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Abstract. This work presents a sequential element rejection and admission (SERA) method for 

optimum topology design of three dimensional compliant actuators. The proposed procedure 

has been successfully applied to several topology optimization problems, but most 

investigations for compliant devices design have been focused on planar systems. This 

investigation aims to progress on this line, where a generalization of the method for three 

dimensional topology optimization is explored. The methodology described in this work is 

useful for the synthesis of high performance flexure based micro and nano manipulation 

applications demanding for both sensing and control of motion and force trajectories. In this 

case the goal of the topology optimization problem is to design an actuator that transfers work 

from the input point to the output port in a structurally efficient way.  Here we will use the 

classical formulation where the displacement performed on a work piece modelled by a spring 

is maximized. The technique implemented works with two separate criteria for the rejection 

and admission of elements to efficiently achieve the optimum design and overcomes problems 

encountered by other evolutionary methods when dealing with compliant mechanisms design. 

The use of the algorithm is demonstrated through several numerical examples. 

1. Introduction 
Compliant actuators obtain their mobility from flexibility of their parts as opposed to classic rigid 

body mechanisms. Therefore they can be built using fewer parts, require fewer assembly processes 

and need no lubrication. An important application of compliant mechanisms lies in Micro Electro 

Mechanical Systems (MEMS) design, where due to the small size, hinges and bearings cannot be used. 

As a result these types of devices must be built and designed as compliant actuators etched out of a 

single piece of material. The design of compliant mechanisms was initially accomplished by trial and 

error. However, the idea of introducing more systematic design procedures captured the mind of 

researchers [1].  

 

Two different design approaches were considered: lumped and distributed compliant mechanisms. In 

the first approach [2], rigid body mechanisms were converted into partially compliant mechanisms 

composed of small flexible pivots and rigid links. In the second approach, distributed compliant 

mechanisms were obtained with the use of topology optimization techniques, where optimum designs 

were automatically obtained for prescribed design domains, boundary conditions and functional 
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specifications. The main advantage of this approach was that there was no need to predetermine the 

number of links or the location of the flexural joints [3]. Since then, topology optimization has been 

successfully applied to optimize compliant sensors and actuators in many practical engineering 

designs with the use of finite element analysis, since this technique enables systematic design directly 

from the behavioural specifications. The structural topology design problem is formulated as a 

material distribution problem within a given design domain, where material should be placed and 

connected to some portions of the boundary with some number of holes inside to optimize an objective 

function.  

 

Although the design goals for structures and compliant actuators are different, the same topology 

optimization methods can be adapted to design both types of elements, introducing some 

modifications to specifically suit the functional requirement of compliant devices. We should bear in 

mind that adequate flexibility is deemed essential to afford the required displacement of the actuator at 

the point of interest. Additionally, a compliant mechanism also needs to be stiff enough to be able to 

sustain external loads. Therefore, an optimum balance between the two requirements of flexibility and 

stiffness is essential in the synthesis of compliant actuators.  

 
The pioneering topology optimization method used to design compliant mechanisms was the 

homogenization method [4]. This technique considered a material model with infinite number of 

microscopic cells containing varying degrees of solid and void. The optimum topology was obtained 

by seeking the optimal porosity of the domain. Although this method pioneered the design of 

compliant mechanisms with topology optimization, the most widely used method for compliant 

mechanisms is the SIMP parameterization [5]. In this approach, material properties were considered 

constant within each element and densities were the design variables. The effective property of each 

element consisted of its density raised to a power and multiplied to the material properties of the solid 

material. This method was applied to a wide variety of compliant actuators design problems [6]. A 

number of heuristic or intuition based methods have been also applied to the design of compliant 

mechanisms (genetic Algorithms [7], Level Set Methods [8] and the Evolutionary Structural 

Optimization method [9]). More recently the bi-directional evolutionary structural optimization 

(BESO) method was developed for topological design of compliant mechanisms [10], where solid and 

void elements are all grouped in one single list and a penalty function is mandatory to reach 

convergence. The sequential element rejection and addition (SERA) method [11] that the authors 

propose in this work does not need any artificial material interpolation scheme, and a penalization 

scheme is not required to find a pure discrete solution.  

 

The Sequential Element Rejection and Admission (SERA) method adds and removes material from 

the design domain using separate criteria for the update of solid and void elements. This strategy takes 

into account the current material status and controls how elements change their density, avoiding the 

algorithm to enter a loop where elements may change randomly from real to virtual and back to the 

previous material model in each iteration [12]. The optimization problem will be defined as the 

maximization of the Mutual Potential Energy [13], equivalent to the displacement at the output port. 

The ratio between input and output stiffness is controlled using a spring model [14], which model the 

input actuator behaviour and the stiffness of the work piece located at the output port. Examples of 

these type of actuation principles are electrothermal heating, piezoelectric actuation, shape memory 

alloys, etc. A well known filtering technique [15] is used to avoid the formation of checkerboard 

patterns, giving the method the necessarily mesh-independency. The validity of the proposed method 

for topology optimization of three dimensional actuators is demonstrated with the use of two 

benchmark problems, where motion is induced by an input force applied directly: an inverter device 

and a crunching actuator. Future work should consider the application of the SERA method for 

optimum topology design of more complex thermal and electrothermal devices. 
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2. Topology optimization formulation for three dimensional compliant mechanisms 

In order to produce the specific displacement when the load in the input port is applied the compliant 

mechanism is required to be strong and flexible. Figure 1 shows such a compliant mechanism, 

occupying a three dimensional domain Ω. It is subjected to a force Fin at the input port Pin and is 

supposed to produce an output displacement ∆out at the output port Pout. 

 

∆out

Kout

Pout

Fin

Kin
Pin

Ω

Deformed domain

 

Figure 1. Problem definition 

 

Obtaining the optimum design that converts the input work into an output displacement in a 

predefined direction is the aim of the topology optimization procedure implemented here for 3D 

compliant actuators design. The mathematical formulation of the required output displacement is 

expressed as the Mutual Potential Energy (MPE). Then the problem can be written as the 

maximization of the Mutual Potential Energy (MPE) subjected to a target volume fraction V
*
. 

 max MPE (1) 

 s.t. ∑ ρe
N
e=1 ≤V* ,  ρe=�ρ

min
, 1�,   e=1,…,N (2) 

where ρe is the density of the e
th
 finite element, N is the number of finite elements, Ve is the volume of 

the e
th
 element, VTot is the total volume for the domain and ρmin is the minimum density considered, a 

typical value of which is 10
−4. 

 
The Mutual Potential Energy in equation (3) was defined as the deformation at a prescribed output 

port in a specified direction. To obtain the MPE, two load cases are calculated:  

1) The Input Force Case, where the input force Fin is applied to the input port Pin, named with the 

subscript 1 in equations (3) and (4) and figure 2a;  

2) The Unit Force Case, where a unit force is applied at the output port Pout in the direction of the 

desired displacement, named with the subscript 2 in equations (3) and (5) and Figure 2b. 

 MPE = U2
T
∙K ∙U1 (3) 

 K ∙U1 = F1 (4) 

 K ∙U2 = F2 (5) 

where K is the global stiffness matrix of the structure; F1 is the nodal force vector which contains the 

input force Fin; F2 is the nodal force vector which contains the unit output force Fout; and U1 and U2 are 

the displacement fields due to each load case. 
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Ω
Kout

Kin

(a) (b)  

Figure 2. Representation of two load cases 

 

In order to control the displacement amplification it is possible to specify different values of the output 

spring, Kout, that simulates the resistance in the output displacement. The spring model of figure 1 is 

used to define the stiffness ratio between the input and output ports. The artificial input spring Kin 

together with a spring force Fin simulates the input work of the actuator.  

3. Sensitivity number computation 
A sensitivity analysis is carried out as part of the optimization process to provide information on how 

sensitive the objective function is to small changes in the design variables. This sensitivity number in 

each element determines which elements are removed or added so that the objective function is 

maximized. 

 �e = −U1e
T ∙ ∆Ke ∙ 	U2e (6) 

where U1e is the displacement vector of element e due to the applied load F1; U2e is the displacement 

vector of element e due to the output load vector F2; and ∆Ke is the variation of the elemental stiffness 

matrix. 

4. Sequential Element Rejection and Admission method for three dimensional compliant 

mechanisms 

The method considers two separate material models, ‘Real’ and ‘Virtual’ material and two separate 

criterions of rejection and admission of elements allow material to be introduced and removed from 

the design domain by changing its status from ‘virtual’ to ‘real’ and vice versa (figure 3). The ‘real’ 

material present at the end of the optimization will be the optimized topology. The twelve steps that 

drive the SERA method for compliant mechanisms are given below: 

 

•  Define the design problem. The maximum design domain must be defined and meshed with 

finite elements. All boundary constraints, loads and the target volume fraction V* must also be 

specified. 

•  Assign ‘real’ and ‘virtual’ material properties to the initial design domain. 

•  Calculate the variation of the volume fraction in the ith
 iteration which consists of the volume 

fraction to be added ∆VAdd(i) and removed ∆VRemove(i). 
•  Carry out a Finite Element Analysis of the two load cases to produce the displacement vectors 

U1 and
 
U2. The elemental and global stiffness matrixes, Ke 

and K, are also calculated as part of 

the FEA. 

•  Calculate the elemental sensitivity numbers. 
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•  Apply a mesh independent filtering to the sensitivity numbers. 

•  Separate the sensitivity numbers into ‘real’ and ‘virtual’ materials, αR and αV. 

•  Define the threshold values for ‘real’ and ‘virtual’ material, αR
th
 and αV

th
. 

•  Remove and add elements. 

•  Calculate the volume of the ‘real’ material in the domain. 

•  Calculate the convergence criterion εi. 

•  Repeat steps until the target volume is reached and the optimization converges. The final 

topology is represented by the ‘real’ material in the design domain. 

 

‘real’ material

‘virtual’ material

FEA model

 

Figure 3. The SERA material models 

4.1. Definition of the starting design domain 
The SERA method can start from a full design domain (all elements are ‘real’ material), from a void 

design domain (all elements are ‘virtual’ material), and also with any amount of material present in the 

domain. In this last case, a combination of ‘real’ and ‘virtual’ material is the starting point. For any of 

these cases, the material present in the domain is assigned the ‘real’ material properties and material 

not present in the domain is assigned the ‘virtual’ material properties. The method converges toward 

the optimum topology regardless of the initial design domain. However, the initial design domain 

determines the number of iterations needed to achieve that optimum. The examples shown at the end 

of the paper were all solved starting from a full design domain. Nevertheless, expressions for both 

cases are included in the following subsections for the sake of completeness. 

4.2. Calculation of volumes to add ∆VAdd(i) and remove ∆VRemove(i) 
In the first stage of the process different amounts of material are added and removed in each iteration 

until the target volume fraction V*
 is reached. In the second stage, once the target volume fraction is 

reached, material re-distribution takes place by both adding and removing the same amount of material 

until the problem converges. 
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4.2.1. First stage: real material volume fraction and target volume fraction are different. Two starting 

domain cases exist: 
a) When the design starts with a volume fraction higher than the target fraction or a full domain VF (0) 

is the volume in the design domain at the beginning of the process The volumes in the following 

iterations will be calculated using the equation (7). In each iteration the variation of the volume will be 

calculated with equation (8) and then the amount of material to add and remove will be calculated in 

equations (9) and (10), where: PR is the Progression Rate, with typical values ranging between 0.01 

and 0.05; SR is the Smoothing Ratio, with typical values in the range between 1.2 and 1.4. 

 

 VF(i)= max (VF(i-1)∙(1-PR),V*) (7) 

 V(i)=|V�(i)-V�(i-1)| (8) 

 ∆VAddF
i�=∆Vi�∙(SR-1) (9) 

 ∆VRemoveF
i�=∆Vi�∙SR (10) 

 

    

VF (i)

VF (i+1)

∆VRemoveF
(i)

∆VAddF
(i)

i  i+1

∆V(i)

 

Figure 4. Removal and addition of material from a full domain 

 

b) When the design starts with a volume fraction lower than the target fraction or a void domain Vv (0) 
is the volume in the design domain at the beginning of the process. The volumes in the following 

iterations will be calculated using the expression (11). In each iteration the variation of the volume 

will be calculated with equation (12) and then the amount of material to add and remove will be 

calculated using equations (13) and (14).  

 VV(i)= min (VV(i-1)+PR,V*) (11) 

 V(i)=|V�(i)-V�(i-1)| (12) 

 ∆VAddV
i�=∆Vi�∙SR (13) 

 ∆VRemoveV
i�=∆Vi�∙(SR-1) (14) 

V
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n
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0 
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VV(i+1)

VV (i)

∆VAddV
(i)

∆VRemoveV
(i)

i  i+1

∆V(i)

  

Figure 5. Removal and addition of material from a void domain 

 

A graphical representation of the removal and addition of elements in each iteration for case (a) is 

given in figure 5 and for case (b) in figure 6. In both cases, each iteration consists of two sub-steps 

which add and remove material from the design domain. The difference depends on the amount of 

material to be added or removed so that the volume fraction in that iteration decreases for case (a) or 

increases for case (b). 

4.2.2. Second stage: real material volume fraction and target volume fraction are similar. The process 

of material re-distribution takes place: this consists of both adding and removing the same amount of 

material from the design domain: 

 ∆VAddF or V
i�=∆VRemoveF or V

i�=β∙V* (15) 

where β is the material re-distribution fraction, with typical values ranging between 0.001 and 0.005. 

4.3. Removal and addition of elements 
The sensitivity number for the eth finite element αe (6) is a function of the variation between two 

iterations in the stiffness matrix of that element ∆Ke (16). 

 ∆Ke=Kei�-Ke(i-1) (16) 

where Ke(i) is the stiffness matrix in the ith iteration for the e
th
 finite element; and Ke(i − 1) is the 

stiffness matrix in the (i − 1)
th
 iteration for the same finite element. If an element is added, Ke (i) = Ke 

and Ke(i − 1) ≈ 0, so the variation of the elemental stiffness matrix is ∆ Ke = Ke. But if an element is 

removed, Ke(i) ≈ 0 and Ke(i − 1) = Ke, and ∆Ke = − Ke.  

 

Then, the elemental sensitivity numbers for the ‘real’ and ‘virtual’ material are given by equations (17) 

and (18), respectively. 

 αeR=U1e
T

∙Ke∙ U2e (17) 

 αeV=-	U1e
T

∙Ke∙ U2e (18) 

As the objective is to maximize the MPE, the elements with the higher values of sensitivity number 

are the ones to be added and removed (figure 6). Before the addition or removal of elements according 

to this sensitivity values, this values will be smoothed with a mesh independency filter. The threshold 

values αth
R
 and αth

V
 are the sensitivity values that remove or add the amount of volume ∆VRemove(i) and 

∆VAdd(i) defined for each iteration are given in figure 6. 
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VIRTUAL MATERIAL, αVREAL MATERIAL, αR

αeV max αeV max

αeR min αeV min

αth
R

αth
V

∆VAdd
∆VRemove

 

Figure 6. Lists of real and virtual material and the volumes to 

be removed and added 

4.4. Convergence criterion 
The convergence criterion is defined as the change in the objective function in the last 10 iterations 

(19), which is considered an adequate number of iterations for the convergence study. It implies that 

the process will have a minimum of 10 iterations as the convergence criterion is not applied until the 

iteration number has reached this minimum number of iterations. 

 εi=
�∑ MPEi

i=5
i=9 -∑ MPEi

i
i=4 �

∑ MPEi
i
i=4

 (19) 

where εi is the convergence criterion, with typical values ranging between 0.001 and 0.01. 

5. Numerical examples 

Three dimensional inverter and crunching benchmark actuators are presented to demonstrate the 

efficiency of the proposed method. Many examples of compliant mechanisms, such as inverters and 

grippers, can be found in the literature. Here, some of them have been re-designed using the proposed 

method and illustrating the ability of the design method for 3D applications. The material properties 

used in all examples are the following: Young’s modulus is taken to be E = 200 GPa and the Poisson’s 

ratio is v = 0.3. The density of the virtual material is taken to be ρmin = 10
−4

, which is equivalent to 

0.01 % of the stiffness of a real material. The algorithm has been applied for simple compliant 

actuators optimization under directly applied input loads. The topologies presented in this section were 

modelled using geometrical nonlinear elastic analysis, because otherwise the results may be useless in 

some cases as large displacement mechanisms, even if obtained results do not show any locking or 

related problems. 

5.1. Inverter mechanism 
The design domain for the inverter mechanism is shown in figure 7. The aim of this topology 

optimization problem is to design an actuator that converts an input displacement on the left edge to a 

displacement in the opposite direction on the right edge. The domain consists of a parallelepiped of 

size 40×40×5 mm discretized using cubic eight node finite elements. The boundary is fixed at the 

upper and bottom left corners and a standard input force Fin = 1 kN is applied. A stiffness ratio of 

Kout/Kin = 1 is defined for the springs that model the input actuator and the output workpiece. The 
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target volume fraction V* is 0.4 and the filter radius used to prevent chequerboard is rmin = 1.5 mm. 

Both the top face and the side displacement are imposed taking advantage of the symmetry; i.e., nodes 

can only move within the planes shown in the figure. Therefore the results shown in the following 

subsections correspond to the quarter part of the full design domain. 

 

Fin

Kout

Kin
Pin

Pout

∆out

Top face

constrained

for symmetric

Side face

constrained

for symmetric

 

Figure 7. Design domain and boundary conditions for the inverter mechanism 

 

The optimized topology was obtained after approximately 150 iterations. Figure 8 shows the optimum 

topology of the analyzed quarter part of the domain. It can be observed that the obtained material 

distribution and the connections of the supports with the input and output ports are basically similar to 

the classical planar inverter mechanism with slight differences. This example agrees well also with the 

solution offered by the SIMP parametrization strategy. One can notice that the resulting mechanism is 

not truly compliant because there is a moment free one-node connected hinge. This hinge should be 

avoided performing a post processing of the resulting topology, where it can be substituted with a long 

slender compliant hinge. An alternative solution is to applied diverse methods proposed in literature to 

alleviate the problem from the very beginning of the optimum design problem formulation.  

 

 

Figure 8. Optimum topology for the inverter mechanism 
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In figure 9 the output displacement evolution is plotted as a function of the iteration number and 

snapshots of the actuator topologies at the different stages are shown. As it can be observed in the 

evolution history, the objective function does not have positive values until a well defined mechanism 

is constructed with material joining the input and output ports. This is because the objective function 

represents the displacement in the output port and therefore positive values can only be obtained when 

the material distribution promotes the displacement transmission through the hinges created during the 

optimization process. Initial displacement at the output port was 0.9603 mm inwards, while final 

displacement is 3.742 mm outwards, this time along the desired direction. Figure 9 describes the 

gradual formation of the optimum design and illustrates how the material rejection and addition takes 

place, using an image sequence captured during the process. The optimal topology is the same 

regardless of the path of the optimization, even if it can take different number of iterations until the 

topology efficiently grows towards the optimum, depending on the initial material distribution and the 

final volume fraction. 
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Figure 9. Evolution history for the inverter mechanism. 

5.2. Crunching mechanism 
The design domain for a crunching mechanism is shown in figure 10. Again it is a square of size 40 × 

40 mm with a thickness of 5 mm and subdivided using 1 mm cubic eight node finite elements. The 

mechanism is supported at the left side and is subject to a vertical input load Fin = 1 kN at the upper 

and lower right corners, where due to the symmetry of the problem only a quarter of the full design 

domain is modelled. The objective is to maximize the horizontal displacement on the output port in the 

outward diretions by distributing material in the design domain area. The allowable amount of 

material for this example is taken to be 40% of the full design domain. The spring based formulation 
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used in this work allows the displacement amplification to be controlled by specifying different values 

of the input and output springs as part of the definition of the problem. As in the previous example a 

ratio of Kout/Kin = 1 has been adopted. 

 

Figure 11 shows the obtained optimum topology for the crunching mechanism, which resembles the 

solutions obtained by other authors using different material models and optimization algorithms for 

two dimensional problems such as SIMP. The same figure includes the optimized topology for the 

planar actuator optimum design problem. The resulting three dimensional topology is comparable with 

the 2D solution, obtained with the SERA procedure described in this work. Although topologies are 

not exactly the same, the most important features of the design are present in both cases. It must be 

noted as well that the angle between the bars and the location of holes depends heavily on the 

smoothing of sensitivities and stiffness of the structure and springs, which reasonably are different in 

both cases. 

 

Fin

Kin

Kout
Pout

Pin

∆out

Top face

constrained

for symmetric

Side face

constrained

for symmetric

 

Figure 10. Design domain and boundary conditions for the crunching mechanism 

6. Conclusions 

An extension of the sequential element rejection and admission (SERA) method for topology 

optimization of three dimensional compliant actuators has been presented in this work. This method 

overcomes the issues noticed evolutionary methods are used for the design of compliant mechanisms. 

The main difference of this method with respect to other bi-directional methods which add and remove 

elements from the design domain is that solid and void materials are treated separately so that the 

addition and removal of elements have separate criteria. The problem of designing compliant 

mechanisms is defined here as the maximization of the mutual potential energy and a spring model is 

used to control the input and output stiffness. This formulation meets the flexibility and stiffness 

requirements necessary to design compliant devices that satisfy the kinematic requirements and at the 

same time withstand the applied loads. The solved numerical examples agree well with solutions 

offered by the SIMP interpolation scheme and demonstrate that the SERA method is both an efficient 

method of designing 3D compliant actuators. Optimum topologies resemble the solutions obtained 

with the same method for two dimensional problems. It should be mentioned that both SIMP and 

SERA methods show the same issues concerning one-node connected hinges, so techniques to avoid 

them should be explored and implemented. The generalization of the method for more complex 

electrothermal actuators in three dimensions is left for future work. 
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Figure 11. Optimum topology for the crunching mechanism. 
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