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Abstract 

  A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, 

consisting of quenching, power spinning and recrystallization annealing. The microstructural evolution during the 

different process stages and macroforming quality of the spun parts made of ASTM 1020 steel are investigated. The 

results show that the microstructures of the ferrites and pearlites in the ASTM 1020 steel are transformed to the lath 

martensites after quenching. The martensite laths obtained by quenching are refined to 87 nm and a small amount of 

nanoscale deformation twins with an average thickness of 20 nm is generated after performing a 3-pass stagger spinning 

with 55% thinning ratio of wall thickness, where the equivalent strain required is only 0.92. The equiaxial ferritic grains 

with an average size of 160 nm and nano-carbides are generated by subsequent recrystallization annealing at 480 °C for 

30 minutes. The spun parts with high dimensional precision and low surface roughness are obtained by the forming 

method developed in this work, combining quenching with 3-pass stagger spinning and recrystallization annealing. 

 

Keywords 

nano/ultrafine grained structure, cylindrical parts, quenching, power spinning, recrystallization annealing, small plastic 

strain 

 
1 Introduction 
 
The nano and ultrafine grained structures refer to the materials whose grain size is ranged from 1 nm to 100 nm and 

from 100 nm to 1000 nm, respectively [1]. It has attracted significant interests in scientific research and industry 

application due to its unique mechanical, physical and chemical properties [2]. Plastic deformation is one of the 

important methods to refine the grain structure of metal materials to nano or ultrafine scale. In order to manufacture 

materials with nano/ultrafine structures, severe plastic deformation (SPD) methods, such as Equal Channel Angular 

Pressing (ECAP) [3], High Pressure Torsion (HPT) [4], Multiple Forging (MF) [5], Accumulative Roll Bonding (ARB) 

[6], etc. have been proposed and reported. The SPD processes are characterized by inducing the plastic deformation on 

the same region of material repeatedly. Large plastic strains and complicated material process procedures are required in 

the reported SPD processes [7]. However for carbon steel materials, the minimum strain necessary for manufacturing 

nanocrystalline structures is considered to be around 7~8, as reported by Umemoto [8]. Therefore, the production of 

ultrafine grained (UFG) steels by these SPD processes is limited at the laboratory scale, and the application of the SPD 

methods in industrial applications is extremely difficult [9]. 

  Metal spinning belongs to a near net-shape forming technology. During spinning, a continuous and localized plastic 

deformation occurs in the metal blank to form an axis-symmetrical hollow part by means of roller feeding movement 

and rotational motion of the mandrel [10-12]. Flow forming, as a power spinning process, can be used to manufacture 
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cylindrical parts with nano/ultrafine grained structures [13]. Xia et al. [14] has developed a forming procedure to 

produce the cylindrical parts with nano/ultrafine grain structures by stagger spinning and recrystallization annealing 

(SA). By using the developed process procedure, the ferritic grains with an average initial size of 50 ȝm are refined to 

600 nm with the equivalent strain of 2.27 (the corresponding thinning ratio of wall thickness is 87%), which is much 

smaller than that of the above reported SPD. However the thinning ratio of wall thickness will exceed 90% if the grain 

sizes are further refined by the SA method, which would cause difficulties in controlling the macroforming quality of 

the spun part because of the high thinning ratios induced. 

To obtain bulk metal components with nano/ultrafine grained structures for industry applications, the material 

deformation required for refining coarse grains to nano or ultrafine scale should be reduced to lower levels, which is not 

only necessary in reducing the forming processes required, but also in controlling the macroforming quality.  

In the present work, a new forming method to manufacture cylindrical parts with nano/ultrafine grained structures by 

power spinning with small plastic strains has been proposed and experimentally tested. An average grain size of 160 nm 

is obtained under the equivalent strain of only 0.92 based on the proposed forming method. The macroforming quality 

of the cylindrical part and the microstructural evolution during the proposed material process procedure are investigated 

in details. 

  

2 Development of forming method for nano/ultrafine grained structures 
 

2.1 Overall process design 

 
The grain size of materials is closely related to the microstructure of the original material, the degree of deformation 

and heat treatment conditions after plastic deformation [15]. Ueji et al. [16] suggested that the fine grained structure of 

martensite played an important role in subdivision of microstructures for achieving the ultrafine grain during plastic 

deformation. For low carbon steels, the lath martensite obtained by quenching has a hierarchical multi-scale of 

microstructures, including packets, blocks and laths, where the packets and blocks have high-angle boundaries, which 

refine the prior austenite grains greatly during martensitic transformation [17]. Yang et al. [18] pointed out that the lath 

martensite has the finest structure among all microstructures of low carbon steels, thus the required plastic strain may be 

reduced if the lath martensite is used as the initial microstructure to manufacture the parts with nano/ultrafine grained 

structures. Quenching is the best method for refining the microstructure which introducing a large number of 

dislocations through heat treatment.                                                                                

Grains stretch along the deformation direction resulting in fibrous tissue to be formed after plastic deformation. Xia 

et al. [14] achieved the results of transforming the severe deformed grains with high density of dislocation to equiaxed 

ultrafine grains without distortion by means of recrystallization. Therefore, the method based on quenching, power 

spinning and recrystallization annealing is proposed in this study to manufacture the cylindrical parts with nano 

/ultrafine grained structures. 

  The forming method developed consists of the following stages: firstly, the cylindrical blanks are austenitized and 

then cooled quickly in the quenching medium to form the martensite. Then the 3-pass power spinning process is 

performed, which not only to obtain the final required shape of the parts but also to further refine the microstructure and 

improve the density of dislocation. Finally, the spun part with martensitic structure is subsequently annealed to form the 

equiaxed grains. 

 
2.2 Determination of process parameters for quenching 

 
For the hypo-eutectoid steel, to obtain the fine martensitic structure, the quenching temperature (Tq) is 30~50 °C 

above Ac3, where Ac3 is the transformation temperature from ferrite and cementite to austenitic during heating. The 
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temperature of Ac3 for ASTM 1020 is about 860 °C, therefore, the range of the quenching temperature Tq of ASTM 

1020 is 890~910 °C. To improve the hardenability, the temperature should be as high as possible. Therefore, Tq is 

selected as 910 °C in this study to obtain the fine and homogenous austenitic grains. The samples are put into a heat 

resistance furnace where the temperature is increased to Tq (point A), as shown in Fig 1. 

  The austenizating holding time, Ĳ1, can be calculated theoretically by using Eq. (1) [19]: 

                                Ĳ1=Kt                                            (1) 

where K is a coefficient valued as 2.5 min/mm; t is the thickness of the parts. The wall thickness of the cylindrical blank 

is 4 mm, therefore, the holding time is 10 min. 

  To obtain the martensitic structure, the cooling rate should be quick during quenching. The commonly used 

quenching media include water, oil and 5% NaCl solution. The cooling rate using the water or oil as quenching media is 

slow at the high temperature zone; while the cooling rate using the 5% NaCl solution as the quenching medium 

improves considerably at the high temperature zone. This is due to the fact that the hot surface of the quenching 

workpiece is covered by the NaCl solution, and the steam film of water will be ruptured by the precipitation and violent 

explosion of the NaCl crystals. Therefore, the 5% NaCl solution is selected as the quenching media in this study. 

 

R ecrystallization

annealing

Q uenching

C ooling in  5%  N aC l solution

C ooling in the air

Tim e / m in

T
em

pe
ra
tu
re
 / 
oC

T q

Ĳ2 Ĳ1

A

B

0

T re

   

Fig 1 Schematic diagram of the heat treatment. 
 

2.3 Determination of power spinning process 

 

Flow forming, classified as a power spinning process, is an important method to manufacture hollow cylindrical parts 

with thin-walled thickness. It mainly consists of two groups of processes, stagger spinning and counter-roller spinning, 

as outlined by Zeng et al. [20]. Stagger spinning is a traditional power spinning process. Typically, two or more rollers 

(usually three rollers) are used during processing, and there is a certain distance between rollers along both the axial and 

radial directions, as shown in Fig 2 [14]. Counter-roller spinning is a novel mandrelless power spinning process. 

Typically, one or more pairs of rollers are used during processing, and the mandrel is replaced by the inner rollers thus 

the mandrel is no longer required [21]. During the counter-roller spinning, the inner and outer surfaces of the cylindrical 

blanks deformed simultaneously, the distribution of equivalent strains and grain refinement of spun parts obtained by 

the counter-roller spinning are more homogeneous, compared to the stagger spinning [21]. However, the martensite is a 

type of non-equilibrium structures with high internal stresses, and these internal stresses will be further increased after 

power spinning, the distortion will be induced at the deformed area of the workpiece, especially at the opening area of 

the workpiece, as shown in Fig 3. During counter-roller spinning, severe distortion occurs at the opening area of the 
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workpiece after one pass spinning due to no mandrel support, which becomes an obstacle of the subsequent spinning 

process. Therefore, the counter-roller spinning is not suitable for forming of parts with the martensitic structure. 

For manufacturing of cylindrical parts, backward power spinning is commonly used. During backward spinning, the 

deformed material at the contact zones is in a state of three-dimensional compressive stress, which improves the 

formability of the material and beneficial to the refinement of grains, as reported by Xia et al. [14]. Therefore, the three 

roller backward stagger spinning is adopted in this study. 
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Fig 2 Illustration of stagger power spinning. 
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Fig 3 Distortion of the spun parts during the counter-roller spinning. 

 

2.4 Determination of process parameters for recrystallization annealing 

  

The recrystallization temperature, Tre, can be calculated theoreticallly by using Eq. (2) [22]: 

Tre = įTm                                                                     (2) 

where į is a coefficient valued as 0.35~0.4; Tm is the melting temperature of the material. 

  The melting temperature of the ASTM 1020 is about 1600 °C, therefore, the Tre of the ASTM is about 525~600 °C. 

As reported, the Tre of the spun parts under 87% thinning ratio is 580 °C [14]. The density of the dislocation and stored 

energy obtained by quenching and power spinning is much larger than that of obtained by the power spinning, therefore, 

the recrystallization temperature of the deformed martensite parts should be lower than 580 °C. In this study the 

temperature range of the recrystallization annealing is selected from 430 to 580 °C. The samples are put into the heat 

resistance furnace where the temperature is increased to Tre (point B), as shown in Fig 1.  

  The holding time of the recrystallization annealing is selected as 60 minutes for the ASTM 1020 spun parts under 

87% thinning ratio of wall thickness, as reported by Xia et al. [14]. However, for the spun parts with martensite, the 

deformed martensitic structure will be decomposed into double phase structure of the ferrite and cementite during the 
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subsequent annealing process. The fine and homogeneous cementite particles which act as precipitated phase in the 

microstructure are necessary to prevent the growth of the ferrite grains during the annealing. Therefore, to prevent the 

carbon agglomeration and growth, the holding time should be shorter than that of the conventional recrystallization 

annealing. The time of the martensite decomposing into ferrite and the cementite, Ĳ2, can be calculated theoreticallly by 

using Eq. (3) [19]: 

                            Ĳ2=K+At                                             (3) 

where, K is time-base, for box-type resistance furnace, the value is 20 minutes; A is a coefficient, the value is 2.5 

min/mm; t is the thickness of the workpiece. Therefore, the holding time is calculated as 30 minutes, as shown in Fig 1. 

 

3 Experimental tests 
 
3.1 Test conditions of power spinning  

 

The power spinning experiment is carried out on the HGPX-WSM CNC spinning machine (Fig 4) [23], the stagger 

spinning device adopted in the experiment is shown in Fig 5 [14]. 

The tubular blanks used for the experiment are the annealed seamless ASTM 1020 steel tubes, the dimensions are ĭ 

68 mm×4 mm×70 mm, and the microstructure is the ferritic and pearlite grains with an average size of 50 ȝm, as shown 
in Fig 6. 

In flow forming, the double-tapered roller is usually used for forming the cylindrical blank with the medium 

thickness, usually in the range of 2-8 mm [24]. The key geometric dimensions of rollers are determined as follows [14]: 

forming angle Įȡ=25°, sleeking angle ȕ =3°, receding angle ȕ` =30°, roundness radius rȡ =6 mm and polishing belt 

length l = 1.3 mm, as shown in Fig 7. 

 

        

Fig 4 HGPX-WSM Type CNC spinning Machine [23].    Fig 5 Stagger spinning devices [14].  

                     

              
l

ȕ

ȕ'Įȡ rȡ

  

Fig 6 Initial microstructure of ASTM 1020.     Fig 7 Key geometric dimensions of rollers [14].  
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3.2 Process parameters of power spinning 

 

The macroforming quality and microstructure of spun part are directly influenced by the spinning process parameters. 

For stagger spinning, main process parameters influencing the macroforming quality and microstructure of spun parts 

are the feed rate of roller f, the thinning ratio per pass ȥi ( (ȥi = (ti-1̢ti)/ti-1, where ti-1 is the wall thickness of the 

cylindrical parts after i-1 passes spinning, ti is the wall thickness of the cylindrical parts after i passes spinning), and the 

axial offset a and radial offset b [14]. 

For flow forming, the optimum thinning ratio per pass ȥi for cylindrical blank power spinning is 30~45%, as reported 

by Xia et al. [14]. According to Wang and Liu [25], for low-carbon steel, the feed rate of roller should be in the range of 

0.2~1.0 mm/r. Considering both process efficiency and forming quality, the feed rate of roller f is selected as 0.6 mm/r 

in this study [26]. The value of the axial offset a and radial offset b (as illustrated in Fig 2) during stagger spinning 

should be marched to keep the radial force undertaken by each roller being equilibrated, where the calculated values of 

the axial offset a12 and a23 are very close. The value of axial offset should be rounded to be easily implemented in the 

experiment, so the values of the axial offset a12 and a23 can be selected as the same, as listed in Table 1 [14]. The 

rotational speed of mandrel n has not shown obvious influence on the macroforming quality, as reported by Xia et al. 

[27]. Therefore, the rotational speed n is selected as 108 r/min based on the capacity of the spinning machine [14]. 

Table 1  Process parameters of stagger spinning 

Pass 
Thinning ratio 

ȥi  % 

Axial offset axial offset 

a  mm 

Radial offset 

b12  mm 

Radial offset 

b23 mm 

1 35%  2.5 0.45 0.35 

2 33% 2.5 0.25 0.25 

3 31% 2.5 0.20 0.20 

 

3.3 Analysis methods of microstructure 

 
To study the microstructural evolution in manufacturing the cylindrical parts with nano/ultrafine grained structures, 

microstructural observations are carried out during all stages of the process procedures. 

To observe the grain morphology of the workpiece, the optical microscopy (OM) observation is carried out by the 

LEICA DMI 5000M intelligent metallographic microscope. The samples are etched by the 4 % HNO3 +96 % C2H4O2 

solution, which are cut from the uniform  spinning area of the spun workpiece. The cutting distance from the opening 

area of the spun workpiece is about 15 mm, and the microstructures of the samples along the longitudinal section are 

observed, as shown in Fig 8. 

To observe the dislocation density and grain size of the workpiece with the nano/ultrafine structures, the TEM 

observation is carried out by using a JEM-2100 instrument. The TEM samples are prepared by the mechanical polishing 

to the thickness of 50 ȝm, followed by twin-jet electropolishing in 4% HClO4 + 96% C2H4O2 solution at -40 °C and 75 

V voltages. The corresponding selected area electron diffraction (SAED) patterns are taken with an aperture size of 700 

nm. The cutting position of the samples for TEM observation is the same as that of the OM observation, and the 

microstructures on the surfaces of the samples are observed, as shown in Fig 8. 

10

1
0

15

O M  observation

TE M  observation

 

Fig 8 Samples cut for the OM and TEM observation. 
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4 Results and discussion 
 

4.1 Microstructural evolution 

 

To reduce the required plastic strain in manufacturing cylindrical parts with nano/ultrafine grained structures, 

martensite with high density dislocation and refined microstructure is used as the initial microstructure for power 

spinning. Fig 9 shows the optical micrograph of the cylindrical blank after austenitized at 910 °C for 10 minutes and 

cooled in 5% NaCl solution. It shows that the microstructure of the ASTM 1020 is transformed from the ferrite and 

pearlite to the lath martensite, but the average grain size of austenite increases from 50 ȝm to 100 ȝm due to the grain 

coarsening during austenitization. 

For carbon steels, the martensite start temperature, Ms, can be calculated by using Eq. (4) [28]: 

Ms=520ε(C%)×320                                        (4) 

where C% is the carbon content of the material. 

The martensite start temperature of the ATSM 1020 steel is 456 °C according to Eq. (4). The amount of the 

martensite transformation is determined by the cooling temperature and can be calculated by using Eq. (5) [22]: 

ĳ=1-exp(ε1.10×10-2ǻT)                                         (5) 

where ĳ is volume fraction of martensite, ǻT is subcooled temperature below Ms. 

After quenching, the volume fraction of lath martensite is 99% according to Eq. (5). Three-level hierarchy exists in 

the lath martensite structure: martensite lath, block and packet, as reported by Kitahara et al. [29]. The martensite lath is 

a single crystal of martensite with a high density of dislocation, the block is the aggregations of the laths with the same 

crystallographic orientation, and the packet is the aggregations of the blocks with the same {111}γ plane in austenite, as 

shown in Fig 10. 

 
Fig 9 Optical micrograph of the cylindrical blank after austenitized at 910 °C for 10 minutes and cooled in 5% NaCl solution. 

 

block

block boundary

lath

packet boundary

packet

 

                 Fig 10 Microstructural hierarchy of the lath martensite [29]. 
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Power spinning is not only the main forming procedure to obtain the final required shape of the parts, but also can 

further improve the dislocation density and refine the grains. Fig 11 shows the optical micrograph of the spun part after 

stagger spinning under 55% thinning ratio of wall thickness, where the actual thinning ratio of the spun parts is smaller 

than that of the designed one (listed in Table 1) due to the springback of the spun parts. The darkly etched line is the 

prior austenite grain boundaries (GBs). It shows that the martensitic grains of the original isometric crystals are 

stretched along the deformation direction. The average hardness of the deformed martensite increases to 520 HV, which 

is larger than the average hardness of the martensite before spinning (440 HV). It indicates that the martensitic structure 

is hardened considerably after power spinning. 

 

 

 

 

 

 

 

 

 

 

Fig 11 Optical micrograph of the spun part after stagger spinning under 55% thinning ratio. 

 

Fig 12 shows the TEM micrographs of the spun part after stagger spinning under 55% thinning ratio of wall thickness, 

the white arrow indicates the deformation direction. It shows that the microstructures with many non-equilibrium grain 

boundaries are distorted severely, and the distinctive contrast in the grain interiors indicates that the high level internal 

stresses and elastic distortions exist in the crystalline lattices. The martensite laths with high density dislocation are 

elongated along the direction parallel to the deformation (Fig 12(a)) and bent along the direction perpendicular to the 

deformation (Fig 12(b)). Inside the martensite lath, the lath is divided to ultrafine regions by the dislocation walls (Fig 

12(a)). The average thickness of the martensite laths paralleling to the deformation direction is refined to 87 nm, as 

shown in Fig 12(a). Fig 12(a) also shows that many arc-like points are contained in the SAED pattern, which indicates 

that large number of high-angle boundary exists within the selected small areas.  

Nevertheless, the deformation of the martensite during spinning is inhomogeneous due to the different orientations of 

the slip system. Fig 12(c) shows the microstructure of the martensite nearing the block boundary after spinning. The 

broken red line in Fig 12(c) refers to the block boundary and the red arrow refers to the orientation of the laths. It shows 

that the degree of refinement of the martensite laths on the left of the block boundary is much larger than that of the 

right. This inhomogeneous deformation may originate from the different grain orientations of the slip system. The slip 

system of the martensite laths on the left is located in the soft orientation. Therefore, it deforms easier and earlier than 

that of the martensite lath on the right, which the slip system is located in the hard orientation. 

Fig 12(d) shows the microstructure of the martensite nearing the packet boundary after spinning. It shows that the 

irregularly bend of lamellar martensitic structure occurs due to the restriction of the packet boundaries. 

 (d) 

Prior austenite grain 

boundary 
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Fig 12 TEM micrographs of spun part after stagger spinning under 55% thinning ratio: (a) Refined lamellar structure of 

lath martensite, (b) Bent lamellar structure of lath martensite, (c) Lamellar structure nearing the block boundary, (d) 

Irregularly bent lamellar structure nearing the packet boundary, and (e) Twins in the deformed martensitic structure. 

 

In addition to the dislocation slip and pile-up, some nanoscale deformation twins also can be observed in the 

deformed lath martensite, as shown in Fig 12(e). It shows that the thin deformation twins with an average thickness of 

20 nm are generated in the microstructure after power spinning under 55% thinning ratio of wall thickness. Dislocation 

slip is the dominant mechanism of the plastic deformation and twinning is rarely occurred at room temperature for the 

material with high stacking fault energy, such as carbon steel. However, high dislocation density and high internal 

stresses exist in the microstructure of the deformed martensite. The dislocation slip becomes more and more difficult 

during stagger spinning due to the fact that the slip resistance of the dislocation increases with the increasing of the 

density of dislocation. The twinning occurs inside the grains due to stress concentration at the local distorted grain 

boundaries (GBs) [30]. Similarly, nanoscale deformation twins are usually observed in the nanoscale copper (a material 

with low stacking fault energy) manufactured by SPD, as reported by Lu et al. [31]. 

Ultrafine regions 

 (a) 

Dislocation wall 

 (e) 

 

 

 (a) 

 (c) 

 (b) 

 (d) 
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Although the nano/ultrafine grains and sub-grains can be obtained by quenching and power spinning, the 

microstructure of spun part with the high density dislocation and the deformation twins is non-equilibrium. Therefore, 

the recrystallization annealing is necessary to obtain the equiaxed ultrafine grains without distortion. 

Fig 13 shows the optical micrographs of the spun part after recrystallization annealing at 430~580 °C for 30 minutes. 

It shows that the recrystallization is not completed when the annealing temperature is at 430 °C (Fig 13(a)). The 

stretched martensitic grains formed during the spinning are disappeared and the homogeneous refinement grains are 

generated when the annealing temperature increases to 480 °C (Fig 13(b)). The grains size increases rapidly after the 

annealing temperature increases to 530~580 °C (Fig 13(c) and Fig 13(d)). 

     

       
Fig 13 Optical micrographs of the spun part after recrystallization annealing at various temperatures for 30 minutes. (a) 

430 °C, (b) 480 °C, (c) 530 °C, and (d) 580 °C. 

 

Fig 14 shows TEM micrograph of the spun parts under 55% thinning ratio of wall thickness after recrystallization 

annealing at 480 °C for 30 minutes. It shows that the martensite laths are disappeared, the equiaxed ultrafine ferrite 

grains with an average grain size of 160 nm are generated and the nano-carbides are homogeneously precipitated in the 

GBs. 

Fig 14 also shows that the SAED pattern of the spun part after recrystallization annealing contains many arc-shaped 

spots, which indicates that the boundaries with various misorientation angles exist at the tiny selected area. The 

hardness of the spun part decreases to 316.4 HV and the GBs become clearly visible, which indicates that the 

dislocation density of the microstructure decreases considerably and the highly internal stresses are released. Low 

density of dislocation inside the grains implies that the recrystallization is completed. 

 (a)  (b) 

 (c)  (b) 
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Fig 14 TEM micrograph of the spun part after recrystallization annealing at 480 °C for 30 minutes. 

 

   The equivalent strain   (
t





1

1
ln

3

2
, where ȥt is the thinning ratio of wall thickness) is only 0.92 (the 

thinning ratio is 55%) for the manufactured cylindrical parts with an average grain size of 160 nm in this study. The 

required plastic strains are much less than that by the SPD and SA methods. 

The lath martensite has the hyperfine microstructures and high density dislocations, where the packets and blocks 

have the high-angle boundaries. The cellular substructure is generated due to the inhomogeneous distribution of the 

dislocation. The microstructure is further refined and many high-energy regions are generated after the power spinning. 

Therefore, the hyperfine microstructure with a high dislocation density and stored energy can be obtained by quenching 

and power spinning, the refinement degree of grains and the density of dislocation are much larger than that of the 

plastic deformation under the same plastic strain. 

The lath martensite in the ASTM 1020 obtained by the quenching is the supersaturated solid solution of carbon, 

which becomes more instable after power spinning. The carbon will be precipitated in the form of cementite, and the 

martensite will be decomposed into the double phase structures of the ferrite and cementite after the subsequent 

annealing process [32]. A large number of dislocations and high stored energy as well as a small amount of twins are 

introduced into the microstructure after quenching and spinning, as shown in Fig 12. It provides large number of 

nucleation site in the high-energy regions and driving force of grain growth during the recovery and recrystallization 

processes [33], which contributes to the decomposition of the martensite and the nucleation of ferrite and cementite 

grains. On the other hand, the cementite precipitated in the GBs prevents the growth of ferrite grains, which contributes 

to the creation of the nano/ultrafine ferrite and cementite grains. These are the main reasons of the grain refinement 

leading to the nano/ultrafine scale by small plastic strain. 

 
4.2 Macrforming quality of spun parts 

 
The whole spinning process has been performed successfully by stagger spinning. Fig 15 shows the workpieces 

formed after different process stages. Yang et al. [18] experimentally verified that the thinning ratio during power 

spinning cannot exceed 60% to avoid the crack defects due to the low ductility of the quenched workpiece. 
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Fig 15 Workpieces formed after different process stages: (a) quenching, (b) spinning (ȥt= 55%), and (c) annealing. 

 

The relative wall thickness deviation ǻ, ovality eo, straightness es and roughness Ra are important indexes to evaluate 

the macroforming quality of spun parts, as reported by Xia et al.[26]. 

The wall thickness is measured at every 20 mm along axial direction and 45° along circumferential direction of the 

cylindrical part, as shown in Fig 16. The relative wall thickness deviation ǻ is defined as the ratio of the difference 

between the maximum and minimum wall thickness of spun parts to the initial wall thickness of blank (ǻ= (tmax-tmin)/t0

×100%, where, tmax is the maximum wall thickness of spun parts, tmin is the minimum wall thickness of spun parts, t0 is 

the initial wall thickness of blank). The ovality eo at a certain cross section of the workpiece is defined as the difference 

of the maximum and minimum diameter of the workpiece at the cross section, then the ovality eo of the workpieces 

means the maximum ovality at arbitrary cross section (eo=max(Dimax-Dimin), Dimax is the maximum diameter of the 

workpiece at the ith cross section, Dimin is the minimum diameter of the workpiece at the ith cross section) [34]. The 

straightness es is defined as the distance of the two nearest parallel planes, and the arbitrary generatrix on the outer 

surface of the workpiece is located between these two planes [34], as shown in Fig 17; where the dotted line indicates 

the theoretical generatrix on the outersurface of the workpiece, A, C, E, G are the measurement positions of the 

straightness (Fig 16(b)), dga is the distance between the point of generatrix on the outersurface of workpiece and the axis 

of workpiece.  

   

A
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H

( b)

     

Fig 16  Distribution of the measurement points of the wall thickness: (a) axial direction, and (b) circumferential 

direction. 
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Fig 17  Measurement of the straightness of spun workpiece.  

  

Table 2 shows the calculated indexes of the macroforming quality after different process stages. It shows that the 

relative wall thickness deviation ǻ of the workpiece decreases after stagger spinning. The changes of ovality eo and 

straightness es of the workpiece are negligible after the quenching and spinning, but they increase slightly after 

annealing due to the release of the internal stresses. The surface roughness improves greatly after spinning but becomes 

slightly rough after recrystallization annealing. 

 

Table 2  Evaluate indexes of the macroforming quality of workpiece under different process stages 

Evaluate 

indexes  

Stage 

Relative wall thickness 

deviation  

ǻ/% 

Ovality 

 eo/mm 

Straightness 

es/mm 

Roughness  

Ra/ȝm 

Quenching 6.4 0.20 0.08 3.58 

Spinning 4.5 0.20 0.11 1.27 

Annealing 4.5 0.26 0.15 1.63 

 
 

5 Conclusions 
     

A new forming method to manufacture cylindrical parts with nano/ultrafine grained structures by small plastic strain 

is developed in this study. An experimental investigation is carried out to draw the following conclusions: 

  (1) The developed new manufacturing method consists of quenching, power spinning and recrystallization annealing 

to achieve nano/ultrafine grained structures in cylindrical parts. The equivalent strain required for the power spinning is 

only 0.92, corresponding to a 55% thinning ratio of wall thickness. 

  (2) The martensite lath obtained by quenching elongates along the parallel direction of the deformation and bends 

along the perpendicular direction of the deformation during spinning. The lath is divided into the ultrafine regions by 

the dislocation wall after stagger spinning. 

(3) The average thickness of the martensite laths are refined to 87 nm and a small amount of thin nanoscale 

deformation twins with an average thickness of 20 nm is generated after quenching and stagger spinning under 55% 
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thinning ratio of wall thickness. The dominant mechanism of plastic deformation of the martensitic structure is 

dislocation slip, combined with a few of the twinning during power spinning. 

(4) The equiaxed ultrafine ferrite grains with an average grain size of 160 nm are generated and the nano-carbides are 

precipitated in the grain boundaries after recrystallization annealing at 480 °C for 30 minutes when the equivalent strain 

is only 0.92. 

  (5) High dimensional precision and low surface roughness of spun parts can be obtained by the proposed method. 

The relative wall thickness deviation ǻ of the workpiece decreases after stagger spinning. The ovality eo and straightness 

es of the workpiece have negligible changes after the quenching and spinning. The surface roughness decreases greatly 

after spinning. 

(6) The spun parts with nano/ultrafine grained structures are manufactured successfully. The further study should 

focus on the influence of microstructure on mechanical properties of the spun parts to manufacture parts with both high 

strength and good ductility. 
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