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Let

Γ def= {(z + w, zw) : |z| ≤ 1, |w| ≤ 1} ⊂ C
2.

A Γ-inner function is a holomorphic map h from the unit disc D to Γ whose bound-
ary values at almost all points of the unit circle T belong to the distinguished 
boundary bΓ of Γ. A rational Γ-inner function h induces a continuous map h|T from 
T to bΓ. The latter set is topologically a Möbius band and so has fundamental 
group Z. The degree of h is defined to be the topological degree of h|T. In a pre-
vious paper the authors showed that if h = (s, p) is a rational Γ-inner function of 
degree n then s2 − 4p has exactly n zeros in the closed unit disc D−, counted with 
an appropriate notion of multiplicity. In this paper, with the aid of a solution of 
an interpolation problem for finite Blaschke products, we explicitly construct the 
rational Γ-inner functions of degree n with the n zeros of s2 − 4p prescribed.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The symmetrized bidisc is the set

Γ def= {(z + w, zw) : |z| ≤ 1, |w| ≤ 1} ⊂ C
2.

Γ has attracted considerable interest in recent years because of its rich function theory [16,1,32], complex 
geometry [21,24,28,34,35,38], some associated operator theory [6,5,14,15,37,36,41] and its connection with 
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the difficult problem of μ-synthesis [12,2,43]. The distinguished boundary of Γ, that is, the Šilov boundary 
of the algebra of continuous functions on Γ that are holomorphic in the interior of Γ, will be denoted by bΓ. 
Concretely, bΓ is the symmetrization of the 2-torus [7, Theorem 2.4]:

bΓ = {(z + w, zw) : |z| = |w| = 1}.

A Γ-inner function is a holomorphic map h from the unit disc D to Γ whose boundary values at almost all 
points of the unit circle T (with respect to Lebesgue measure) belong to bΓ. The Γ-inner functions constitute 
a natural analog of the inner functions of A. Beurling [13], which play a central role in the function theory 
of the unit disc. For example, it was known to Nevanlinna and Pick that an n-point interpolation problem 
for functions in the Schur class is solvable if and only if it is solvable by a rational inner function of degree 
at most n. Likewise, every n-point interpolation problem for functions in the class Hol(D, Γ) of holomorphic 
maps from D to Γ, if solvable, has a rational Γ-inner solution (for example, [22, Theorem 4.2]). Here, the 
degree of a rational Γ-inner function h is defined to be the topological degree of the restriction of h mapping T

continuously to bΓ. Since bΓ is homeomorphic to a Möbius band, its fundamental group is Z, and so the 
degree of h is an integer; it will be denoted by deg(h).

We shall address the analog for rational Γ-inner functions of a problem about rational inner functions 
solved by W. Blaschke [17]. The Argument Principle tells us that a rational inner function ϕ of degree n
has exactly n zeros in D, counted with multiplicity, from which fact one deduces that ϕ is a finite Blaschke 
product

ϕ(λ) = c

n∏
j=1

λ− αj

1 − ᾱjλ

where |c| = 1 and α1, . . . , αn are the zeros of ϕ. In similar fashion, we should like to write down, as explicitly 
as possible, the general rational Γ-inner function of degree n. It was shown in [3] that if h = (s, p) is a rational 
Γ-inner function of degree n then s2 − 4p has exactly n zeros in the closed unit disc D−, counted with an 
appropriate notion of multiplicity. The n zeros of s2 − 4p can be regarded as analogs of the αj for present 
purposes.

The variety

R def= {(2z, z2) : z ∈ C}

= {(s, p) ∈ C
2 : s2 = 4p} (1.1)

plays a special role in the function theory of Γ: it is called the royal variety. For a rational Γ-inner function 
h = (s, p), the zeros of s2−4p in D− are the points λ such that h(λ) ∈ R; we shall call them the royal nodes
of h. If σ ∈ D

− is a royal node of h then h(σ) = (−2η, η2) for some η ∈ D
−; we call η the royal value of h

corresponding to the royal node σ.
Let us formalize the problem of describing the general rational Γ-inner function in terms of its royal 

nodes and values.

Problem 1.1. Given distinct points σ1, . . . , σn in D− and values η1, . . . , ηn in D− find if possible a rational 
Γ-inner function h of degree n such that

h(σj) = (−2ηj , η2
j ) for j = 1, . . . , n.

The results of this paper show that there is a close connection between Problem 1.1 and an n-point 
interpolation problem for finite Blaschke products of degree n in which there are interpolation nodes in 
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both D and T and in which tangential information is specified at interpolation nodes in T. To formulate 
this problem we introduce some terminology.

Definition 1.2. Let n ≥ 1 and 0 ≤ k ≤ n. By Blaschke interpolation data we mean a triple (σ, η, ρ) where

(1) σ = (σ1, σ2, . . . , σn) is an n-tuple of distinct points such that σj ∈ T for j = 1, . . . , k and σj ∈ D for 
j = k + 1, . . . , n;

(2) η = (η1, η2, . . . , ηn) where ηj ∈ T for j = 1, . . . , k and ηj ∈ D for j = k + 1, . . . , n;
(3) ρ = (ρ1, ρ2, . . . , ρk) where ρj > 0 for j = 1, . . . , k.

For such data the Blaschke interpolation problem with data (σ, η, ρ) is the following:

Problem 1.3. Find if possible a rational inner function ϕ on D (that is, a finite Blaschke product) of degree 
n with the properties

ϕ(σj) = ηj for j = 1, . . . , n (1.2)

and

Aϕ(σj) = ρj for j = 1, . . . , k, (1.3)

where Aϕ(eiθ) denotes the rate of change of the argument of ϕ(eiθ) with respect to θ.

Problem 1.3 has been much studied, for example [39,40,11,29,26,42,27]. Without the tangential conditions 
(1.3), or some other constraint (for example, a degree constraint), the problem would arguably be ill-posed: 
solvability would depend only on the interpolation conditions at nodes in D, and the conditions at σ1, . . . , σk

would be irrelevant. With the conditions (1.3), however, the problem has an elegant solution. There is a 
simple criterion for the existence of a solution of Problem 1.3 in terms of an associated “Pick matrix”, and 
better still, there is an explicit parametrization of all solutions ϕ by a linear fractional expression in terms 
of a parameter ζ ∈ T. There are polynomials a, b, c and d of degree at most n such that the general solution 
of Problem 1.3 is

ϕ = aζ + b

cζ + d
(1.4)

where the parameter ζ ranges over a cofinite subset of T (see Theorem 3.3 below). The polynomials a, b, c
and d are unique subject to a certain normalization.

Analogously, Problem 1.1 needs to be modified by the addition of tangential conditions at interpolation 
nodes in T in order to be well posed. We are led to the following refinement of Problem 1.1.

Problem 1.4. Given Blaschke interpolation data (σ, η, ρ) with n interpolation nodes of which k lie in T, find 
if possible a rational Γ-inner function h = (s, p) of degree n such that

h(σj) = (−2ηj , η2
j ) for j = 1, . . . , n

and

Ap(σj) = 2ρj for j = 1, . . . , k.
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We shall call this the royal Γ-interpolation problem with data (σ, η, ρ).
The connection between Problems 1.4 and 1.3 can be described with the aid of a certain 1-parameter 

family of rational functions Φω on Γ, where ω ∈ T. These functions play a central role in the function theory 
of Γ (for example, [6,7]). They are defined by

Φω(s, p) = 2ωp− s

2 − ωs
. (1.5)

Φω is holomorphic on Γ, except for a singularity at (2ω̄, ω̄2), and maps Γ into D−. They constitute a universal 
set of Carathéodory extremal functions for the interior of Γ [7, Corollary 3.4].

A consequence of Theorems 4.4 and 4.9 is:

Theorem 1.5. For Blaschke interpolation data (σ, η, ρ) the following two statements are equivalent.

(1) Problem 1.4 with data (σ, η, ρ) is solvable by a rational Γ-inner function h such that h(D) �⊂ R;
(2) Problem 1.3 with data (σ, η, ρ) is solvable and there exist s0, p0 ∈ C such that

|s0| < 2, |p0| = 1,

s0 = s̄0p0,

s0a− 2b + 2p0c− s0d = 0,

where a, b, c and d are the polynomials in the normalized parametrization (1.4) of the solutions of 
Problem 1.3.

The Γ-inner functions whose range is contained in R, those of the form (2f, f2) for some inner f , behave 
differently from others.

Theorem 4.9 gives a formula for a solution h of Problem 1.4 in terms of s0, p0, a, b, c and d. Since the 
polynomials a, b, c and d are computed in Theorem 3.9 and Remark 3.11, we obtain an explicit solution of 
Problem 1.4. The algorithm is presented in Section 5.

The connection between the solution sets of the royal Γ-interpolation problem and the Blaschke interpo-
lation problem can be made explicit with the aid of the functions Φω.

Theorem 1.6. Let (σ, η, ρ) be Blaschke interpolation data. Suppose that h is a solution of Problem 1.4 with 
these data and that h(D) �⊂ R. For all ω ∈ T \ {−η̄1, −η̄2, . . . , −η̄k}, the function Φω ◦ h is a solution of 
Problem 1.3 with the same data. Conversely, for every solution ϕ of the Blaschke interpolation problem with 
data (σ, η, ρ), there exists ω ∈ T such that ϕ = Φω ◦ h.

This theorem is a corollary to Theorem 4.4.
In an earlier paper [3] the authors gave another construction of the general rational Γ-inner function 

h = (s, p) of degree n, starting from different data, to wit, the royal nodes of h and the zeros of s. One 
step in the construction in [3] is to perform a Fejér–Riesz factorization of a non-negative trigonometric 
polynomial, whereas, in contrast, the construction in this paper can be carried out entirely in rational 
arithmetic.

2. Background material

In this section we establish some notation and terminology and present some elementary facts about the 
set Γ discussed in the introduction.

The following results afford useful criteria for membership of Γ and bΓ [7].
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Proposition 2.1. Let (s, p) ∈ C
2. The point (s, p) lies in Γ if and only if

|s| ≤ 2 and |s− sp| ≤ 1 − |p|2.

The point (s, p) lies in bΓ if and only if

|s| ≤ 2, |p| = 1, and s− sp = 0.

The interior of Γ, the open symmetrized bidisc

G def= {(z + w, zw) : |z| < 1, |w| < 1} (2.1)

will also arise.
Proposition 2.1 implies that if h = (s, p) ∈ Hol(D, C2) then h is Γ-inner if and only if p is inner, |s| is 

bounded by 2 on D and s(τ) − s(τ)p(τ) = 0 for almost all τ ∈ T with respect to Lebesgue measure (by 
Fatou’s theorem, s and p have non-tangential limits a.e. on T). This paper focuses on the case that h is 
rational (that is, s and p are rational), in which case s = s̄p on the whole of T.

Let us clarify the notion of the degree of a rational Γ-inner function h.

Definition 2.2. The degree deg(h) of a rational Γ-inner function h is defined to be h∗(1), where h∗ : Z =
π1(T) → π1(bΓ) is the homomorphism of fundamental groups induced by h when it is regarded as a 
continuous map from T to bΓ.

According to [3, Proposition 3.3], for any rational Γ-inner function h = (s, p), deg(h) is equal to the 
degree deg(p) (in the usual sense) of the finite Blaschke product p.

We denote by S the Schur class, which comprises all holomorphic maps from D to D−.

Definition 2.3. For any differentiable function f : T → C \ {0} the phasar derivative of f at z = eiθ ∈ T is 
the derivative with respect to θ of the argument of f(eiθ) at z; we denote it by Af(z).

Thus, if f(eiθ) = R(θ)eig(θ) is differentiable, where g(θ) ∈ R and R(θ) > 0, then g is differentiable on 
[0, 2π) and the phasar derivative of f at z = eiθ ∈ T is equal to

Af(eiθ) = d

dθ
arg f(eiθ) = g′(θ). (2.2)

The above is not standard notation, but we shall find it useful in the sequel. We summarize some elementary 
properties of phasar derivatives.

Proposition 2.4.

(1) For differentiable functions ψ, ϕ : T → C \ {0} and for any c ∈ C \ {0},

A(ψϕ) = Aψ + Aϕ and A(cψ) = Aψ. (2.3)

(2) For any rational inner function ϕ and for all z ∈ T,

Aϕ(z) = z
ϕ′(z)
ϕ(z) . (2.4)



1168 J. Agler et al. / J. Math. Anal. Appl. 447 (2017) 1163–1196
(3) If α ∈ D and

Bα(z) = z − α

1 − αz

then

ABα(z) = 1 − |α|2
|z − α|2 > 0 for z ∈ T.

(4) For any rational inner function p,

Ap(z) > 0 for all z ∈ T.

Recall that a point λ ∈ D
− is a royal node of a Γ-inner function h if and only if h(λ) is in the royal 

variety R = {(2z, z2) : z ∈ C}.
In the next proposition we shall use the notation Φ(z, s, p) as a synonym for Φz(s, p). Thus, for any 

function υ on D,

Φ ◦ (υ, h) = 2υp− s

2 − υs
.

Proposition 2.5. Let h = (s, p) be a rational Γ-inner function and let σ be a royal node of h on T. Then

(i) there exists η ∈ T such that p(σ) = η2 and s(σ) = −2η;
(ii) σ is a zero of s2 − 4p of multiplicity at least 2;
(iii) for any finite Blaschke product υ,

Φ ◦ (υ, h)(σ) = η

independent of υ;
(iv) for any finite Blaschke product υ such that υ(σ) �= −η̄,

AΦ ◦ (υ, h)(σ) = 1
2Ap(σ).

Proof. (i) By [1, Lemma 7.10], the royal nodes of h = (s, p) on T are precisely the points σ ∈ T such that 
|s(σ)| = 2. Thus there exists η ∈ T such that s(σ) = −2η and, since 4p(σ) = s(σ)2, we have p(σ) = η2.

(ii) By Proposition 2.1, on T we have

p̄(4p− s2) = 4 − (p̄s)s = 4 − s̄s = 4 − |s|2 ≥ 0.

Since |s(σ)| = 2, the function f(θ) = 4 − |s(eiθ)|2 has a local minimum at ξ where σ = eiξ. Therefore

0 = d

dθ

(
4 − |s(eiθ)|2

)
|ξ

= d

dθ

(
p̄(4p− s2)(eiθ)

)
|ξ

= p(eiξ)ieiθ(4p′(eiξ) − 2ss′(eiξ)). (2.5)
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Hence

(4p− s2)′(σ) = 0,

and so σ is a zero of s2 − 4p of multiplicity at least 2.
(iii) If υs(σ) �= 2, then

Φ ◦ (υ, h)(σ) = 2υp− s

2 − υs
(σ)

=
2υ 1

4s
2 − s

2 − υs
(σ)

=
s(υ 1

2s− 1)
2(1 − 1

2υs)
(σ)

= −1
2s(σ) = η. (2.6)

Thus Φ ◦ (υ, h)(σ) = η independent of υ, as long as υs(σ) �= 2, that is, υ(σ) �= −η̄.
For any finite Blaschke product υ such that υ(σ) = −η̄, by Proposition 2.4, we have

Ap(σ) = σ
p′(σ)
p(σ) = ση̄2p′(σ)

and

Aυ(σ) = σ
υ′(σ)
υ(σ) = −σ

υ′(σ)
η̄

.

Since υ and p are inner functions

Aυ(σ) �= −1
2Ap(σ),

which is equivalent to

υ′(σ) �= 1
2 η̄

3p′(σ).

Note that υ(σ) = −η̄ implies that

2υ(σ)p(σ) − s(σ) = 0 = 2 − υ(σ)s(σ),

and so

Φ ◦ (υ, h)(σ) = (2υp− s)′

(2 − υs)′ (σ)

= 2υ′p + 2υp′ − s′

−υ′s− υs′
(σ)

= 2υ′η2 + 2(−η̄)p′ + η̄p′

−υ′(−2η) − (−η̄)(−η̄p′) (σ)

= 2η2υ′ − η̄p′

2ηυ′ − η̄2p′
(σ)

= η
2ηυ′ − η̄2p′

2ηυ′ − η̄2p′
(σ) = η. (2.7)

Thus Φ ◦ (υ, h)(σ) = η independent of υ.



1170 J. Agler et al. / J. Math. Anal. Appl. 447 (2017) 1163–1196
(iv) For any finite Blaschke product υ such that υ(σ) �= −η̄, by Proposition 2.4, we have

AΦ ◦ (υ, h)(σ) = A(2υp− s)(σ) −A(2 − υs)(σ)

= σ
2υ′p + 2υp′ − s′

2υp− s
(σ) − σ

−υ′s− υs′

2 − υs
(σ)

= σ
2υ′η2 + 2υp′ + η̄p′

2υη2 + 2η (σ) + σ
υ′(−2η) + υ(−η̄p′)

2 + 2υη (σ)

= σ

2 + 2υη
(
2υ′η + 2η̄υp′ + η̄2p′ − 2υ′η − υη̄p′

)
(σ)

= ση̄2p′(σ)(1 + υη)
2(1 + υη)

= 1
2
σp′(σ)
p(σ)

= 1
2Ap(σ). � (2.8)

3. The Blaschke interpolation problem and rational Γ-inner functions

The Blaschke interpolation problem, Problem 1.3, is an algebraic variant of the classical Pick interpolation 
problem. One seeks a Blaschke product of a given degree n satisfying n interpolation conditions, rather than 
merely a Schur-class function, and one admits interpolation nodes in both the open unit disc and the unit 
circle. As with the classical Nevanlinna–Pick problem, there is a criterion for the solvability of such a 
problem in terms of the positivity of a ‘Pick matrix’ formed from the interpolation data; however, to obtain 
a concise formulation, one has to impose additional interpolation conditions, on phasar derivatives at the 
interpolation nodes on the circle, and the bounds on these phasar derivatives appear on the diagonal entries 
of the Pick matrix. This modified Pick matrix appears in the work of several authors [10,4,40,25], but for 
simplicity we shall continue to speak of the Pick matrix. To be precise, the Pick matrix associated with 
Blaschke interpolation data (σ, η, ρ) as in Definition 1.2 is defined to be the n × n matrix M = [mij ]ni,j=1
with entries

mij =

⎧⎪⎪⎨
⎪⎪⎩

ρi if i = j ≤ k

1 − ηiηj
1 − σiσj

otherwise.

Remark 3.1. Of course, it can happen for n-point Blaschke interpolation data (σ, η, ρ) that there exists a 
Blaschke product ϕ of degree strictly less than n satisfying the conditions (1.2) to (1.3), but in the present 
context we are concerned with solutions of degree exactly n.

In the case that n = k, that is, where all the interpolation nodes lie on the unit circle there is an elegant 
solvability criterion due to D. Sarason [40]. His result implies that, when n = k, Problem 1.3 is solvable if and 
only if the corresponding Pick matrix M is minimally positive, that is, when M ≥ 0 and there is no positive 
diagonal n ×n matrix D, other than D = 0, such that M ≥ D. Actually, Sarason considers interpolation by 
functions in the Schur class, not just Blaschke products, and so there is a subtlety concerning the existence 
of phasar derivatives at boundary points (related to the Julia–Carathéodory theorem), but since we are 
only concerned with rational functions, no such difficulty will arise here.

The following result is well known – see [10, Sections 21.1 and 21.4] or [4,40,25].
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Proposition 3.2. If Problem 1.3 is solvable then the corresponding Pick matrix M is positive definite and the 
solution of the problem is not unique.

Several authors have developed deep and far-reaching machines to characterize solvability of interpolation 
problems for classes related to Problem 1.3, and to parametrize their sets of solutions [10,11,19,30,20,25]; 
there is a brief history in [10, Notes for Part V, p. 500]. A paper which addresses the combined interior and 
boundary problem specifically for finite Blaschke products is [26]. However, we have not found the precise 
statement that we need, and so, for the convenience of the reader, we give a self-contained treatment.

Our strategy for the construction of the general solution of Problem 1.3 is to adjoin an additional 
boundary interpolation condition; this augmented problem will have a unique solution, and in this way we 
obtain all solutions of Problem 1.3 in terms of a unimodular parameter.

The following is a refinement of the Sarason Interpolation Theorem [40], in that we consider interpola-
tion nodes both on the circle and in the open disc. The result is contained in [18, Theorem 2.5]. See also 
[20, Theorem 5.2] for a solution to the analogous interpolation problem for the upper half plane.

Theorem 3.3. Let M be the Pick matrix associated with Blaschke interpolation data (σ, η, ρ).

(1) There exists a function ϕ in the Schur class such that

ϕ(σj) = ηj for j = 1, . . . , n, (3.1)

and the phasar derivative Aϕ(σj) exists and satisfies

Aϕ(σj) ≤ ρj for j = 1, . . . , k (3.2)

if and only if M ≥ 0;
(2) if M is positive and of rank r < n then there is a unique function ϕ in the Schur class satisfying 

conditions (3.1) and (3.2), and this function is a Blaschke product of degree r;
(3) the unique function ϕ in statement (2) satisfies

Aϕ(σj) = ρj for j = 1, . . . , k (3.3)

if and only if M is minimally positive.

Consider a point τ ∈ T distinct from σ1, . . . , σk. For each ζ ∈ T we seek a solution ϕ to Problem 1.3
that satisfies the additional interpolation condition ϕ(τ) = ζ and Aϕ(τ) = ρζ,τ , where ρζ,τ > 0 is chosen 
to make the Pick matrix Bζ,τ of the augmented interpolation problem singular. We record the following 
simple lemma without proof.

Lemma 3.4. If C is an n × n positive definite matrix, u is an n × 1 column, ρ = 〈C−1u, u〉 and the 
(n + 1) × (n + 1) matrix B is defined by

B =
[
C u
u∗ ρ

]
,

then B is positive semi-definite, rank(B) = n and

B

[
−C−1u

1

]
= 0.
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The Pick matrix Bζ,τ of the augmented problem is the (n + 1) × (n + 1) matrix,

Bζ,τ =
[
M uζ,τ

u∗
ζ,τ ρζ,τ

]
(3.4)

where M is the Pick matrix associated with Problem 1.3, uζ,τ is the n × 1 column matrix defined by

uζ,τ =

⎡
⎢⎣

1−η1ζ
1−σ1τ

...
1−ηnζ
1−σnτ

⎤
⎥⎦ (3.5)

and

ρζ,τ = 〈M−1uζ,τ , uζ,τ 〉.

Thus the augmented problem that we are considering is the Blaschke interpolation problem with data 
(σ̃, η̃, ρ̃) where

σ̃ = (σ, τ), η̃ = (η, ζ), ρ̃ = (ρ, ρζ,τ ).

Proposition 3.5. Let ψ be a Blaschke product of degree N . Let σ = (σ1, σ2, . . . , σn) be an n-tuple of distinct 
points in D−, let ηj = ψ(σj) for j = 1, . . . , n and let ρj = Aψ(σj) for j such that |σj | = 1. The Pick matrix 
for the data (σ, η, ρ) has rank at most N .

Proof. In the case that the σj all lie in D the assertion is well known – see [4]. It follows easily from the 
fact that in this case the Pick matrix M is given by

M =
[〈

(1 − TψT
∗
ψ)kλj

, kλi

〉]n
i,j=1

,

where kλ denotes the Szegő kernel and Tψ is the analytic Toeplitz operator on the Hardy space H2 with 
symbol ψ.

Consider the case that σ1, . . . , σk ∈ T and σk+1, . . . , σn ∈ D. Let M be the Pick matrix for the data 
(σ, η, ρ). Choose r ∈ (0, 1) and let λj = rσj for j = 1, . . . , n. By the foregoing observation, the matrix

M(r) def=
[

1 − ψ(rσi)ψ(rσj)
1 − r2σiσj

]n
i,j=1

has rank at most N . Let r → 1−. It follows from L’Hôpital’s rule that the jth diagonal entry, for j = 1, . . . , k, 
tends to Aψ(σj). The remaining entries of M(r) also tend to the corresponding entries of M , and so 
M(r) → M . It follows that rank(M) ≤ N . �
Proposition 3.6. If the Pick matrix M associated with Problem 1.3 is positive definite then, for any τ ∈
T \ {σ1, . . . , σk} and ζ ∈ T there is at most one solution ϕ of Problem 1.3 for which ϕ(τ) = ζ.

Proof. Let ψ be a solution of Problem 1.3 such that ψ(τ) = ζ and let ρτ = Aψ(τ). Thus ψ is in the Schur 
class and satisfies
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ψ(σj) = ηj for j = 1, . . . , n,

Aψ(σj) = ρj for j = 1, . . . , k,

ψ(τ) = ζ,

Aψ(τ) = ρτ . (3.6)

Since ψ is a Blaschke product of degree n, it follows from Proposition 3.5, applied to the augmented problem 
with data (σ̃, η̃, (ρ, ρτ )), that the corresponding Pick matrix

M̃ =
[
M uζ,τ

u∗
ζ,τ ρτ

]

has rank less than or equal to n and so it is singular. Thus

ρτ = 〈M−1uζ,τ , uζ,τ 〉 = ρζ,τ ,

and so Aψ(τ) is the same for every solution of Problem 1.3 such that ψ(τ) = ζ. By Theorem 3.3, there is a 
unique function ψ in the Schur class satisfying the conditions (3.6), and hence there is at most one solution 
of Problem 1.3 such that ψ(τ) = ζ. �

We denote by ej the jth standard basis vector in Cn.

Proposition 3.7. If the Pick matrix M associated with Problem 1.3 is positive definite, if τ ∈ T \{σ1, . . . , σk}, 
ζ ∈ T and

〈M−1uζ,τ , ej〉 �= 0 (3.7)

for j = 1, . . . , k, then there exists a unique solution ϕ to Problem 1.3 such that ϕ(τ) = ζ.

Proof. Observe that by Lemma 3.4, if Bζ,τ is defined by equation (3.4), then Bζ,τ ≥ 0 and rank(Bζ,τ ) = n. 

Further, Lemma 3.4 guarantees that ker(Bζ,τ ) is spanned by the vector 
[
−M−1uζ,τ

1

]
. The inequation (3.7)

implies, for j = 1, . . . , k, that 
[
−M−1uζ,τ

1

]
�⊥

[
ej
0

]
and therefore, for every ε > 0, we have

〈(
Bζ,τ − ε

[
ej
0

]
⊗

[
ej
0

])[
−M−1uζ,τ

1

]
,

[
−M−1uζ,τ

1

]〉
=

− ε

∣∣∣∣
〈[

−M−1uζ,τ

1

]
,

[
ej
0

]〉∣∣∣∣
2

< 0.

Thus

Bζ,τ − ε

[
ej
0

]
⊗

[
ej
0

]
�≥ 0.

It follows that Bζ,τ is minimally positive and the proposition follows from Theorem 3.3. �
In the light of Proposition 3.7 we define the exceptional set Zτ for Problem 1.3 to be

Zτ = {ζ ∈ T : for some j, 1 ≤ j ≤ k, 〈M−1uζ,τ , ej〉 = 0}. (3.8)
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Define n × 1 vectors xλ and yλ for λ ∈ D
− \ {σ1, . . . , σk} by the formulas

xλ =

⎡
⎢⎣

1
1−σ1λ

...
1

1−σnλ

⎤
⎥⎦ , yλ =

⎡
⎢⎣

η1
1−σ1λ

...
ηn

1−σnλ

⎤
⎥⎦ , (3.9)

so that

uζ,τ = xτ − ζyτ . (3.10)

Proposition 3.8.

(i) For any τ ∈ T \ {σ1, . . . , σk} if

〈xτ ,M
−1ej〉 = 0 = 〈yτ ,M−1ej〉 for some j, 1 ≤ j ≤ k,

then Zτ = T.
(ii) There exist uncountably many τ ∈ T \ {σ1, . . . , σk} such that the equation

〈xτ ,M
−1ej〉 = 0 = 〈yτ ,M−1ej〉

does not hold for any j, 1 ≤ j ≤ k. Moreover, for such τ , the set Zτ consists of at most k points.

Proof. (i) Let

Zj
τ = {ζ ∈ T : (xτ − ζyτ )⊥M−1ej};

By the definition (3.8) and equation (3.10),

Zτ = Z1
τ ∪ · · · ∪ Zk

τ .

Note that Zj
τ = T if and only if, for every ζ ∈ T,

〈xτ − ζyτ ,M
−1ej〉 = 〈xτ ,M

−1ej〉 − ζ〈yτ ,M−1ej〉 = 0.

Hence, for τ ∈ T \ {σ1, . . . , σk}, the set Zj
τ = T if and only if

〈xτ ,M
−1ej〉 = 0 = 〈yτ ,M−1ej〉.

Otherwise, Zj
τ consists of at most one point ζjτ ∈ T.

We shall call a point τ ∈ T \{σ1, . . . , σk} unsuitable if there exists j, 1 ≤ j ≤ k, such that M−1ej⊥{xτ , yτ}.
(ii) For j, 1 ≤ j ≤ k, let

Ej = {τ ∈ T \ {σ1, . . . , σk} : {xτ , yτ}⊥M−1ej}.

Suppose that every τ ∈ T \ {σ1, . . . , σk} is unsuitable. Then

T \ {σ1, . . . , σk} = E1 ∪ · · · ∪Ek.

Pick j0 such that Ej0 is uncountable. Thus, for every τ ∈ Ej0 ,
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〈xτ ,M
−1ej0〉 = 0 = 〈yτ ,M−1ej0〉.

Let

M−1ej0 =

⎡
⎣ c1

...
cn

⎤
⎦ .

By equations (3.9),

〈xτ ,M
−1ej0〉 =

n∑
i=1

ci
1 − σiτ

= 0

and

〈yτ ,M−1ej0〉 =
n∑

i=1

ciηi
1 − σiτ

= 0.

Since the functions fi(λ) = 1
1−σiλ

, i = 1, . . . , n, restricted to the infinite bounded set Ej0 ⊂ C are linearly 
independent, ci = 0 for all i and M−1ej0 = 0. This is impossible. Therefore there exists τ ∈ T \ {σ1, . . . , σk}
such that the equalities

〈xτ ,M
−1ej〉 = 0 = 〈yτ ,M−1ej〉

do not hold for any j, 1 ≤ j ≤ k. Hence there exists τ ∈ T \ {σ1, . . . , σk} such that the set Zτ consists of at 
most k points. �

Our final result concerning Problem 1.3 is that the particular solution guaranteed by Proposition 3.7 is 
uniquely determined by ζ and varies linear-fractionally in ζ. We suppose that Blaschke interpolation data 
(σ, η, ρ) are given, as in Definition 1.2.

Theorem 3.9. Let the Pick matrix M for Problem 1.3 be positive definite, and let τ ∈ T \ {σ1, . . . , σk} be 
such that the set

Zτ = {ζ ∈ T : uζ,τ⊥M−1ej for some j, 1 ≤ j ≤ k}

contains at most k points, where uζ,τ is defined by equation (3.5).

(1) If ζ ∈ T \ Zτ , then there is a unique solution ϕζ of Problem 1.3 that satisfies ϕζ(τ) = ζ.
(2) There exist unique polynomials aτ , bτ , cτ , and dτ of degree at most n such that

[
aτ (τ) bτ (τ)
cτ (τ) dτ (τ)

]
=

[
1 0
0 1

]
(3.11)

and, for all ζ ∈ T, if ϕ is a solution of Problem 1.3 such that ϕ(τ) = ζ, then

ϕ(λ) = aτ (λ)ζ + bτ (λ)
cτ (λ)ζ + dτ (λ) (3.12)

for all λ ∈ D.
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(3) If ã, b̃, c̃, d̃ are rational functions satisfying the equation

[
ã(τ) b̃(τ)
c̃(τ) d̃(τ)

]
=

[
1 0
0 1

]
(3.13)

and such that for three distinct points ζ in T \ Zτ , the equation

aτ (λ)ζ + bτ (λ)
cτ (λ)ζ + dτ (λ) = ã(λ)ζ + b̃(λ)

c̃(λ)ζ + d̃(λ)
(3.14)

holds for all λ ∈ D, then there exists a rational function X such that ã = Xaτ , b̃ = Xbτ , c̃ = Xcτ and 
d̃ = Xdτ .

Proof. (1) By Proposition 3.8, there exists τ ∈ T \ {σ1, . . . , σk} such that the set Zτ consists of at most k
points. Proposition 3.7 asserts that if M is positive definite and ζ ∈ T \Zτ then there exists a solution ϕ to 
Problem 1.3 with ϕ(τ) = ζ. By Proposition 3.6, the solution (when it exists) is unique.

(2) Let ζ ∈ T be such that there is a solution ϕ of Problem 1.3 satisfying ϕ(τ) = ζ. With the setup of 
the proof of Proposition 3.7, we have Bζ,τ ≥ 0 and

ran(Bζ,τ ) =
[
−M−1uζ,τ

1

]⊥
. (3.15)

For λ ∈ D, we define a (n + 1) × 1 column matrix vζ,λ, by

vζ,λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1−η1ϕ(λ)
1−σ1λ

...
1−ηnϕ(λ)

1−σnλ

1−ζϕ(λ)
1−τλ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and define a (n + 2) × (n + 2) matrix Cζ,λ by

Cζ,λ =
[
Bζ,τ vζ,λ

v∗ζ,λ
1−|ϕ(λ)|2

1−|λ|2

]
.

As Cζ,λ is the localization of the Pick matrix for ϕ to the points σ1, . . . , σn, τ, λ, it follows that Cζ,λ ≥ 0. 
Hence, equation (3.15) implies that

〈
vζ,λ ,

[
−M−1uζ,τ

1

]〉
= 0. (3.16)

Note that

uζ,τ = xτ − ζyτ and vζ,λ =
[

xλ
1

1−τλ

]
− ϕ(λ)

[
yλ
ζ

1−τλ

]
(3.17)

where n × 1 vectors xλ and yλ are defined for λ ∈ D
− \ {σ1, . . . , σk} by the formulas (3.9). Hence, by 

equations (3.16) and (3.17), we have
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0 =
〈
vζ,λ ,

[
−M−1uζ,τ

1

]〉

=
〈[

xλ
1

1−τλ

]
− ϕ(λ)

[
yλ
ζ

1−τλ

]
,

[
−M−1(xτ − ζyτ )

1

]〉

= 〈(xλ − ϕ(λ)yλ),−M−1(xτ − ζyτ )〉 + 1 − ζ̄ϕ(λ)
1 − τλ

. (3.18)

Therefore

〈xλ − ϕ(λ)yλ, ζM−1yτ −M−1xτ 〉 + 1
1 − τλ

− ϕ(λ) ζ

1 − τλ
= 0. (3.19)

Equation (3.19) for ϕ(λ) yields, after simplification,

ϕ(λ) = A(λ)ζ + B(λ)
C(λ)ζ + D(λ) , (3.20)

where

A(λ) = −〈xλ,M
−1xτ 〉 + 1

1 − τλ
, (3.21)

B(λ) = 〈xλ,M
−1yτ 〉, (3.22)

C(λ) = −〈yλ,M−1xτ 〉, (3.23)

and

D(λ) = 〈yλ,M−1yτ 〉 + 1
1 − τλ

. (3.24)

As the right hand sides of equations (3.21)–(3.24) depend only on the prescribed data of Problem 1.3, 
equation (3.20) implies that ϕ is unique as claimed.

To define aτ , bτ , cτ , dτ with the desired properties, let

π(λ) = (1 − τλ)
n∏

j=1

1 − σjλ

1 − σjτ
,

and set

aτ = πA, bτ = πB, cτ = πC, and dτ = πD. (3.25)

With these definitions, equation (3.11) follows immediately from equations (3.21)–(3.24) and equation (3.12)
follows from equation (3.20).

(3) To prove the final assertion of Theorem 3.9, assume that ã, b̃, c̃, d̃ are rational functions satisfying 
equation (3.13) and such that for 3 distinct points ζ in T \ Zτ , equation (3.14) holds for all λ ∈ D. Cross 
multiplication in equation (3.14) yields

ãcτ ζ
2 + (ãdτ + b̃cτ )ζ + b̃dτ = aτ c̃ζ

2 + (aτ d̃ + bτ c̃)ζ + bτ d̃

for 3 distinct values of ζ. Hence,

ãcτ = aτ c̃, (3.26)

ãdτ + b̃cτ = aτ d̃ + bτ c̃ (3.27)
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and

b̃dτ = bτ d̃. (3.28)

Solving equation (3.26) for c̃ and equation (3.28) for b̃ and then substituting into equation (3.27), we deduce 
that

ã

aτ
= d̃

dτ
.

Here, as equation (3.11) guarantees that aτ and dτ are not identically zero, ã/aτ and d̃/dτ are well defined 
rational functions. Since equations (3.26) and (3.28) imply that

c̃ = ã

aτ
cτ and b̃ = d̃

dτ
bτ ,

the final assertion of the theorem follows with X = ã/aτ .
To see the uniqueness of polynomials aτ , bτ , cτ , dτ assume that there is a second collection a1, b1, c1, 

d1 of polynomials of degree ≤ n such that equations (3.13) and (3.14) hold. By what was proved in the 
previous paragraph, it is not the case that both collections of polynomials are relatively prime. Otherwise, 
there is a third collection a2, b2, c2, d2 of polynomials of degree ≤ n − 1 such that equations (3.11) and 
(3.12) hold. This contradicts the fact that deg(ϕ) = n for all ζ ∈ T \ Zτ . �

In view of Theorem 3.9 we can make precise what we mean by a parametrization of the solutions of a 
Blaschke interpolation problem.

Definition 3.10. Let (σ, η, ρ) be Blaschke interpolation data, with n distinct interpolation nodes of which k
lie in T. Suppose that Problem 1.3 is solvable. We say that

ϕ = aζ + b

cζ + d

is a normalized linear fractional parametrization of the solutions of Problem 1.3 if

(1) a, b, c, d are polynomials of degree at most n;
(2) for all but at most k values of ζ ∈ T, the function

ϕ(λ) = a(λ)ζ + b(λ)
c(λ)ζ + d(λ) (3.29)

is a solution of Problem 1.3;
(3) for some point τ ∈ T \ {σ1, . . . , σk}, [

a(τ) b(τ)
c(τ) d(τ)

]
=

[
1 0
0 1

]
;

(4) every solution ϕ of Problem 1.3 has the form (3.29) for some ζ ∈ T.

Remark 3.11. Let (σ, η, ρ) be Blaschke interpolation data, with n distinct interpolation nodes of which k lie 
in T. Suppose the Pick matrix M of this problem is positive definite. The above proof of Theorem 3.9 gives 
an explicit linear fractional parametrization of the solutions of Problem 1.3. As in Theorem 3.9 choose τ ∈
T \{σ1, . . . , σk} such that the set Zτ contains at most k points. A normalized linear fractional parametrization 
of the solution set of Problem 1.3 is
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ϕ = aτζ + bτ
cτ ζ + dτ

,

where the polynomials aτ , bτ , cτ and dτ are defined by equations (3.25). Note that different choices of τ
will yield different normalized parametrizations.

In the terminology of Definition 3.10, Theorem 3.9 tells us the following.

Corollary 3.12. Let (σ, η, ρ) be Blaschke interpolation data, with n distinct interpolation nodes. Suppose the 
Pick matrix M of this problem is positive definite. There exists a normalized linear fractional parametrization

ϕ = aζ + b

cζ + d

of the solutions of Problem 1.3. Moreover

(1) at least one of the polynomials a, b, c, d has degree n;
(2) the polynomials a, b, c, d have no common zero in C;
(3) |c| ≤ |d| on D−.

Proof. As in Theorem 3.9 choose τ ∈ T \ {σ1, . . . , σk} such that the set Zτ contains at most k points. Let 
the polynomials a = aτ , b = bτ , c = cτ and d = dτ be defined by equations (3.25). Theorem 3.9 shows that 
(a, b, c, d) has the properties (1), (2) and (3) of Definition 3.10. Let ϕ be a solution of Problem 1.3 and let 
ζ = ϕ(τ). By Theorem 3.9(2), ϕ is given by equation (3.29). Hence property (4) of Definition 3.10 holds.

Moreover (1) if all of a, b, c, d have degree strictly less than n then ϕ = aζ+b
cζ+d is a rational function of 

degree strictly less than n, and so is not a solution of Problem 1.3.
(2) Suppose α ∈ C is a common zero of the polynomials a, b, c, d. On canceling the common factor λ −α

above and below in equations (3.29) and multiplying numerator and denominator by a suitable nonzero 
scalar we obtain a different normalized parametrization of solutions of Problem 1.3, with the same τ , 
contrary to the uniqueness statement in Theorem 3.9(2). Hence a, b, c and d have no common zero in C.

(3) By the normalization property in Definition 3.10(3),

(ad− bc)(λ) → 1 as λ → τ.

Hence ad − bc is a polynomial of degree at most 2n and is not identically zero. Therefore

Y
def= {λ ∈ D : (ad− bc)(λ) = 0}

contains at most 2n points.
We claim that the real-valued function f(λ) = |d(λ)| − |c(λ)| has no zeros in D \ Y . For suppose that 

λ0 is a zero of f . Then there exists ζ0 ∈ T such that c(λ0)ζ0 + d(λ0) = 0. Since |ϕ| =
∣∣∣aζ+b
cζ+d

∣∣∣ ≤ 1 on D for 
almost all ζ ∈ T, it follows that also a(λ0)ζ0 + b(λ0) = 0, and therefore (ad − bc)(λ0) = 0, that is, λ0 ∈ Y .

Since c(τ) = 0 and d(τ) = 1, the continuous function f is strictly positive on a neighborhood of τ in D. 
Suppose that f(λ1) < 0 for some λ1 ∈ D. Then f < 0 on an open set, and hence there are infinitely many 
points in D at which f = 0, a contradiction. Hence f ≥ 0 on D. �
4. Prescribing the nodes and values

In this section we shall show how to construct rational Γ-inner functions with prescribed royal nodes 
and values. Our answer will be in terms of the solution to Problem 1.3 as described in Proposition 3.7 and 
Theorem 3.9. First we require a notion of multiplicity for royal nodes.
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Definition 4.1. Let h be a rational Γ-inner function with royal polynomial R. If σ is a zero of R of order �, 
we define the multiplicity #σ of σ (as a royal node of h) by

#σ =

⎧⎪⎨
⎪⎩

� if σ ∈ D

1
2� if σ ∈ T.

The type of h is the ordered pair (n, k) where n is the sum of the multiplicities of the royal nodes of h that 
lie in D− and k is the sum of the multiplicities of the royal nodes of h that lie in T. We denote by Rn,k the 
collection of rational Γ-inner functions h of type (n, k).

By [3, Theorem 3.8], if h = (s, p) belongs to Rn,k then deg(h) = n and p is a Blaschke product of 
degree n.

The following example of rational Γ-inner functions from Rn,k for even n ≥ 2 can be found in 
[1, Proposition 12.1].

Example 4.2. For all ν ≥ 0 and 0 < r < 1, the function

hν(λ) =
(

2(1 − r) λν+1

1 + rλ2ν+1 ,
λ(λ2ν+1 + r)
1 + rλ2ν+1

)
, λ ∈ D, (4.1)

belongs to R2ν+2,2ν+1. The royal nodes of hν that lie in T, being the points at which |s| = 2, are the 
(2ν + 1)th roots of −1, that is,

ωj = eiπ(2j+1)/(2ν+1), j = 0, . . . , 2ν.

They are all of multiplicity 1. Note that there is a simple royal node at 0.

In this section we are concerned only with rational Γ-inner functions whose royal nodes all have multi-
plicity 1.

The following elementary calculation will be useful.

Lemma 4.3. Let a, b, c, d, s0, p0 ∈ C and suppose that |p0| = 1, s0 = s0p0, s0c �= 2d and |s0| < 2. Let

s = 22p0c− s0d

s0c− 2d . (4.2)

Then

|s| ≤ 2 ⇐⇒ |c| ≤ |d|. (4.3)

Proof.

|s| ≤ 2 ⇐⇒ |2p0c− s0d|2 ≤ |s0c− 2d|2 (4.4)

⇐⇒ 4|c|2 − 2Re(2p0cs̄0d) + |s0|2|d|2

≤ |s0|2|c|2 − 2Re(2s0cd) + 4|d|2

⇐⇒ (4 − |s0|2)(|c|2 − |d|2) ≤ 4Re(s0cd− s0cd)

⇐⇒ |c|2 − |d|2 ≤ 0

⇐⇒ |c| ≤ |d|. � (4.5)
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The next result provides a necessary condition for the existence of a rational Γ-inner function with 
prescribed royal interpolation data.

Theorem 4.4. Let h = (s, p) be a rational Γ-inner function of type (n, k) having distinct royal nodes σ1, . . . , σn

and corresponding royal values η1, . . . , ηn, where σ1, . . . , σk ∈ T. Let ρj = 1
2Ap(σj) for j = 1, . . . , k.

(1) There exists a rational inner function ϕ that solves Problem 1.3, that is, such that deg(ϕ) = n,

ϕ(σj) = ηj for j = 1, . . . , n (4.6)

and

Aϕ(σj) = ρj for j = 1, . . . , k. (4.7)

Any such function ϕ is expressible in the form ϕ = Φω ◦ h for some ω ∈ T.
(2) There exist polynomials a, b, c, d of degree at most n such that a normalized parametrization of the 

solutions of Problem 1.3 is

ϕ = aζ + b

cζ + d
, ζ ∈ T.

(3) For any polynomials a, b, c, d as in (2), there exist s0, p0 ∈ C such that

|p0| = 1, (4.8)

s0 = s0p0, (4.9)

|s0| < 2 (4.10)

|c| ≤ |d|, (4.11)

s0a− 2b + 2p0c− s0d = 0 (4.12)

and

(2p0c− s0d)2 �= (−2p0a + s0b)(s0c− 2d). (4.13)

Moreover

s = 22p0c− s0d

s0c− 2d , (4.14)

p = −2p0a + s0b

s0c− 2d (4.15)

Proof. (1) For ω ∈ T consider the rational function

ψω = Φω ◦ h = 2ωp− s

2 − ωs
. (4.16)

Then, if ω �= −η̄1, −η̄2, . . . , −η̄k,

ψω(σj) =
2ωη2

j + 2ηj = ηj for j = 1, 2, . . . , n. (4.17)
2 + ω2ηj
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We claim that, for ω ∈ T \ {−η̄1. . . . , η̄k}, the function ϕ = ψω is a solution of Problem 1.3. By 
[1, Proposition 3.2], for any ω ∈ T and any point (s(λ), p(λ)) ∈ Γ,

|Φω(s(λ), p(λ))| = 1 if and only if ω(s(λ) − s̄(λ)p(λ)) = 1 − |p(λ)|2.

Thus it is easy to see that ϕ is inner. The equation (4.17) shows that ψω takes the required values at 
σ1, . . . , σn. By Proposition 2.5(iv),

Aψω(σj) = 1
2Ap(σj) = ρj for j = 1, 2, . . . , k. (4.18)

It is also true that deg(ψω) = n for ω �= −η̄1. . . . , −η̄k. By [3, Proposition 2.2], for a rational Γ-inner function 
h = (s, p) such that deg(p) = n and if D is the denominator when p is written in its lowest terms then s
can also be written with denominator D. It follows that

deg(ψω) = deg(p) − #{cancellations between 2ωp− s and 2 − ωs}. (4.19)

By [1, Theorem 7.12], such cancellations can occur only at the royal nodes σj ∈ T, j = 1, . . . , k, and then 
only when ω = 1

2s(σj) = −η̄j . Hence there are no cancellations in equation (4.19), and so deg(ψω) = n. We 
have shown that, if ω �= −η̄1, −η̄2, . . . , −η̄k, then ϕ = ψω is a solution of Problem 1.3.

(2) Since Problem 1.3 is solvable, its Pick matrix is positive definite and so Theorem 3.9 tells us that 
there exist polynomials a, b, c, d of degree at most n which parametrize the solutions of Problem 1.3. Let 
us choose a particular such 4-tuple of polynomials, as described in Theorem 3.9. By Proposition 3.8, there 
exists τ ∈ T \ {σ1, . . . , σk} such that the set Zτ (defined in equation (3.8)) consists of at most k points. Fix 
such a τ ∈ T; then there exist unique polynomials aτ , bτ , cτ , dτ of degree at most n such that

[
aτ (τ) bτ (τ)
cτ (τ) dτ (τ)

]
=

[
1 0
0 1

]
(4.20)

and, for all ζ ∈ T \ Zτ , the function

ϕ = aτζ + bτ
cτ ζ + dτ

(4.21)

is the unique solution of Problem 1.3 that satisfies ϕ(τ) = ζ. Moreover, the general 4-tuple of polynomials 
that parametrizes the solutions of Problem 1.3 is expressible in the form

(a, b, c, d) = (Xaτ , Xbτ , Xcτ , Xdτ ) (4.22)

for some rational function X.
Let s0 = s(τ), p0 = p(τ). Since h is Γ-inner, equations (4.8) and (4.9) hold by virtue of Proposition 2.1. 

Since τ is chosen not to be a royal node of h, the inequation (4.10) also holds. Moreover |s0| < 2, since, 
for any point (z1, z2) in the distinguished boundary bΓ of Γ, we have |z1| = 2 if and only if z2

1 = 4z2 – see 
[1, Proposition 3.2(3)]. It remains to prove equations (4.12) and (4.11).

Lemma 4.5. Let

Z∼
τ

def=
{
−2η1p0 − s0

2 + η1s0
,
−2η2p0 − s0

2 + η2s0
, . . . ,

−2ηkp0 − s0

2 + ηks0

}
.

If ζ ∈ T \ Z∼
τ then the function
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ϕ = (4p− s0s)ζ + 2s0p− 2p0s

(2s0 − 2s)ζ + 4p0 − s0s
(4.23)

is a solution of Problem 1.3 and satisfies ϕ(τ) = ζ.

Proof. Observe that, by equation (4.16), for any ω ∈ T,

ψω(τ) = 2ωp0 − s0

2 − ωs0
,

which is well defined since |s0| < 2. We have, for ζ ∈ T,

ψω(τ) = ζ ⇔ 2ωp0 − s0

2 − ωs0
= ζ

⇔ ω = 2ζ + s0

2p0 + ζs0
.

Hence, as long as

2ζ + s0

2p0 + ζs0
�= −η̄1, . . . ,−η̄k, (4.24)

the function

ϕ = ψω = ψ 2ζ+s0
2p0+ζs0

(4.25)

is a solution of Problem 1.3 which satisfies in addition ϕ(τ) = ζ. Condition (4.24) can equally be written

ζ �= −2η̄jp0 + s0

2 + η̄js0
, for j = 1, 2, . . . , k

or equivalently ζ /∈ Z∼
τ .

On computing ϕ from equations (4.25) and (4.16) we find that ϕ is indeed given by equation (4.23); this 
establishes the Lemma. �

We conclude the proof of Theorem 4.4 (2). For ζ ∈ T \ (Zτ ∪Z∼
τ ) we have two expressions for the unique 

solution of Problem 1.3 for which ϕ(τ) = ζ, to wit equations (4.21) (with the normalizing condition (4.20)) 
and (4.23). Note that

[
4p(τ) − s0s(τ) 2s0p(τ) − 2p0s(τ)

2s0 − 2s(τ) 4p0 − s0s(τ)

]
=

[
4p0 − s0s0 2s0p0 − 2p0s0
2s0 − 2s0 4p0 − s0s0

]

= (4p0 − s2
0)

[
1 0
0 1

]
.

Since the set Zτ ∪Z∼
τ is finite, the linear fractional transformations in equations (4.21) and (4.23) are equal 

at infinitely many points, hence coincide. On taking account of the normalizing condition we obtain
[
aτ bτ
cτ dτ

]
= 1

4p0 − s2
0

[
4p− s0s 2s0p− 2p0s
2s0 − 2s 4p0 − s0s

]
.

Suppose that a, b, c, and d are polynomials that parametrize the solutions of Problem 1.3, as in Theo-
rem 4.4 (2). By the observation (4.22), there exists a rational function X such that
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Xa = 4p− s0s, (4.26)

Xb = 2s0p− 2p0s, (4.27)

Xc = 2s0 − 2s, and (4.28)

Xd = 4p0 − s0s. (4.29)

Thus

X(s0a− 2b + 2p0c− s0d) =

s0(4p− s0s) − 2(2s0p− 2p0s) + 2p0(2s0 − 2s) − s0(4p0 − s0s)

which is zero. Hence equation (4.12) holds.
Let us find connections between s, p and the polynomials a, b, c, d. Solving equations (4.28) and (4.29)

for s and X we find that

X = 2s2
0 − 8p0

s0c− 2d (4.30)

and

s = 22p0c− s0d

s0c− 2d . (4.31)

Eliminating s from equations (4.26) and (4.27) we deduce that

(8p0 − 2s2
0)p = X(2p0a− s0b), (4.32)

which implies via equation (4.30) that

p = −2p0a + s0b

s0c− 2d . (4.33)

Since h = (s, p) is a rational Γ-inner function, |s| ≤ 2 on D and, by Lemma 4.3, equation (4.11) holds. 
Since, by assumption, h(D) �⊂ R, we have s2 �= 4p on D− and inequation (4.13) holds. The proof of 
Theorem 4.4 is complete. �
Remark 4.6. The above proof shows that, if ω �= −η̄1, . . . , −η̄k, then Φω ◦h is a solution of the corresponding 
Blaschke interpolation problem. What if ω = −η̄j for some j ∈ {1, . . . , k}? Then the rational function Φω ◦h
has a removable singularity at σj . After cancellation, it is still true (by Proposition 2.5) that Φω ◦h(σj) = ηj , 
but we cannot assert that A(Φω ◦h)(σj) = 2ρj . In any case Φω ◦h has degree n − 1, and so is not a solution 
of Problem 1.3.

There is a converse to Theorem 4.4. To prove it we need the following purely algebraic observation, which 
is proved by a routine calculation.

Proposition 4.7. Let a, b, c, d be polynomials in the indeterminate λ and suppose that s0, p0 ∈ C satisfy 
s2
0 �= 4p0, s0c �= 2d and

s0a− 2b + 2p0c− s0d = 0.

Let rational functions s, p be defined by
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s = 22p0c− s0d

s0c− 2d , p = −2p0a + s0b

s0c− 2d (4.34)

and let

ζ(ω) = 2ωp0 − s0

2 − ωs0
. (4.35)

Then, as rational functions in (ω, λ),

2ωp(λ) − s(λ)
2 − ωs(λ) = a(λ)ζ(ω) + b(λ)

c(λ)ζ(ω) + d(λ) .

This algebraic relation has implications for rational maps from D to Γ.

Proposition 4.8. Let a, b, c, d be polynomials having no common zero in D− and satisfying |c| ≤ |d| on D. 
Suppose that s0, p0 ∈ C satisfy s0c �= 2d and

s0a− 2b + 2p0c− s0d = 0.

Suppose in addition that |p0| = 1, |s0| < 2 and s0 = s̄0p0. Let rational functions s, p be defined by equations 
(4.34) and let

ψζ(λ) = a(λ)ζ + b(λ)
c(λ)ζ + d(λ) . (4.36)

(i) If, for all but finitely many values of λ ∈ D,

|ψζ(λ)| ≤ 1 (4.37)

for all but finitely many ζ ∈ T, then s0c − 2d has no zeros in D− and (s, p) is a holomorphic map from 
D to Γ.

(ii) If, for all but finitely many ζ ∈ T, the function ψζ is inner, then h = (s, p) is a rational Γ-inner 
function.

Proof. (i) Notice first that the hypotheses on s0 and p0 imply that ζ(·) (defined by equation (4.35)) is an 
automorphism of D and so defines a bijective self-map of T.

By hypothesis there is a finite subset E of D such that, for all λ ∈ D \E, there is a finite subset Fλ of T
such that the inequality (4.37) holds for all ζ ∈ T \ Fλ.

We claim that the denominator s0c − 2d of s and p in equations (4.34) has no zeros in D−. For suppose 
that α is such a zero. Since |c| ≤ |d| on D− and |s0| < 2,

0 = |s0c− 2d| ≥ 2|d| − |s0c|

≥ (2 − |s0|)|d|

at α, and hence d(α) = 0, and consequently c(α) = 0.
Choose a sequence αj in D \ E such that αj → α. For each j, for ζ ∈ T \ F (λj) we have |ψζ | ≤ 1 on 

D \ E. Hence, for all but countably many ζ ∈ T (that is, for ζ ∈ T \ ∪jF (λj))

∣∣∣∣a(αj)ζ + b(αj)
∣∣∣∣ ≤ 1.
c(αj)ζ + d(αj)
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Since c(αj)ζ+d(αj) → 0 uniformly almost everywhere for ζ ∈ T as j → ∞, the same holds for a(αj)ζ+b(αj). 
Hence a(αj) → 0 and b(αj) → 0. Thus a(α) = b(α) = 0. Hence a, b, c, d all vanish at α, contrary to 
hypothesis. It follows that s0c − 2d has no zeros in D−.

Thus s and p are rational functions having no poles in D−.
Consider λ ∈ D \ E. By Proposition 4.7,

Φω(s(λ), p(λ)) = a(λ)ζ(ω) + b(λ)
c(λ)ζ(ω) + d(λ) (4.38)

whenever both sides are defined, that is, for all ω ∈ T \ Ωλ where

Ωλ = {ω ∈ T : ωs(λ) = 2 or c(λ)ζ(ω) = −d(λ)}.

Ωλ contains at most two points. On combining the relations (4.36), (4.37) and (4.38) we deduce that

|Φω(s(λ), p(λ))| ≤ 1

for all ω ∈ T such that ω /∈ Ωλ ∪ ζ−1(Fλ), hence for all but finitely many ω ∈ T. By Lemma 4.3, |s(λ)| ≤ 2. 
It follows from [1, Proposition 3.2(2)] that (s(λ), p(λ)) ∈ Γ. Since this is true for all but finitely many λ ∈ D

and s, p are rational functions without poles in D−, (s, p) maps the whole of D− into Γ.
(ii) Suppose that, for some finite subset F of T, the function ψζ is inner for all ζ ∈ T \F . By Part (i), (s, p)

maps D into Γ and therefore extends to a continuous map of D− into Γ. Consider λ ∈ T. By Proposition 4.7
and equation (4.36),

Φω(s(λ), p(λ)) = ψζ(ω)(λ) (4.39)

whenever both sides are defined, that is, for all ω ∈ T \ Ωλ where

Ωλ = {ω ∈ T : ωs(λ) = 2 or c(λ)ζ(ω) = −d(λ)}.

Ωλ contains at most two points. For ω ∈ T \ζ−1(F ) the function ψζ(ω) is inner. Hence, for ω ∈ T \ (ζ−1(F ) ∪
Ωλ),

|Φω(s(λ), p(λ))| = |ψζ(ω)(λ)| = 1. (4.40)

[1, Proposition 3.2] asserts that, for any ω ∈ T and any point (s1, p1) ∈ Γ,

|Φω(s1, p1)| = 1 if and only if ω(s1 − s̄1p1) = 1 − |p1|2.

Hence, if |Φω(s1, p1)| = 1 for two distinct ω ∈ T, then |p1| = 1 and s1 = s̄1p1, which is to say that 
(s1, p1) is in the distinguished boundary bΓ of Γ. Therefore, since equation (4.40) holds for many ω ∈ T, 
(s(λ), p(λ)) ∈ bΓ. Thus h = (s, p) is a rational Γ-inner function. �

The following result gives the promised explicit construction of a solution of the royal Γ-interpolation 
problem in terms of a normalized parametrization of solutions of the corresponding Blaschke interpolation 
problem.

Theorem 4.9. Let (σ, η, ρ) be Blaschke interpolation data with n distinct interpolation nodes of which k lie 
in T, as in Definition 1.2. Suppose that Problem 1.3 with these data is solvable and the solutions ϕ of 
Problem 1.3 have normalized parametrization
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ϕ = aζ + b

cζ + d
.

Suppose that there exist scalars s0 and p0 such that

|p0| = 1, s0 = s0p0, |s0| < 2 (4.41)

and

s0a− 2b + 2p0c− s0d = 0. (4.42)

Then there exists a rational Γ-inner function h = (s, p) such that

(i) h ∈ Rn,k,
(ii) h(σj) = (−2ηj , η2

j ) for j = 1, 2, . . . , n,
(iii) Ap(σj) = 2ρj for j = 1, 2, . . . , k,
(iv) for all but finitely many ω ∈ T, the function Φω ◦ h is a solution of Problem 1.3.

An explicit function h = (s, p) satisfying conditions (i)–(iv) is given by

s = 22p0c− s0d

s0c− 2d , (4.43)

p = −2p0a + s0b

s0c− 2d . (4.44)

Proof. By Corollary 3.12 (3), |c| ≤ |d| on D−. Hence 
∣∣∣d(λ)
c(λ)

∣∣∣ ≥ 1 for λ ∈ D
−. By assumption |s0/2| < 1, 

and therefore s0c �= 2d on D−. By Proposition 4.8, h is a rational Γ-inner function. Since a, b, c, d are 
polynomials of degree at most n, the rational function h has degree at most n. Recall that the degree of h
coincides with the degree of p.

By Definition 3.10 of a normalized linear fractional parametrization of the solutions of Problem 1.3, for 
some point τ ∈ T \ {σ1, . . . , σk},

[
a(τ) b(τ)
c(τ) d(τ)

]
=

[
1 0
0 1

]
.

Thus it is easy to see that

s(τ) = 22p0c(τ) − s0d(τ)
s0c(τ) − 2d(τ) = s0, (4.45)

p(τ) = −2p0a(τ) + s0b(τ)
s0c(τ) − 2d(τ) = p0. (4.46)

By assumption, |p0| = 1 and |s0| < 2, and hence s(τ)2 �= 4p(τ). Therefore h(D−) is not in the royal 
variety R.

Let us show that h satisfies the interpolation conditions

h(σj) = (−2ηj , η2
j ) (4.47)

for j = 1, . . . , n, which is to say that σj is a royal node of h with corresponding royal value ηj. By hypothesis, 
there is a finite set F ⊂ T such that, for all ζ ∈ T \ F , the function
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ϕ(λ) = ψζ(λ) def= a(λ)ζ + b(λ)
c(λ)ζ + d(λ)

is a solution of Problem 1.3, and so

ψζ(σj) = ηj for j = 1, . . . , n (4.48)

and

Aψζ(σj) = ρj for j = 1, . . . , k (4.49)

for all ζ ∈ T \ F . By Proposition 4.7

ψζ(ω)(λ) = a(λ)ζ(ω) + b(λ)
c(λ)ζ(ω) + d(λ) = 2ωp(λ) − s(λ)

2 − ωs(λ) = Φω ◦ h(λ) (4.50)

as rational functions in (ω, λ), where ζ(ω) = 2ωp0−s0
2−ωs0

. Hence, for ω ∈ T \ ζ−1(F ), Φω ◦ h is a solution of 
Problem 1.3; this proves statement (iv).

For any λ ∈ D
− equation (4.50) holds whenever both denominators are nonzero, hence for all but at most 

two values of ω ∈ T. On combining equations (4.48) and (4.50) (with λ = σj) we infer that, for j = 1, . . . , n
and for all but finitely many ω ∈ T,

2ωp(σj) − s(σj)
2 − ωs(σj)

= ψζ(ω)(σj) = ηj .

Therefore, for almost all ω ∈ T,

2ωp(σj) − s(σj) = ηj(2 − ωs(σj)).

It follows that s(σj) = −2ηj and p(σj) = η2
j , j = 1, 2, . . . , n, and so the interpolation conditions (4.47) hold.

We have already observed that deg(h) ≤ n and that h(D) is not in R. Thus [3, Theorem 3.8] tells us 
that, in this case, the number of royal nodes of h is equal to the degree of h. Therefore h has at most n
royal nodes. Since the points σj , j = 1, 2, . . . , n are royal nodes, they comprise all the royal nodes of h and 
deg(h) = n. Precisely k of the σj lie in T, and so h has exactly k royal nodes in T. Thus h ∈ Rn,k and 
statement (i) holds.

Next we show that Ap(σj) = 2ρj . Fix j ∈ {1, . . . , k}. By Proposition 2.5(iv), for ω ∈ T, ω �= −η̄j (and so 
2 − ωs(σj) = 2(1 + ωηj) �= 0),

A(Φω ◦ h)(σj) = 1
2Ap(σj). (4.51)

There is also a set Ωj containing at most one ωj ∈ T such that c(σj)ζ(ω) + d(σj) = 0 for ω ∈ Ωj . Hence 
if ω ∈ T \ ({−η̄j} ∪ Ωj), it follows from equation (4.50) that ψζ(ω) = Φω ◦ h in a neighborhood of σj , and 
consequently, for such ω,

Aψζ(ω)(σj) = A(Φω ◦ h)(σj). (4.52)

Each of the equations (4.51), (4.52) and (4.49) hold for ω in a cofinite subset of T. Hence, for ω in the 
intersection of these cofinite subsets,

Ap(σj) = 2A(Φω ◦ h)(σj) = 2Aψζ(ω)(σj) = 2ρj

as required. �
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Remark 4.10. Under the assumptions of Theorem 4.9, the condition (4.13):

(2p0c− s0d)2 �= (−2p0a + s0b)(s0c− 2d) (4.53)

is satisfied automatically and the rational Γ-inner function h is such that h(D−) is not in the royal variety R.

Remark 4.11. Every solution of a royal Γ-interpolation problem is obtainable by the method in the theorem. 
Let data (σ, η, ρ) be as in Theorem 4.9. Suppose that Problem 1.3 with these data is solvable and the solutions 
ϕ of Problem 1.3 have normalized parametrization

ϕ = aζ + b

cζ + d
.

By Theorem 4.4, every rational Γ-inner function h = (s, p) ∈ Rn,k satisfying

(i) h(σj) = (−2ηj , η2
j ) for j = 1, 2, . . . , n,

(ii) Ap(σj) = 2ρj for j = 1, 2, . . . , k is expressible by the equations

s = 22p0c− s0d

s0c− 2d , (4.54)

p = −2p0a + s0b

s0c− 2d (4.55)

for some choice of s0, p0 satisfying conditions (4.41) and (4.42).

Example 4.12. Consider 3 distinct points σ1, σ2, σ3 ∈ T and 3 distinct points η1, η2, η3 ∈ T in the same cyclic 
order as σ1, σ2, σ3. There is a Blaschke factor ϕ such that ϕ(σj) = ηj for j = 1, 2, 3; let ρj = Aϕ(σj) for 
j = 1, 2, 3. Problem 1.3 with data (σ, η, ρ) is solvable and ϕ is a solution. Let h = (−2ϕ, ϕ2); then h(D) ⊂ R. 
Every point of D− is a royal node of h; in particular, h has the 3 distinct royal nodes σ1, σ2, σ3 ∈ T with 
corresponding royal values η1, η2, η3 ∈ T, and

Ap(σj) = Aϕ2(σj) = 2Aϕ(σj) = 2ρj , j = 1, 2, 3.

At the same time deg(h) = 2. The example shows that for the rational Γ-inner functions whose range is 
contained in R, it can happen that deg(h) is strictly less than n.

5. The algorithm

In this section we summarize the steps in the solution of the royal Γ-interpolation problem in the form 
of a concrete algorithm.

We suppose given Blaschke interpolation data (σ, η, ρ) as in Definition 1.2. Here there are n prescribed 
royal nodes σj , of which the first k lie in T and the remaining n −k are in D. To construct a rational Γ-inner 
function or functions of degree n having royal nodes σj , royal values ηj and phasar derivatives 2ρj at σj we 
proceed as follows.

(1) Form the Pick matrix M = [mij ]ni,j=1 for the data (σ, η, ρ), with entries

mij =

⎧⎪⎪⎨
⎪⎪⎩

ρi if i = j ≤ k

1 − ηiηj otherwise.
1 − σiσj
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If M is not positive definite then the interpolation problem is not solvable. Otherwise, introduce the notation

xλ =

⎡
⎢⎣

1
1−σ1λ

...
1

1−σnλ

⎤
⎥⎦ , yλ =

⎡
⎢⎣

η1
1−σ1λ

...
ηn

1−σnλ

⎤
⎥⎦ , (5.1)

as in equations (3.9).
(2) Choose a point τ ∈ T \ {σ1, . . . , σk} such that the set of ζ ∈ T for which

〈
M−1xτ , ej

〉
= ζ

〈
M−1yτ , ej

〉
for some j ∈ {1, . . . , n}

(where ej is the jth standard basis vector in Cn) is finite.
(3) Find s0, p0 ∈ C such that |s0| < 2, |p0| = 1, s0 = s̄0p0 and, for all λ ∈ D,

s0
(〈
xλ,M

−1xτ

〉
+

〈
yλ,M

−1yτ
〉)

+ 2
〈
xλ,M

−1yτ
〉

+ 2p0
〈
yλ,M

−1xτ

〉
= 0. (5.2)

If there is no pair (s0, p0) satisfying these conditions, then the interpolation problem is not solvable; otherwise
(4) Let

g(λ) =
n∏

j=1

1 − σ̄jλ

1 − σ̄jτ

and let polynomials a, b, c, d be given by

a(λ) = g(λ)
(
1 − (1 − τ̄λ)

〈
xλ,M

−1xτ

〉)
,

b(λ) = g(λ)(1 − τ̄λ)
〈
xλ,M

−1yτ
〉
,

c(λ) = −g(λ)(1 − τ̄λ)
〈
yλ,M

−1xτ

〉
,

d(λ) = g(λ)
(
1 + (1 − τ̄λ)

〈
yλ,M

−1yτ
〉)

.

Note that [
a(τ) b(τ)
c(τ) d(τ)

]
=

[
1 0
0 1

]
.

(5) Let

s = 22p0c− s0d

s0c− 2d ,

p = −2p0a + s0b

s0c− 2d .

It is easy to see that

s(τ) = s0 and p(τ) = p0.

Then h = (s, p) is a rational Γ-inner function of degree at most n such that h(σj) = (−2ηj , η2
j ) for j = 1, . . . , n

and Ap(σj) = 2ρj for j = 1, . . . , k. By assumption, |p0| = 1 and |s0| < 2, and hence s(τ)2 �= 4p(τ). Therefore 
h(D−) is not in the royal variety R and the degree of h is exactly n.

The following comments relate the steps of the algorithm to results in the paper.
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(1) If the royal Γ-interpolation problem is solvable, then the Blaschke interpolation problem with the 
same data is solvable, by Theorem 4.4. By Proposition 3.2, M > 0.

(2) This amounts to saying that Zτ is finite, in the notation of equation (3.8). By Proposition 3.8, there 
are uncountably many such τ ∈ T.

(3) The necessity of the existence of s0, p0 is given in Theorem 4.4 equation (4.12), together with the 
equations (3.21) to (3.25) for a, b, c and d.

The conditions that |s0| < 2, |p0| = 1 and s0 = s̄0p0 are equivalent to (s0, p0) ∈ bΓ and |s0| < 2. By a 
standard parametrization of bΓ [7, Theorem 2.4], we can take s0 = 2tω, p0 = ω2 for some t ∈ (−1, 1) and 
ω ∈ T. The condition (5.2) then becomes: for all λ ∈ D,

〈
yλ,M

−1xτ

〉
ω2 + t

(〈
xλ,M

−1xτ

〉
+

〈
yλ,M

−1yτ
〉)

ω +
〈
xλ,M

−1yτ
〉

= 0. (5.3)

After multiplication of both sides by 
∏n

j=1(1 − σ̄jλ), the coefficients in this equation relating t and ω become 
polynomials in λ of degree at most n, and so the equation is in effect a system of 2n +2 real equations in two 
real variables. Consequently the system is over-determined. The existence of s0, p0 satisfying equations (5.2)
is thus in principle a stringent condition for the solvability of a royal Γ-interpolation problem. Remarkably, 
in the two examples in the next section, the λ terms factor out entirely from equation (5.3), and one obtains 
a single real equation in t and ω, which has a 1-parameter family of solutions.

(4) The equations for a, b, c and d are equations (3.21) to (3.25).
(5) The equations for s and p are (4.45) and (4.46).

6. Two examples

Even the simplest case of Problem 1.4, the royal Γ-interpolation problem with only one interpolation 
node, demands a surprising amount of calculation to solve. This problem is so simple that it can be readily 
solved without the foregoing theory, but it is instructive to see how the algorithm in Section 5 works in this 
case.

Example 6.1. Consider the case n = 1, k = 0 of Problem 1.4. There are prescribed a single royal node σ1 ∈ D

and a single royal value η ∈ D, and we seek a Γ-inner function h of degree 1 such that h(σ1) = (−2η, η2). 
By composition with an automorphism of D we may reduce to the case that σ1 = 0. There is clearly at least 
a 1-parameter family of solutions, if any, since if h is a solution then so is h(ωλ) for any ω ∈ T.

The recipe for h in Section 4 proceeds as follows. Choose an arbitrary τ ∈ T. The normalized parametriza-
tion of the solution set of the associated Blaschke interpolation problem, according to equations (3.25), is 
given by

aτ (λ) = τ̄λ− |η|2
1 − |η|2 ,

bτ (λ) = η(1 − τ̄λ)
1 − |η|2 ,

cτ (λ) = − η̄(1 − τ̄λ)
1 − |η|2 ,

dτ (λ) = 1 − |η|2τ̄λ
1 − |η|2 .

The next step is to determine whether there exist s0, p0 such that equations (4.8) to (4.13) hold. A little 
calculation shows that there is a 1-parameter family of such (s0, p0), given by
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s0 = −4ωRe(ω̄η)
1 + |η|2 , p0 = ω2

for any ω ∈ T. Substitution of these values into equations (4.45) and (4.46) yields the degree 1 Γ-inner 
function

h(λ) =
(
−2 η + η̄κλ

1 + η̄2κλ
,
κλ + η2

1 + η̄2κλ

)

where

κ = τ̄
ω2 − η2

1 − η̄2ω2 .

κ is a general point of T, and so we do obtain a 1-parameter family of Γ-inner functions of degree 1 satisfying 
h(0) = (−2η, η2). An alternative expression for h is

h(λ) = (β + β̄p(λ), p(λ))

where

β = − 2η
1 + |η|2 , p(λ) = κλ + η2

1 + η̄2κλ
.

Example 6.2. Next consider the case of a single interpolation node on the unit circle – say σ = 1. A point 
η ∈ T and a ρ > 0 are prescribed, and we seek a Γ-inner function h = (s, p) of degree 1 such that 
h(1) = (−2η, η2) and Ap(1) = 2ρ.

Choose τ ∈ T \ {1}. Again calculate the normalized parametrization of the solution set of the associated 
Blaschke interpolation problem according to equations (3.25):

aτ (λ) = 1 − λ

1 − τ
− 1 − τ̄λ

ρ|1 − τ |2 ,

bτ (λ) = η(1 − τ̄λ)
ρ|1 − τ |2 ,

cτ (λ) = − η̄(1 − τ̄λ)
ρ|1 − τ |2 ,

dτ (λ) = 1 − τ̄λ

ρ|1 − τ |2 + 1 − λ

1 − τ
.

Equations (4.8) to (4.13) for (s0, p0) have solution

s0 = −η − ω2η̄, p0 = ω2

for any ω ∈ T \ {η}. Then equations (4.45) and (4.46) yield the degree 1 Γ-inner function h = (s, p) where

s(λ) = 2ρ(η + ω2η̄)(1 − τ̄)(1 − λ) + (η − ω2η̄)(1 − τ̄λ)
−2ρ(1 − τ̄)(1 − λ) + (ω2η̄2 − 1)(1 − τ̄λ) ,

p(λ) = −2ω2ρ(1 − τ̄)(1 − λ) + (ω2 − η2)(1 − τ̄λ)
−2ρ(1 − τ̄)(1 − λ) + (ω2η̄2 − 1)(1 − τ̄λ) . (6.1)

One can check directly that h = (s, p) is a Γ-inner function of degree 1 satisfying h(1) = (−2η, η2) and 
Ap(1) = 2ρ. It appears at first sight that we have constructed a 2-parameter family of functions with the 
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prescribed royal node, value and phasar derivative, since the parameters ω and τ range through T (or at 
least, cofinite subsets thereof). However, by means of some entertaining algebra, one can express h in terms 
of a single unimodular parameter (the same thing happened, though more simply, in Example 6.1). Let

κ = τ
2ρ(1 − τ̄)ω − τ̄(ω − ω̄)
2ρ(1 − τ)ω̄ − τ(ω̄ − ω) .

Clearly κ is unimodular. Now let

α(κ) = 2ρ− κ̄

1 + 2ρ .

It transpires that |α(κ)| < 1 and

α(κ) = 2ρ(1 − τ̄) − 1 + ω̄2

2ρ(1 − τ̄) − τ̄(1 − ω̄2) .

One may verify that the functions s and p in equations (6.1) can be written

s(λ) = −η − η̄p(λ),

p(λ) = η2κ
λ− α(κ)
1 − α(κ)λ

, (6.2)

with κ ∈ T, evidently a 1-parameter family.
It is noteworthy that the function h = (s, p) defined by equations (6.2) maps D into the disc {(η+ η̄z, z) :

z ∈ D)}, which is a subset of the topological boundary ∂Γ of Γ. Inner functions h such that h(D) ⊂ ∂Γ
were called superficial in [1] and discussed in [1, Proposition 8.3]. The example shows that the solutions of 
a royal Γ-interpolation problem can be superficial.

7. Concluding remarks

In this section we relate the results of the paper to some classical results in the theory of invariant 
distances and thereby describe some of the original motivation for our work.

The algorithm which is developed in this paper provides constructions of n-extremal maps and 
m-geodesics in Hol(D, G) with prescribed royal nodes σj , royal values ηj and phasar derivatives at σj . The 
n-extremal maps simultaneously generalize both Blaschke products and complex geodesics and constitute 
a significant class.

Recall that for a domain G in CN the Carathéodory distance CG on G is defined by

CG(z1, z2) = sup
F∈Hol(G,D)

ρ(F (z1), F (z2)). (7.1)

In equation (7.1) z1 and z2 are two points in G, ρ denotes the pseudohyperbolic distance on D,

ρ(z, w) =
∣∣∣∣ z − w

1 − w̄z

∣∣∣∣ ,
and, for any domain G and any set E, Hol(G, E) denotes the space of holomorphic mappings from G
to E. A dual notion is the Kobayashi distance of G, which is defined to be the largest pseudodistance KG

subordinate to the Lempert function ρG of G (e.g. [33,23]). The Lempert function of G is given by

ρG(z1, z2) = inf
h∈Hol(D,G) λ1,λ2∈D

h(λ1)=z1

ρ(λ1, λ2). (7.2)
h(λ2)=z2
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The Kobayashi extremal problem for a pair of points z1, z2 ∈ G is to find the quantity ρG(z1, z2) [31]. Any 
function h ∈ Hol(D, G) for which the infimum is attained is called a Kobayashi extremal function for the 
domain G and the points z1, z2. In the special case when G = G it turns out that the 1-parameter family 
Φω ∈ Hol(G, D), which we encountered in equation (1.5), is “universal” for the Carathéodory extremal 
problem [7, Corollary 3.4], the following sense.

Theorem 7.1. If z1, z2 ∈ G then there exists ω ∈ T such that

CG(z1, z2) = ρ(Φω(z1),Φω(z2)). (7.3)

Another fact about the complex geometry of G is that

ρG = KG = CG .

This corresponds to the geometric property of G that if h is an extremal function for the Kobayashi problem 
(7.2), then the range ran(h) of h is a totally geodesic analytic disc in G [7, Corollary 5.7].

The Kobayashi extremal problem can be viewed as an extremal 2-point interpolation problem. Specifically, 
by a finite interpolation problem in Hol(D, G), one means the following.

Problem 7.2. Given n distinct points λ1, . . . , λn in D and n points z1, . . . , zn in an open or closed set G ⊂ C
N , 

to determine whether there exists a function h ∈ Hol(D, G) such that h(λj) = zj for j = 1, . . . , n.

We say that Problem 7.2 is solvable, or that the data λj �→ zj are solvable, if there does exist an 
h ∈ Hol(D, G) that satisfies these interpolation conditions. We say that the problem is (or the data are) 
extremal when the problem is solvable but there do not exist an open neighborhood U of the closure of D
and a map h ∈ Hol(U, G) such that the conditions

h(λj) = zj for j = 1, . . . , n, (7.4)

hold.
A map h ∈ Hol(D, G) is said to be n-extremal if, for any choice of n distinct points λ1, . . . , λn ∈ D, the 

interpolation data λj ∈ D �→ h(λj) ∈ G are extremally solvable.
With this perspective, if h and λ1, λ2 minimize the right hand side of equation (7.2), then the 2-point 

interpolation problem λj → zj , j = 1, 2 for Hol(D, G) is extremal and h is an extremal solution to it. Just as 
the Kobayashi extremal functions on G are both rational and Γ-inner, more generally, the following result 
obtains (see [22] or [2, Theorem 3.1]).

Proposition 7.3. If λj → (sj , pj), j = 1, . . . , n, is a solvable n-point interpolation problem for Hol(D, G) then 
it has a rational Γ-inner solution.

The royal variety (or more precisely, R ∩ G) is a complex geodesic of G, with extremal function given by 
hR(λ) = (2λ, λ2). Furthermore, among the complex geodesics in G, the royal variety is characterized by the 
property that

α(R∩ G) = R∩ G

whenever α is a biholomorphic self map (automorphism) of G [9, Lemma 4.3]. In addition, the automorphism 
group of G acts transitively on R ∩ G.
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If F is a Carathéodory extremal function for some pair of points in G then so is m ◦ F for any Möbius 
transformation m of the disc. The universal set described in Theorem 7.1 above is normalized so as to satisfy 
Φω ◦ hR = −idD. As a result,

Φω|R does not depend on ω. (7.5)

A Kobayashi extremal function on any domain for which the Lempert function and the Carathéodory 
distance coincide has a holomorphic left inverse. L. Kosinski and W. Zwonek [32] introduced a generalization 
of this notion: a map h : D → G, for any domain G, is said to be an n-complex geodesic if there exists a 
holomorphic map F : G → D such that F ◦h is a Blaschke product of degree at most n. The following result 
shows that rational Γ-inner functions enjoy this property.

Proposition 7.4. Let h be a rational Γ-inner function of degree n which is not superficial and let h(D) �⊂ R. 
Then

(1) h is an (n + 1)-extremal holomorphic map in Hol(D, Γ) and is an n-complex geodesic of G;
(2) if in addition h has at least one royal node σ ∈ T then h is an n-extremal holomorphic map in Hol(D, Γ)

and is an (n − 1)-complex geodesic of G.

Proof. As in Theorem 4.4, ϕ = Φω ◦h for some ω ∈ T is a rational inner function ϕ ∈ Hol(D, D−) such that 
deg(ϕ) ≤ n. Thus h is an n-complex geodesic. By a version of Pick’s result, the (n +1)-extremal holomorphic 
self-maps of D are precisely the Blaschke products of degree at most n. Thus ϕ is a (n + 1)-extremal in 
Hol(D, D−). Therefore, by [1, Proposition 2.2], h is (n + 1)-extremal in Hol(D, Γ).

(ii) If h(σ) = (−2η, η2) and ω = −η̄ then the rational function Φω ◦ h has a removable singularity at σ. 
After cancellation Φω ◦ h has degree (n − 1). As above h is an n-extremal holomorphic map in Hol(D, Γ)
and is an (n − 1)-complex geodesic of G. �
Corollary 7.5. All non-superficial functions h in R1,0 ∪R2,1 are complex geodesics of G.

Proof. First we recall a result from [8] that an analytic function h : D → G is a complex geodesic of G if 
and only if there is an ω ∈ T such that Φω ◦ h ∈ Aut D and that every complex geodesic of G is Γ-inner. By 
Proposition 7.4, each non-superficial function from the set R1,0 ∪R2,1 is a complex geodesic. �
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