly enhance
health and productivity for many individuals, educating
key personnel has great potential to benefit society.

The circadian system optimizes behavior and physiol-
ogy according to the time of day and is organized in a
hierarchical manner with a central clock in the SCN that
is primarily entrained by light. Nowadays, we are com-
monly exposed to less light during the day and more light
at night because of artificial lighting, which may impair
circadian system organization and disrupt sleep, resulting
in widespread adverse effects on metabolic health. Dis-
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rupted sleep, for example, promotes increased energy in-
take, reduced energy expenditure, and insulin resistance in
many individuals, consequences that may be compounded
by an increased propensity to make less healthy dietary
choices. Careful experiments have also shown that circadian
misalignment produces an array of metabolic abnormalities.

Future research should continue to study factors influ-
encing individual variation in the risk of and responses to
circadian rhythm and sleep disruption, such as sex differ-
ences in circadian rhythms (307), associations between
ethnicity and sleep variability (308), and other factors that
contribute to differences in metabolic and behavioral re-
sponses to circadian rhythm and sleep disruption between
individuals. It may not always be possible to extrapolate
findings from animal studies to humans (309), indicating
a need for continued human research, especially in pop-
ulations experiencing frequent circadian rhythm and sleep
disruption. Furthermore, little research has explored such
disruption in diseases like T2DM. There has also been
little research on large populations likely experiencing cir-
cadian rhythm and sleep disruption. People living in
China, for example, may be of particular interest because
the country spans five geographical time zones, yet the
entire nation follows Beijing time. It is plausible that
chronic circadian rhythm and sleep disruption may incur
some adaptations in the affected, although little research
has addressed this to date.

Finally, behavioral and pharmaceutical interventions
show promise in offsetting the adverse effects of circadian
rhythm and sleep disruption. Some of the beneficial effects
of these interventions may be independent of the circadian
system and sleep, however. Because our understanding of
the range of healthy phase relationships between the SCN
and peripheral clock systems is poorly characterized, clar-
ifying these relationships could help personalize prescrip-
tion of chronobiotics, some of which still require human
safety and efficacy studies. Thereafter, comparisons of
these interventions are needed to evaluate which are most
effective and in what circumstances.

Ultimately, we hope that mankind’s historic fascina-
tion with the temporal world will continue to draw inter-
est to the importance of the human timing system in all
facets of health.
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