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The electrophotonic silicon biosensor
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The emergence of personalized and stratified medicine requires label-free, low-cost

diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon

photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing,

but they tend to measure only a single biomarker and provide no information about their

(bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor

capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic

technology consists of microring resonators optimally n-doped to support high Q resonances

alongside electrochemical processes in situ. The inclusion of electrochemical control enables

site-selective immobilization of different biomolecules on individual microrings within a

sensor array. The combination of photonic and electrochemical characterization also provides

additional quantitative information and unique insight into chemical reactivity that is

unavailable with photonic detection alone. By exploiting both the photonic and the electrical

properties of silicon, the sensor opens new modalities for sensing on the microscale.
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T
he complexity and heterogeneity of many diseases, and
their dependence on lifestyle and genetics, demand new
in vitro diagnostic technology that can provide quantitative

measurement of multiple disease biomarkers in real time and at
low cost. These challenges have been partly addressed by a range
of label-free diagnostic platforms, many based on optical1,2 or
electrochemical3–5 transduction of a biological event. Resonant
silicon photonic devices such as microrings6–8 and photonic
crystal cavities1,9,10 have been demonstrated to have considerable
potential, as they offer high sensitivity, label-free detection in a
format that can be mass-manufactured and have been
commercialized successfully11. The critical property of silicon,
which is the key to its widespread use in photonic biosensors, is
its high refractive index. Somewhat surprisingly, the ability to
tune the electrical properties of silicon in order to combine the
complementary information revealed by electrochemical and
photonic sensing in a single platform has not yet been explored.
In part, this is due to the apparent conflict between the optimal
material properties required by electrochemical and photonic
sensors; electrochemistry requires materials of high conductivity,
that is, high doping density, while ideal photonic materials have a
low doping density in order to minimize free carrier losses.
For example, a doping density of nE1018 cm� 3, which leads
to a moderate conductivity of E45 S cm� 1, is already
sufficient to limit the Q-factor (resonance frequency divided by
the spectral width at half maximum) to B10,000—much lower
than the typical values of 40,000–140,000 associated with
microring resonator sensors7,8,12,13.

In this paper, we present a solution to this incompatibility by
controlling the doping density profile of a silicon photonic
microring resonator such that the dopants are located in a thin
layer at the silicon surface. The doped surface layer can thus be
optimized to be sufficiently conductive to support electrochemical
processes while thin enough to minimize losses of the optical
mode confined within the resonant structure. This is validated by
optical measurements that show that the Q-factor of the resonant
structure is only marginally diminished as a result of doping,
enabling highly sensitive measurement of a surface-tethered
molecular layer. Furthermore, the high doping level confined to
the silicon surface allows us to simultaneously characterize the
electrochemical activity of a surface-immobilized redox-active
monolayer, leading to an unambiguous quantitative measure of
molecular surface density.

The inclusion of electrochemical characterization alongside
photonic sensing not only allows us to combine the comple-
mentary information contained within the two measurement
domains, but also to exploit electrochemical processes
to selectively modify the silicon surface. We use this capability
to electrochemically graft specific molecular probes on the sensor
surface, focusing here on single-stranded DNA probes. Critically,
the electrografting reaction is spatially localized, enabling
site-selective control over the surface chemistry. We validate this
site selectivity by demonstrating a multiplexed electrophotonic
sensor array in which each microring within the array is
selectively functionalized with a different probe molecule, and
which is capable of monitoring multiple biomarkers in parallel.

Results
Electro-optical ring resonator sensor. Starting with undoped
silicon on insulator (SOI) material with a top waveguide layer of
220 nm thickness, we used thermal diffusion doping with a
relatively low temperature (845 �C) to create a thin, highly doped
silicon layer located at the substrate surface. Measurements of the
doping profile reveal a doping density, n¼ 1018� 1020 cm� 3

in the top 15 nm (Fig. 1c; see Supplementary Figs 1 and 2).

This high doping density renders the silicon sufficiently
conductive for use as an electrode in electrochemistry (Fig. 1e).
Because the n-doped layer is so thin, the doping density averaged
through the depth of the waveguide layer remains sufficiently
low (n¼ 7.5� 1016 cm� 3 over 220 nm) that optical losses are
minimized. This is shown in Fig. 1d that compares otherwise
identical ring resonators fabricated in n-type surface-doped
and -undoped silicon (the correlation between doping density
and Q-factor is shown in Supplementary Fig. 3, while an
assessment of the Q-factor of a lossy cavity is given in the
Supplementary Note 1). Critically, the Q-factor of the doped
resonators is B50,000; typical of optical ring resonator
sensors7,8,12,13 and is only marginally lower than that of the
undoped device (65,000).

To explore the dual sensing capabilities of our device, we
used the electrophotonic technology to monitor and quantify
electrochemical reactions occurring at the silicon surface. Using
established silane chemistry14 (see Supplementary Method 1 for
details), the surface of the photonic electrode was modified to
render it thiol-reactive, enabling conjugation of a redox-active
methylene blue (MB) analogue labelled with a thiol linker15,16.
Figure 1f demonstrates the spectral shift in photonic resonance
that results after exposure of the functionalized surface to the
thiolated MB. The wavelength shift (Dl¼ 0.58 nm) is indicative
of the formation of a surface layer. This resonant shift can be
used to estimate the molecular density of the monolayer
based on an assumption of the refractive index17. However, by
also performing measurements in the electrochemical domain
(Fig. 1e), it is not only possible to measure precisely the molecular
density of the monolayer (without any assumptions about the
optical properties of the layer) but also confirm its redox activity.
The large oxidation and reduction current peaks observed in
cyclic voltammograms of the MB-modified electrophotonic
surface confirm the redox activity of the immobilized MB layer.
Furthermore, from the area under the redox current peaks we
can also precisely calculate the density of surface-attached MB
molecules (2.2� 1012 molecules cm� 2, see Supplementary Fig. 4
and Supplementary Table 1). We note that this compares well
with the value of molecular density of 1.5� 1012 molecules cm� 2

estimated by a simulation of the ring resonator in which we have
assumed a layer refractive index of 1.5 (ref. 18; see Supplementary
Fig. 5 and Supplementary Method 4).

Photonic measurements of electrochemical reactions. The
combination of electrochemical and photonic sensing not only
provides access to complementary information, but also the
ability to regulate the local surface chemistry via electrochemical
processes in situ. For example, (Fig. 2a) shows electrochemical
modification of the photonic electrode surface via in situ
diazotization and electrografting of 4-ethynylbenzene diazonium.
The electrochemical reaction results in a prominent reduction
current peak that is observed only for the first cycle of the
electrode potential. This electrografting is accompanied by a shift
in the refractive index of the ring resonator (Fig. 2b,c), consistent
with the formation of a molecular layer (control measurements
without diazonium in solution are shown in the Supplementary
Fig. 6 and XPS confirmation of the surface chemistry are shown
in Supplementary Figs 7–9). The relatively large optical shift
suggests the formation of a densely packed molecular layer.
This is confirmed from the magnitude of the electrochemical
reduction current peak from which we calculate a molecular
density for the electrografted layer of 3.7� 1013 molecules cm� 2

(see Supplementary Fig. 3). We are therefore able to form
diazonium monolayers of equivalent density to those reported in
the literature for other electrode materials19. The absence of
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reductive peaks or shifts in resonant frequency with continued
cycling of the photonic electrode potential indicates that the
surface reaction reaches completion after the first reductive cycle.

In contrast, when azidoaniline is used for in situ diazotization
and electrografting of the photonic electrode (Fig. 2d,e), each of
the first four voltammogram cycles contains reductive current
peaks of decreasing amplitude (Fig. 2d). Each potential cycle also
leads to a corresponding shift in the resonance frequency of the
microring photonic sensor (Fig. 2e). This confirms that the
electroreduction processes measured in cycles 1–4 result from
modification of the electrode surface, rather than from an

electrochemical reaction of excess diazonium ions in the solution
phase. The magnitude of the reduction peak following the first
potential cycle corresponds to a packing density of 2.1� 1014

molecules cm� 2 in the electrografted layer. This high surface
density of molecules and the large frequency shift indicate the
formation of a complete monolayer at the silicon surface. The
combination of electrochemical and photonic measurements thus
enables us to deduce that the subsequent electroreduction
processes occurring in cycles 2–4 correspond to the formation
of a multilayer structure at the electrode. Multilayers are often
observed in diazonium electrografting20, and the mechanism of
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Figure 1 | Electro-optical ring resonator biosensor. (a) 3D sketch of a single electro-optical device. Ohmic contacts fabricated on the doped silicon

substrate allow electrochemical control over the sensor surface. (b) False coloured electron micrograph of the electro-optical device. The ring cavity and

access waveguide are presented in blue, while the non-lithographed substrate is grey. (c) Sheet resistance of the device as a function of depth into the

n-type doped silicon layer of the device. The error bars represent the systematic error in the depth measurement performed using ellipsometry.

(d) Resonance dip of a doped device compared with that of a microring resonator of identical geometry but fabricated on undoped silicon, showing a

moderate broadening due to the increase in optical loss. The resonance wavelengths were 1,580.2 and 1,580.17 nm for the undoped and doped substrates,

respectively. (e) Cyclic voltammograms corresponding to MB-modified photonic electrodes fabricated in silicon substrates of variable surface-doping

density. Electrochemical measurements were performed in a three-electrode configuration using an Ag/AgCl reference electrode and platinum counter

electrode with a 100mM potassium phosphate buffer pH 7 at a voltage scan rate of 50mVs� 1. The positive and negative current peaks observed using

highly doped silicon (n¼ 1020 cm� 3) are indicative of electrochemical oxidation and reduction of MB. Similar redox current peaks are also observed at a

lower average doping density of n¼ 7.5� 1016 cm� 3, indicating sufficiently high carrier density in the doped surface layer to support electrochemical

interrogation and control of redox molecules on the silicon surface. The increased separation between the oxidation and reduction peaks (red curve)

compared with the highly doped silicon (turquoise curve) reflects the differences in carrier depletion and at electrode–solution interface. Undoped silicon

(black curve) does not function as an electrode at all, resulting in the zero-current response. (f) Photonic wavelength shift of the resonance dip of an

electro-optical surface functionalized with silane chemistry upon exposure to a thiolated MB probe. The black arrows represent the injection of the thiolated

MB probe (blue overlay) and phosphate buffer (100mMpH 7; orange overlay), respectively. Assuming a homogenous layer of a known refractive index, the

wavelength shift can be employed to calculate the thickness of the MB layer. In our case, for a shift of 0.58 nm, a thickness of 2.6 nm±0.05 nm is obtained

(for details, see Supplementary Fig. 14).
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formation involves highly reactive aryl radicals that are generated
during diazonium electrografting (Fig. 3f). Our observation that
multilayer formation occurs for the phenylazide diazonium
electrografting reaction but not for the phenylacetylene
diazonium process is consistent with previous studies,
which have shown that the propensity for multilayer formation
is highly dependent on the structure of the diazonium
(see Supplementary Method 2 for details about the synthesis of
the diazonium salts)21.

Site-selective functionalization. Critically, the electrografting
reaction is spatially localized and occurs only at the electrode22.
We have exploited this site-selective control of surface chemistry
to develop a multiplexed photonic sensor array in which
each microring within the array is functionalized selectively
with a different ‘probe’ molecule. A bi-functionalized sensor
was constructed by modifying the surfaces of two, individually
addressable photonic electrodes, fabricated within the same
device via electrografting of ethynylaniline on one electrode,
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Figure 2 | Surface alkyne and azide bio-functionalization of the electrophotonic biosensor. (a) Electrochemical response during diazotization and

electrografting of 4-ethynylbenzene diazonium at 50mVs� 1. The reduction peak at �0.8V corresponds to the cleavage of the dinitrogen in the

4-ethynylbenzene molecule. The fact that no reduction peaks are observed in subsequent cycles of the electrode potential suggests complete assembly of a

molecular layer during the first voltage sweep. (b) The electroreduction is accompanied by a change in the refractive index around the waveguide (indicated

by ‘a’), which leads to a 0.62 nm wavelength shift. (c) Sketch of the electrografting of the 4-ethynylbenzene molecule to the silicon photonics electrode.

(d) In contrast, diazotization and electrografting of azidoaniline leads to multiple peaks in the reduction current that occur with each 50mVs� 1 cycle of the

electrode potential. (e) The photonic response provides insight into this reaction, as wavelength shifts associated with each cycle are also observed (‘a’ and

‘b’ for the first and second cycles, respectively). Here the wavelength shift after the first reductive cycle (0.65 nm) is comparable to that observed for

4-ethynylbenzene diazonium, confirming the assembly of a well-packed monolayer after the first cycle (d,e). Subsequent cycles of the electrode voltage

leads to the formation of a multilayer structure because of highly reactive radical chemistry. (f) Sketch of the electrografting of azidoaniline to the silicon

photonics electrode. X indicates unspecified chemical functionality.
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and azidoaniline on the second (Fig. 3a,b). We subsequently
exploit the differences in chemical functionality of the two ring
resonators for site-specific DNA bioconjugation (DNA sequences
given in Supplementary Table 2). The copper-catalysed
azide–alkyne click reaction simply and specifically binds alkyne
(RC�CH) surface moieties to azide (R0N¼Nþ

¼N� ) groups
on a biomolecule and vice versa. This reaction can either be
electrically controlled via in situ electroreduction of Cu2þ to
Cu1þ (ref. 23), or using a solution-based reducing agent, as
described in the Supplementary Method 3. Thus, single-stranded
DNA containing an azide group, ssDNAazide, can only react
with the ring resonator functionalized with alkyne groups, and
single-stranded DNA containing an alkyne moiety, ssDNAalkyne,
can only react with the azide-modified ring resonator.
Conjugation of DNA to the modified resonator surfaces was
monitored optically and in real time, as shown in Fig. 2c. The
saturation in wavelength shift indicates the copper-catalysed
azide–alkyne click reaction proceeds to completion for both
ssDNAazide and ssDNAalkyne, while the magnitude of the shift in
wavelength is comparable for both resonators, indicating a
similar density of the two DNA monolayers (confirmed via
Quartz Crystal Microbalance with Dissipation Monitoring as
described in Supplementary Figs 10 and 11).

Finally, multiplexed photonic sensing was demonstrated by
adding single-stranded DNA complementary to ssDNAazide to
the two photonic electrode device. A corresponding shift in

resonance is observed only on the microring functionalized with
ssDNAazide, attributable to the formation of a double-stranded
DNA complex (Fig. 3d). The lack of resonance shift on the
microring derivatized with ssDNAalkyne not only highlights the
high spatial selectivity of the electrografting process but also
confirms the multiplexing capability of the sensor. Similarly,
upon exposure to 400 nM DNA complementary to ssDNAalkyne,
we observe a shift in resonance only on the optical ring
functionalized with ssDNAalkyne (Fig. 3d).

Discussion
We have created a device capable of multiplexed detection that
consists of a pair of photonic electrode ring resonators in
the same microfluidic chamber. Site-selective modification of
the sensor surface was achieved using the electrochemical
grafting of aryl diazonium salts, a highly versatile method for
functionalization of electrode surfaces24. The wide range of
diazonium ions, which are available, or can be generated in situ
from amine molecules, can be exploited to introduce reactive
groups on the surface of silicon, which will crosslink to
complementary chemical moieties on a very large number of
(bio)molecules. For example, a further example of in situ
diazotization is shown in the Supplementary Figs 12 and 13
where the photonic electrode is modified with thiol-reactive
maleimide groups. A prominent feature of electrochemical
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ssDNAazide were added at a 2 mM concentration. This immobilization process was performed using potassium phosphate buffer (100mM, pH 7). (d) The
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grafting as an approach for surface functionalization is that the
reaction is highly localized at the electrode surface. This means
that the grafting of organic materials can be controlled at the
micrometre scale (the scale of individual microrings), and
possibly even on submicrometre scales. This spatial resolution
is orders of magnitude higher than that achieved using
conventional ink-jet25 and ink-dot printing approaches. This
capability is fundamental for the design of very high densities of
biosensor arrays; for example, one can envisage a sensor with a
total area of only a few square micrometres, yet with multiple
different sensing sites, such that multiplexed sensing of panels of
biomarkers or multimodal sensing inside eukaryotic cell becomes
a realistic possibility. Our technology also offers the ability to
tailor and optimize the light–matter interaction through control
of the geometry of the photonic sensor, something that cannot be
done using other combined electrochemical–optical sensors such
as electrochemical surface plasmon resonance sensors26.

Methods
Device fabrication. All devices consist of an optical ring resonator structure
etched into the n-type doped silicon layer of a SOI wafer (SOITEC, France).
The wafer consists of a 220 nm-thick layer of silicon on top of a 2 mm layer of
buried oxide. Doping of the 220 nm silicon layer was achieved with a thermal
diffusion method to drive the donors from a solid source (Phosphorus Grade
PH-950, Saint-Gobain Ceramics, USA) into the silicon layer. We employed a
furnace oven with a nitrogen environment, ramping the temperature up to 845 �C
at 5 �Cmin� 1, where it was maintained for 10min. Once doped, electrical contacts
are formed on the SOI substrate by means of thermal evaporation of 200 nm of
aluminium, followed by a protective layer of 20 nm of nickel and 200 nm of gold
(nickel is required to avoid the growth of further insulating intermetallic layers
between aluminium and gold and to improve gold adhesion). The ring resonator
structure (we chose the all-pass configuration as it offers higher Q-factors, hence
improving the sensitivity of the device) is patterned by electron beam lithography
(acceleration voltage of 50 kV with a step size of 4 nm) using the positive e-beam
resist AR-P 6200.09 (Allresist, Germany) at a thickness of 350 nm. Ring resonators
are patterned with waveguide dimensions of 500� 220 nm and a radius of 30 mm.
The pattern was transferred into the silicon layer by dry etching employing a
reactive ion etcher (gas composition of SF6:CHF3 1:1.16). The silicon was shallow-
etched to ensure B30 nm of silicon between the access waveguide and the optical
cavity remained in order to ensure electrical continuity between the ring cavity and
the electrical contact placed at the edge of the device. Finally, the silicon layer was
piranha-cleaned (H2SO4:H2O2 mixture at a 7:3 ratio) and oxygen plasma-activated
to bind a polydimethylsiloxane (184 Sylgard) microfluidic channel to the device.

DNA sensor array fabrication. Our DNA sensor array is made of two identical
optical ring resonators separated by 250 mm. The devices have the same physical
dimensions and are fabricated using the method discussed above. Two contact pads
are placed at the edges of the sample to electrically address each ring resonator
individually. To achieve the desired selective functionalization, both sensors have to
be electrically isolated. We achieve this by etching a trench between both sensors,
hence electrically isolating the two ring cavities. Etching is performed by dry
etching a 100mm-wide trench patterned using a 300 nm-thick layer of S1818
photoresist (MICROPOSIT, DOW chemical company, USA) through ultraviolet
exposure. Once the conductive layer of silicon between the devices is removed, a
polydimethylsiloxane microchannel is bound as described above.

Electrochemical/optical set-up. Our experiments were carried out in a modified
endfire transmission set-up, where electrochemical functionalities were incorporated.
Light from a single-mode fibrecoupled to a broadband amplified spontaneous
emission source (1,520–1,620nm) was collected and collimated by an aspheric lens
and splitter cube to a � 60 lens. The spot from this lens was focused on an access
waveguide on the edge facet of the fabricated SOI chip. The required alignment was
performed using an infrared camera with a � 20 objective while illuminating the
sample with a white light source. Light propagating through the sample to the back
facet was then collected and collimated with a � 40 lens, and sent through free space
to a focusing aspheric lens on the facet of a single-mode fibre. This light was finally
split using a splitter fibre to an optical spectrum analyser. Continuous measurements
of the transmission spectrum were taken with the optical spectrum analyser, where
the resonance wavelength is continuously Lorentzian-fitted and monitored.
A syringe pump and fluidic valve were used to ensure a controlled delivery of
samples through the inlet and outlet ports of the microfluidic channel. The silicon
substrate was used as the electrochemical ‘working’ electrode and, via a potentiostat,
the potential of the silicon electrode was controlled relative to that of an Ag/AgCl
double-junction reference electrode, while a platinum ‘counter’, electrode completed
the circuit.

Data availability. All data created during this research will be available online
from the University of York Data Catalogue at DOI: 10.15124/419c1760-fd74-
4046-ba90-fb53710430f3.
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