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L ongitudinal control behaviour: analysis and modelling based on

experimental surveysin Italy and the UK

Luigi Pariota&, Gennaro Nicola Bifulch Francesco GalariteAlfonso Montelld, Mark Brackstone

Abstract

This paper analyses driving behaviour in car-following conditions, based amsaendividual vehicle data collected
during experimental field surveys carried out in Italy and the UK. Thésaimcontribute to identify simple evidence to
be exploited in the ongoing process of driving assistance and aittomdich, in turn, would reduce rear-end crashes
In particular, identification of differences and similarities in observedatkrwing behaviours for different samples of
drivers could justify common tuning, at a European or worldvédel, of a technological solution aimed at active
safety, or, in the event of differences, could suggest the most criticatsagpée taken into account for localisation or
customisation of driving assistance solutions. Without intending texbaustive, this paper moves one step ia th
direction. Indeed, driving behaviour and human errors are coadidetbe among the main crash contributory factors,
and a promising approach for safety improvement is the progeesgroduction of increasing levels of driving
automation in next-generation vehicles, according to the active/preventieyy sgfproach. However, the more
advanced the system, the more complex will be the integration in tideyednd the interaction with the driver may
sometimes become unproductiver risky, should the driver be removed from the driving contoolp. Thus,
implementation of these systems will require the interaction of huimging logics with automation logics and them a
enhanced ability in modelling drivérbehaviour. This will allow both higher active-safety levels and higiser
acceptance to be achieved, thus ensuring that the driver is alwagsdontol loop, eveif his/her role is limited to
supervisig the automatic logic. Currently, the driving mode most targeyedtising assistance systems is longitudinal
driving. This is required in various driving conditions, amevigch carfollowing assumes key importance because of
the huge number of rear-end crashes.

The increased availability of lower-cost information and communication techesld¢CTs) has enhanced the
possibility of collecting copious and reliable car-following individual vehicle daiathis work, data collected from
three different experiments, two carried out in Italy and one in thedKanalysed and compared. The experiments
involved 146 drivers (105 Italian drivers and 41 UK drivers). DataweHlected by two instrumented vehicles.

Our analyss focused on inter-vehicular spacing in equilibriwarfollowing conditions. We observed that (i) the
adopted equilibrium spacing can be fitted using lognormal distribut{phthe adopted equilibrium spacing increases
with speed, and (iii) the dispersion between drivers increases p@ddsIn addition, according to different headway
thresholds (up to 1 second) a significant number of potentially darggbehaviours is observed.

Three different car-following paradigms are also applied to each of treximegnts, and modelling parameters are
calibrated and compared to obtain indirect confirmation about the observed semsilant differences in driving
behaviour.

Keywords. Active road safety, Driving automation, Driving behavio@ar-following, Instrumented vehicles, Cross-

country experiments.
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1. Introduction

Reconciling mobility needs with efficient and more sustainable transpaortdtence reducing highway crashes,
injuries and fatalities, is a key objective in the transportation sector. Giveruhan factors are considered to
contribute to 93% of vehicle crashes (AASHTZD10), driving automation at different levels is seen as having the
potential to improve highway safetguch automation levels have been classified in slightly different bsag#ferent
organisations. For instance, as reported by ERTRAC (2015), the Sotiktyomotive Engineers (SAE) considers six
automation levels, ranging from 0 to 5. These approximately corrégpdhe five levels (from 0 to 4) identified by the
National Highway Traffic Safety Administration (2013a). SAE level laofomation has been deployed for several
years (e.g., adaptive cruise control, lane-keeping assistance, etc.), lgg&trAsshave more recently emerged (e.g.,
automated parking, adaptive cruise control with stop-and-go and/or fatokming, etc.) and introduction of level 3 is
now under discussion (e.g., combination of adaptive cruise contrtdamadhanging/overtaking systems).

Interestingly, increasing levels of automation require that the driveers more at the centre of the innovation and
design process (Trimble et al., 2014). Indeed, as automation ntavesofie level to another, the required driving
performance shifts from full driver responsibility to co-responsibilth assisting or automation systems. Levels 1
and 2 require that the automation logic interacts with driver behad@acomplish complete driving tasks, and higher
automation levels also require that the driver is kept in the vehicle controlsioop at level 4 he/she is responsible fo
the transition from automated to non-automated tasks (or between difietemated tasks), and at level 3 he/she can
also be reqjued to recall the control of the vehicle should automation fail.

Correct understanding of driving behaviour may allow humanremad mis-intervention to be identified, thus
enabling driver intervention to be replaced by automatic control or warihldrér and Vollrath, 2010). Poor
interaction between the automation logic and its human counterpart (podsailto scarce knowledge of driver
behaviour) results in poor safety performance.

According to evidence from the scientific literature, drivers may experjgotdems irregaining control also in the
case of moderate automatjgeossibly due to over-reliance on vehicle systems and/or reduced sitliaisareness
(Vollrath et al., 2011), and the debate on the possible effects of automiaiad dr far from concluded. As stated in
Horrey et al. (2015) and in Lee and See (2004), the discrepancy between the driver’s and the system’s estimates of the
state of the world could result in operator-system conflicts, reducstdirtrthe system and, ultimately, system disuse
That said, the way automation is designed and deployed (e.g., humaltiilng assistance systemsBifulco et al.,
2008) strongly impacts on the effects, especially in terms of ratetys(Strand et al.,, 2014). As a consequence,
research efforts in this field are being stepped up in every aspect, suchias aepeptability (Payre et al., 2014), the
driver’s reaction in the event of automation failures (Strand et al., 2014), the influermetafation on the behaviour
of other unequipped vehicles (Gouy et al., 2014), and so forth.

Within the vast field of automation, longitudinal control of the vehicle dmdar been one of the more widely
addressed aspects. This applies to different driving tasks; for instatetégent Speed Adaptation (ISA) mainly works
in free-flow conditions, while Adaptive Cruise Control (ACC) andigxilomous Emergency Breaking (AEB) mainly
work in car-following conditions. Assisting and automation soluti@tated to car-following conditions are among the
most effective with respect to safety, as they deal with relative spebdpacing (that is with the bumperbumper
distance between the leader and the following vehicles and associated time-haadfeaytimeto-collision). This
affects the occurrence of rear-end crashes, that are mainly causerlfajure of the driver to brake sufficiently early

to avoid the collisionThe risk of a rear-end crash increases exponentially as the hetwhwayap decreases. Drivers
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should maintain a safe headway behind the vehicle ahead, sudhefhean stop safely in order to avoid a collision if
necessary, and most researchers agree that less than two sheadday is insufficient and unsafe (a recent review of
the literature on this topic can be found in Austroads, 2015, where thénpadway maintenance is evidenced as one
of the principal rear-end crash contributory factor). However, ntrivers keep headways lower than the time to
perceive and react to an unexpected change in traffic ahead (Austrodsls,i201their perception and reaction time
(PRT). As the driver headway is below their PRT, there is a reliamegewing traffic conditions ahead of the vehicle
being followed even though this does not permit the driver to anticipateersutaking by the vehicle immediately
ahead (Hutchinson, 2008). Motorists find it difficult to maintairuicient headway in denser traffic, given that lane
changes occur frequently. Exacerbating the issue is that most nsoéweisinaware of what constitutes a safe headway,
or how to determine it (Song and Wa2@,10) Following a vehicle with insufficient time headway is defined tailgating
and is one of the most dangerous and aggressive driving bergvigpresenting a major cause of rear-end crashes.

Crash statistics highlight the major role of both rear-end crashes and the wilgatinibutory factor. In Italy,
according to the Italian National Institute of Statistics, tailgating was the coatribubry factor in 17% of crashes in
the three-year period 2011-2013. In the same period, rear-ené<i@Estounted for 47% of the crasbasnotorways
and 30% of the crashesn national highways. In the UKollowing too close (equivalent to tailgating) was the main
contribubry factors of 16% of the crashes in the motorways and 9% of the criasttes A roads in the three-year
period 2011-2013 (Department for Transport, 2012, 2013, 20i4he same period, rear-end crashes acedunt
32% of the crashes in the US (NHTS2Q12, 2013b, 2011

We are strongly convinced that-depth understanding of the peculiarities and criticalities of natural (8vd-0,
without automation) behaviour of drivers in car-following is a mguisite for proper design of driving automation
solutions aimedt longitudinal control of vehicles and active-safety systems to preveremdacrashes.

In light of the above considerations, the aim of this work is to incr@saumber of available analyses, based on
different experimental surveys, in the long-running discussiomtather and in which way characteristic car-following
patterns can be identified in a population of drivers. The paper comparegedbskaracteristic patterns, interpreted
within the framework of car-following theories and with referenceéwto different countries, in an attempt to gain
insight intocarfollowing behaviours, as well as their variability across both diffedeémers of a given population and
different populations of drivers. Identification of differences and similaritee different samples of drivers could
justify common tuning at a European or worldwide levelda@echnological solution aimed at active safety, or, in the
case of differences, could identify the most critical aspects to be takeacitwont for localisation/customisation of
driving assistance solutions. Without the ambition to be exhaustivgabés moves a step in the former direction.

We analyse the observed behaviours of different samples of drivexdolpying two different approaches. On the
one hand, we directly observe the data collected during car-follovéegiomis, with particular reference to the
distribution across different populations of observed adopted spadgawef in relationto different speeds)On the
other, we adopt some reference models and compare the values ofaimetpes of these models after calibration
against observed data. Comparison of parameters in different samples ailirect comparison of observed
behaviours. In order to enhance the robustness of the model-basesg:s\nhly approach is performed three times, with
reference to three different models. The role of car-following mdddlsereby extended from the traditional field of
simulation models for traffic networks, for which they constitute rapartant part in order to simulate longitudinal
movement of vehicles, to the field of driving assistance, oriented to roagd. safet

The paper is structured as follows. In section 2 the theoreticalviraremployed to interpret observed behaviours
is briefly presented: the main concepts and variables adopted in car-fglldwearies are introduced and discussed

with reference to simpler theories, as in Pariota and Bifl2@d 9 where the suitability of using simpler paradigms is
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Longitudinal control behaviour: analysis and modelling based on experimental surveys in Italy and the UK 5

shown (albeit with reference to a specific theoretical paradigm). Ingti®s the reference models used for comparing
observed behaviours via calibrated parameters are also spe@ified that the proposed research is based on actual
carfollowing behaviour rather than on mere theory, field data are @npant importance and in section 3 the
technologies employed for observing car-following behaviours are adsed. Section 4 presents the three
experimental surveys carried out and the main characteristics of the gedali@isets, to be anadysand compaed In
section 5 direct analysiis performed on longitudinal control behaviour; the method empldagedientify the
equilibrium conditions is presented, as well as the associated results. In sectidre@& madalysis based on the
calibration of the reference modédspresented and discussed. Finally, in section 7 conclusions are, d@wparing
equilibrium conditions and modelling parameters for the different expetsmedifferent countries.

2. Theuseof driving simulatorsfor research in car-following conditions

Vehicle control during driving can be divideddrntwo macro-tasks: longitudinal control and lateral control. Lateral
control mainly consists in steering, and letting the vehicle keemdiign in the lane and/or perform lane changing.
Longitudinal control is mainly actuated by using pedals, and congisteving the vehicle forward within a lane,
applying appropriate acceleration and speed. It can in turn be classifietbfgitbnce to three main conditions: free-
flow (no interaction with vehicles ahead), car-following and emenrgbraking. The purpose of this work is to analyse
the car-following aspects of longitudinal control.

The approach adopted in this work is both to directly analyse obseavddllowing conditions and to refer to car-
following theory in order to identify specific variables and modelling mpatars able to represent the phenomenon.
Identification of longitudinal control with the mere car-following condiitis justified by our field of application, which
is the introduction of assisting and automation solutions for road/skfdeed, many of the driving assistance solutions
introduced so far in the automotive arena deal with concepts like thendatkvay between a leading and following
vehicle in a traffic stream, relative speed, titoecollision and other variables that are typical of car-following theory
and that play a crucial role in road safety, especially for rear-end coll{Sioinansson et al., 2004). This is the case, for
example,of ACC (Adaptive Cruise Control) where adaptation of the speed is ggneaaltdon the time-headway, or
AEB (Autonomous Emergency Braking) where emergency brakinactivated for critical values of the tinte-
collision.

In the absence of automation, car-following models describe the behaf/@iwllowing vehicle as a function of the
trajectory of the leading one hils, depending on the leader’s trajectory, the car-following model can be employed to
estimate the kinematic trajectory the driver imposeshe vehicle. According to Saifuzzaman and Zheng (2014), car-
following models can be divided into several main categories, such as stimasied-models, safety distance models
and psychophysical or action point models. Other minor streams are régolebgrso-called linear models and by
models based on fuzzy logic. In stimulus-based models the acceleftienfollower is determined by the reaction to
the relative velocity and spacing from the leading vehicle. Such models wate popular by the paradigms
formulated in the late 1950s as part of the so-called General Motors (GM) n@emigt (et al., 1961), which has
continued in use to the present day (Bifulco et al., 2008). The safetycgistpproach was developed by arguing that a
follower maintains a distance and a speed that allow safe braking if the $aaerabruptly. Formulations of this
collision-avoidance approach can be found in Kometani and Sasaki (1958) &mgbs (1981), where multiregime
formulations are introduced in order to also deal with carfollowing or different car-following conditions. The
psychophysical approach is developed from behavioural analysis omnhwwognitive and decision-making

mechanisms. Such models may be considered to have been initiated by M{&B&8)who showed that drivers
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Longitudinal control behaviour: analysis and modelling based on experimental surveys in Italy and the UK 6

respond to changes in the perceived size of the vehigadahrguing that the response is actuated by drivers (by
depressing or releasing the gas pedal and/or the brake) at given thre$tioddgerceived variation of the apparent size
of the vehicle ahead. These thresholds can differ according to whedtdistdince from the vehicle ahead is increasing
or decreasing. Models developed according to this paradigm were later fvathadthe well-known action point
theory, as developed, among others, by Wiedemann (1974) and Wa@i4n, where car-following behaviour
oscillates within the thresholds and, in the event of the I&aderady-state speed, the centre of this oscillation is an
equilibrium point with a null relative speed and a given inter-vehicular spagiqlibrium is well described (see point
A) in Figure 1,where relative speed between vehicles (leader and folliswgdtted against inter-vehicular spacing.
This equilibrium point, as argued from the cognitive and decision-maloing of view, is not in conflict with the
stimulus-basear safety-based theories, and is also confirmed by experimental obsasvatie distribution of these
equilibria is analysed in this work with reference to three diffedatasets in order to identify recurrent patterns and

general behaviours.

) w 2] N EN
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Spacing [m]

=
o
T

=
o
T

> -

o
T

0 r r r I r r r
-3 -2 1 0 1 2 3

R-elative speed [m/s]
Fig. 1 Car-following oscillations around an equilibrium point

Three interpretative paradigms are also applied to the observed data. These models are peséous works,
namely Pariota et al. (2015 online publication), Bifulco et al. (2013a)Bifulco et al. (2013b), and allow the
characterisation of the observedrfollowing behaviours. We chose the above three approaches for practaaigea
they adopt as independent variables precisely the data that can be collectstiupyeimed vehicles, and have few
parameters to calibrate, arranged in very simple analytical structures. It ispeortimg out that complex models often
fail to outperform simple ones and the adopted approaches haveHosemte be no less accurate than others with
more complex analytical structures. Moreover, the risk of overfittm@{ least unnecessary over-complexity) is high
in the case of models with several parameters (Punzo et al., 2015).

The first interpretative paradigm is based on a state-space model applied tbeémgolndeed, car following can
be viewed as a time-continuous dynamic process; for instance, liteceepresented (see Wilson, 2008) with equation

1), where for the sake of simplicity the so-called additive acceleratioregeaiing a random noise) has been omitted:

Uh = Flax, AV, v 1)

where:

n is the following vehicle and n-1 the lesad

\'/; is the acceleration planned to be applied by the follower as a decision takea iaistant t,

AAP-D-15-00793R2
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Longitudinal control behaviour: analysis and modelling based on experimental surveys in Italy and the UK 7

. . L
AX;, is the spacing between the leader and the follower at time instant t,

t . L
Av,, is the relative speed between the leader and the follower at time instant t,

f() is the acceleration function, which formally represents the car-follovarapgmm.

Considering 5 is the absolute (unidirectional) position of the follower afdisaits acceleration, while's is the

absolute position of the leader arigh\ts speed, the definition below holds:

At . t t t t t_ ot t At t

Sh=Vn, Vh=2an, Ay =S 11—, AVq =Vp_1—Vp, Axp = Avy

From the definition of equilibrium conditions the following results are obtained

L x * * * * *
V=0 AV =0—Vy =V Ay =9(Vn)

where the equilibrium spacingak;, ) has been explicitly assumed as a function of the cruising speeptidgiéor
equation 1 a Taylor’s expansion at the equilibrium point, it can be written that
.+ of () o () o () *
t t t t
vV, = —=(AX, —AX,) + —=(Av, —0) + —= (v, -V, 2
b= e, (0 )+ S AV =0+ TR0 V) )
Now, given that at equilibrium the cruising speed does not significaiffidy fom that of equilibrium, the last term
of equation (2) can be neglected. Moreover, having defined

o () of ()
= and —r =
OAX, “r OAV,,

a)z,

L=vt A ot t_ t st
and given thatn = V-1 AV”, we may writeAVn =~ AXy — @) AV, + @y A% +Vy 4

ot ot
This can be arranged in the classical state-space representat)l(ﬁn_a‘szxn +B T

ot

0 17. . 0 0]. . X (ALY
whereA = is the state matrixg = is the input matrix, " ¢ | is the state vector,
—Wp —TWy w1 Avy
—t X5\ : d A)'(}1 . ) _—
u =<‘_/t ) is the input vector, ang! :axg =l At ]S the first derivative of the status vector.
n-1 Vn

Once the equilibrium spacing is identified (at a given cruising speed)aliresvof the parameters of the mode] (
andw,) depend on the driver’s behaviour. The two parameters jointly influence the tendency of the driver to close the
gap with the preceding vehicle, whidlg alone explains the tendency of the follower to stay far from the leadause
of the equilibrium.

The second interpretative paradigm is based on a stimulus-response lapfirbas been shown (Bifulco et al.,
2013a) to mimic real car-following behaviour once calibrated phppk aimsto enablea human-like control logic
(Simonelli et al., 2009) for ACC systems. The time-discrete lineaehrelates on one side the instantaneous speeds of
the leader and the follower and their spacing with, on the othenatrget spacing the follower desires for the next

simulation time-step. The main equation is:
As(k, ke + 1) = By + By Ax(k) + B - va (k) + B3 - vyq (k) 3)

whereAé(k, k + 1) is the target inter-vehicular spacing estimated at time interval k for time intertabkd all other
variables are the sanasthe state-space approach but refer to a discrete-time approach, wharey kégerence time
interval and k+1 is the subsequent one. Si¢é) = Ax(k) + s,_,(k) and v, (k) = Av(k) + v,_,(k), the

variables of this second paradigm are no different from thodeedirst. The linear stimulus-response model is easy to

AAP-D-15-00793R2
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Longitudinal control behaviour: analysis and modelling based on experimental surveys in Italy and the UK 8

calibrate (identification of the parameters fr@ggto f3). The most efficient algorithm for this aim is the recursive least
squares (RLS) algorithm, which can also be applied at run-time, dieiagcollection. Calibration and validation tests
carried out in previous works have shown good agreement betimelated and observed trajectories, with typical
errors never exceeding 77%, less than 20% in 60% of cases and in 48%e®fless than 10% (Bifulco et al., 2013a)
Interestingly, the model is not restricted to the equilibrium car-followingiiondand does not require identification of
the equilibrium spacing.

The third interpretative paradigm is based on the definition of car-followags given in Bifulco et al. (2013b)
and on an appropriate representation of action points. If car-followpingisare represented in the plame//AX vs.
AV and if, according to Pariota and Bifulc®0(L5, only the action points associated to the speed thresholds are plotted,
a linear pattern can be estimated, similar to what is depicted in Figure 2 bdieme, several (and different) observed

carfollowing trajectories are employed for estimation.

-DV/DX [1/5)

Fig. 2 Linear pattern for action points

Estimation of the linear pattern results in identifying two parametétk,the intercept parameters observed to be
null in all estimated cases. Differences in terms of the obtained parafoetdifferent car-following observations can
be employed as a measure of the differences between the observegl maiterns. Also in this case the models do not

apply only to equilibrium points.

3. Observing car following

Identification of car-following behaviour and calibration of car-follogvimodels require the use of car-following
data. For many years the availability of enough data, as well as the qudligse data, has been an issue. This was
mainly due to the problem of observing and recording disaggregtde Als a result, aggregate traffic flow data (e.qg.,
flows, densities, etc.) were very often used for the calibrationiafoscopic (disaggregated) traffic models. However,
for any research activity in the field of car following, especi#filapplied to driving assistance or automatien,
reasonable quality of microscopic data is a prerequisite. Fortunately, sonecess of microscopic car-following data
are now much more easily available, mainly thanks to the rapid devetopf ICT.

One of the new sources of microscopic car-following data is repredenssshsing devices placed outside the traffic
stream. Some examples in this field are given by the NGSIM project (Alexédal.,, 2004) in the US and the
Motorway Incident Detection and Signalling (MIDAS) data archive collected by thewdigs Agency in the UK
(Wilson, 2008) In the NGSIM data microscopic traffic observations are available f0anetre segment of the 1-80

interstate freeway. The 1-80 dataset is collected using digital video cameras alldavitification and tracking of each

AAP-D-15-00793R2
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Longitudinal control behaviour: analysis and modelling based on experimental surveys in Italy and the UK 9

vehicle in the traffic stream with a time-resolution of 0.1 seconds.eMeny the trajectories observed are quite short,
the observations are fixed outside the traffic stream (Eulerian obseragfiooach), and some errors and noise in the
observed data have been revealed in recent studies (Hamdar and Mahma68aniA 20urce of data similar to
NGSIM comes from the Seohaean freeway in Korea, where data for estimggirend crash potential were prepared
and analysed from 1h video images related to the 3-lane segment nkketeng interchange®g and Kim, 2010)
The MIDAS system in the UK is based on loop detectors placed on the Mi®ih Orbital Motorway from junction
10 to junction 16. Strictly speaking, data from MIDAS relate to macroscaogifiictcharacteristics (average speed,
density and flow); however, given the high density of traffic sendor some segments of the motorway, re-
identification algorithms were proposed (Lunt et al., 2006) in ordegstomate vehicular trajectories intended as
disaggregated data about individual speeds and loop-crossing times.

Another kind of ICT-enabled source of data for car-following bi&hanis represented by real-time kinematic (RTK)
GPS. Use of such data is widespread in the scientific community (Guresatgil., 2002; Ranjitkar et al., 2003;
Brockfeld et al., 2004). However, some issues have to be addresssihdnthis technique: at least two vehicles
equipped with GPS are needed, one acting as the leader and the other (immediditelyetr) as the follower.
Maintaining uninterrupted car following between these two vehicles feuitable duration of time is not trivial and
making an effort to do so could introduce some bias into the obsesthestiour.

The third kind of data source is the one adopted in this papartails the use of an instrumented vehicle (Boyce
and Geller, 2002; Brackstone et al., 2002; Ma and Andreasson, 2@@ksBme et al., 2009). An instrumented vehicle
(IV) is a normal car (similar to any other andusmsecognizable as possible within a traffic stream) that is equipped with
a data acquisition system and one or more sensors able to detect mémghbehicles (Tarko et al., 2013; Montella et
al., 2014). A dedicated on-board computer processes signals arehdadtores the measured information, recording
real data during driving sessions. The information in question sefatéhe microscopic characteristics of the traffic
flow, such as relative speed and spacing, as well as data associated to thésushicléynamics or to driving
variables detected by querying the on-board devices, electronic control units (EB@Wdgnamands. However, the data
could also include road conditions or, in some cases, the monitoring dfistkes health or attention or physiological

status A typical architecture for an instrumented vehicle is as described in Figure 3.

Radar Sensor| GPS and Video On-board Other ad-hoc
IMU Cameras ECUs Sensors
T T T
RS232 P CAN

Analogic/Digital
Channels

v
Data acquisition, Syncronising

\ 4
A

Computing, Storing

Fig. 3 General architecture of an instrumented vehicle

Different roles can be played by the varicusboard sensors of an instrumented vehicle. With respect to the
observation of car-following behaviours, GPS and inertial measurammitst (IMUs) are mainly adopted for the so-
called ego-data, i.e. the data associated to the instrumented vehicle (positah),agueleration, roll, pitch, yaw, etc.).
Often, the GPS and the IMUs are integrated, as some multi-source algoritinins canveniently used to merge the
absolute position estimates given by the GPS and the dead-reckmositgpning obtained by IMUs (Ma and
Andreasson, 2007; Bifulco et al., 2011). Radar devices are mainlyeddop detecting the relative speed and spacing;

AAP-D-15-00793R2



© 0 N O 0o~ WDN P

N RN N NDNDMNNNRRR R R B B R B R
© N o 00 b W NPEP O © 0N O U1 A W N B O

29

30
31
32
33
34
35
36
37
38
39
40
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they can be mounted in the front or at the rear of the equipped vekibletlip. h the case of front radar the role of the
following vehicle is played by the instrumented one. Hence the doiviite instrumented vehicle is the one whose
behaviour is observed. In the case of rear radar the behavioureofdoitrers is observed, as the instrumented vehicle
plays the role of the leader. In the first case the instrumented vehsaa ito be active, while in the second ciass
said to be passive. In active mode, analysts can have greatesl aver the sample of drivers recruited/involved,;
however, the drivers are awanébeing part of an experiment (even if they do not know exagtiich one) and the
observation could be subjetct bias. As regards cameras, these are adopted in our work only to ntbaitoad and
traffic context and to qualitatively judge the efficiency and accuradyeobther sensors.

In this work we carried out three experimental surveys by usiaglifferent instrumented vehicles: one vehicle was
equipped at the University of Naples Federico Il (ltaly) and the other at nheersity of Southampton (UK). The
radars used were the TRW Autocruise AC10 (the AC20 release in the ded@mdsample), which proved to be able
to detect (and track) a target in a range from 2 to 150 metrepaéd som 40 to 200 km/h (from 10 200km/h, the
AC20 model). The Italian vehicle mounted both rear and front radar, theil€/K vehicle mounted only rear radar.
The radar data exploited in this paper are the inter-vehicular spacing anbigathé vehicle ahead (active mode,
Italian experiments) and from the vehicle behind (passive mode, UK expéxirie regards the ego-data, the cruising
speed of the instrumented vehicle is mainly exploited in this ildiis. was computed by validating the speed obtained
from the GPS with that obtained by the on-board CAN and adoptngfittered) GPS speed (sampled at 10 Hz). All
data were collected at a 10 Hz frequency, synchronised and recorded dnTiesr were then processed off-line in
order to smooth the signal and to avoid spikes and bias. The datanveerhiesd using a Kalman Filter, as described in
Bifulco et al. (2011), where the state variables are the position, speetiration of both the leader and follower. The
measures are the relative speed and distance (from the radar), theasgetba, position of the instrumented vehicle.
The represented dynamic system refers to the two vehicles (leader anérfpifoimstantaneous uniformly accelerated
motion (with different accelerations applied at each time step of the prothssinatrix of measurement errors was
estimated by using known accuracies of the measure instruments. Theah#tg process error was fixed by tuning
on the basis of previous experiments: some accurate reference trajectoid@se by using Differential GPS) were
available and discrepancies were estimated with respect to the hypothesis of yrdfoceierated motion. The great
advantage of using the Kalman filter is that it allows consistent profilepaed#d, accelerations, relative speed and

spacing to be obtained.

4. Experimental surveysand collected data

Three independent field surveys were carried out: two in Itatytlae other in the UK. The datasets are identified as
IT_1,UK and IT_2

The IT_1 dataset was collected on the SS7 quater Domitiana (Bifulco et al., 20tBayled rural highway with
two lanes in each direction and speed limit of 90 km/h, largelyespected by drivers due to low enforcement and
medium-high road quality that enables higher speeds. Experiments weed cat in the morning, in calm weather
conditions. In this experiment, the drivers were asked to followrgocate vehicle; the driver of the corporate vehicle
was an experimenter without any particular experimental protocol andeedaidrive in a natural/spontaneous way in
the traffic stream. In this experiment voluntary drivers were recruited $tudents at the university

For the UK dataset (Brackstone et al., 2Q0@Xperiments were performed during October on the M3 three-lane
motorway (70 mph speed limit, equivalent to about 110 km/h) degtvjunctions 2 and 4a (a total of 22.2 km), during
the morning peak between 7:30 and 8:30 AM. Data were collected using #ieepasede, the radar was fitted facing
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Longitudinal control behaviour: analysis and modelling based on experimental surveys in Italy and the UK 11

rearward and observation made of following drivers selected at renitirthe traffic stream. Gender and age of the
monitored drivers were inferred by video in this case.

The IT_2 dataset was collected within the Italian research project DRIVEIN@dBiét al., 2012; Bifulco et al.,
2014) on the Motorways Al and A30, which are divided highwaitls three lanesn each direction, and speed limits
in the study sections of 100 km/h on the A1 and 130 kmAhe A30. In the IT_2 experiment, the drivers were asked to
adopt different experimental protocols: on the Al, they were asked tosgowaneously; on the A30, they were asked
to drive spontaneously in the first part of the journey and tovioBocorporate vehicle in the second part. The
experimenter of the corporate vehicle applied, in turn, a precise exptlrpeotocol: (a) he drove at 80 km/h for 2
km, then (b) he sped up to 100 km/h for 3 km, and fin@)yhe sped up to 120 km/h for 3 km. Participants in the
experiments were recruited in order to reproduce in our sample thehaaacteristics (in terms of gender, age, etc.) of

the Italian population of drivers.

TABLE1 Main characteristics of the Italian and UK datasets

Dataset Drivers Driving sessions in car-following conditions
Female  Age< Number of Total duration Total Time (s) Average speec
N (%) 26 (%) trajectories (min) length (km) Mean Max Min (km/h)
IT 1 13 46 85 13 110 88 527.5 1220 234.0 58
UK 31 20 80 54 82 134 178.7 562 30.6 66
IT 2 92 43 27 759 441 576 544 400 37.2 92

Table 1 above summarises the main characteristics of all the IT and UK ddtasditsases the traffic conditions
may be described as medium congestion, without stop-and-go phenomena.

In all the experiments data related to different drivers were collected as diffieirdng sessions. These were split
into trajectories, each characterized by a unique leading vehicle and by uniettcarfollowing (CF) conditions. As
a result, non-CF conditions were discarded, and 826 trajectories were abGivexu that the instrumented vehicles
adopted in all experiments were similarly equipped and the experimentatipresevere similar, in all trajectories the
same variables were logged, at a 10 Hz frequency. Among these we emptay@ddioalyses:

e the speed of the follower;
o the relative speed between the leader and the follower;

o the relative spacing between the leader and the follower.

5. Identification of car-following equilibria

As stated in section 2, the approach followed here is twofold. First tfiébegm conditions of observedarfollowing

are directly analysed. Then the observed driving behaviour areedtigircharacterised via identification of the
modelling parameters for three different car-following paradigms (eadiedpp all of the three different sampjes

The first step to carry out t® identify equilibrium conditions in observed car-following trajectories. pingpose is to
ascertain whether the observed car-following situation in each trajectomnégkaeous, and to assign to each of them
both a reference speed, and an equilibrium/desired spacing. Searchimgnfogeneity is very important in our case.
Indeed, as shown above, each dataset comprises several trajectories afidwéagfconditions can be observed to
change both across trajectories and within a given trajectory. In the datterthe observed car-following episodes
could be representative of more than one equilibrium condition. An exasngépicted in Figure 4, which is a very

particular case taken from the UK dataset, where the car-following process atthree different speeds.
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Fig. 4 An example of cluster analysis applied on one trajectory of the UK tatase

In the first 40 seconds the following vehicle approaches aesltader, until it reaches a speed at about 9 m/s and the

observed spacing is around 15 m. The leading vehicle then increaspeéty and a new equilibrium condition is

reached, with about 28 m of spacing. In the last part of the trajehtospeed reaches about 22 m/s, and an equilibrium

condition is reached for the third time at a spacing value of 32 ra.damsequence, this trajectory has to be spbt in

three subsets and one point representing the equilibrium condition rdeshtxbe assigned to each. These subsets are

here called clips. Of course, if the trajectory is homogeneous ttoaugtis duration, the clip coincides with the

trajectory itself.

Importantly, once the phenomenon is analysed in the relative spg&gdg and in the follower’s speed-spacing

planes, the points gather in specific zones of the two planes, oa&cfoequilibrium condition. This circumstance is of

great help when equilibrium conditions have to be searched. This céisdrexd in the second row of Figure 4, where

the three equilibrium conditions described above can be clearly identified.

Given the huge guantity of data treated in the paper the procedureifginggiomogeneity and, if need be, for clip

generation was based on a machine learning approach. The machine leapnoagzhagnsures the possibiliof

automating the process and establishing an objective-function and aljsteriterion for clip generation.

In particular, for each trajectory a veciorefined using three variables: spacing, the follower’s speed and the time

elapsed; each vector has n components, corresponding to the singlatidoseecords in the trajectory. The vector is

then analysed using a k-means clustering algorithm.

K-means clustering aims to divide n observations into k clustenghich each observation belongs to the cluster

with the nearewhich represents the centroid of the cluster (Galante et al., 2010; Montell226t.at. Montella

et al., 2011). Given a set of observations ¥, ..., X»), where each observation is a d-dimensional real vector, k-means

clustering aims to partition them into(k n) sets S {Si1, &, ..., S} so as to minimise the within-cluster sum of

squares (WCSS). In other words, the objective function is:
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k
min > 3"l = g

i=1 x€S8;

wherey; is the mean of poinis S.

The problem here is that the number of clusters k has to be definediaTgmis a criterion is required in order to
verify that k has been adequately chosen. In our caseafhstafistic (Tibshirani et al., 2001) was used to identify k
This technique uses the output of any clustering algorithm, comparirghéimge in within-cluster dispersion with that
expected under an appropriate reference null distribution, and can be aseglilomatic process as follows:

e cluster the observed data, varying the number of clusters fromcLwdich is the predefined max number of
accepted clusters;

e compute the gp statistic;

e choose the k corresponding to the maximum value ofdpestgtistic.

In our procedure the maximum number of accepted clustergas set equal to 4, given that the procedure is
computationally demanding, and on the basis of previous experien@s ik 4 in 92% of the cases in our datasets.

In summary for each trajectory:

e the optimal number of clusters was chosen using dpestatistic;
o kclips were created using the k-means algorithm;
e the k centroidsvere considered as representative of the equilibrium condition in the clip.

It is worth noting that the follower’s speed and spacing were considered for the clustering procedure because the two
variables represent the main interest of our study. The elapsed time was alsinaalded to ensure that the points
selected for each cluster refer to close instants. The outcome of thdyreodescribed heireis reported in Figurd
above by using different grey tones.

The clustering results were also checked with respect to the equilibrium spanipgted by using the procedure
described in Pariota (2013). Pariota demonstrated that a good estimation afilibeilgg spacing can be carried out
once relative speed action points are selected in a clip and a linear regressade isigimg the relative speed as
independent variable, and the spacing as dependent; the intercept term of Sworegre is the equilibrium spacing.
The two procedures were compared, and ascertained to be equivalent. Hamvélvisrwork the machine learning

approach is preferred, as it automatically allows a reference speed to be edtmtiet selected equilibrium spacings.

6. Presentation and discussion of theresults

Direct analysis of the identified equilibrium points is first carried owtsdgl on this analysis two conjectures are
discussed: i) the adopted equilibrium spacing increases with speed; ii) tss-ddwvers dispersion of the observed

behaviour increases with speed.
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Fig. 5 The scatter plot of the eqilitium conditions evaluated in the three datasets: spacing vs. follower’s speed

Figure 5 presents a scatter plot of the identified equilibrium conditions in the follower’s speed-spacing plane. The
different size of the three datasets is evident, and the dispergiatacseems to be different too, and influenced by the
number of points. In particular, equilibrium conditions identified mtthree datasets numbei@@ifor IT_1, 110 for the
UK data set and 1874 for IT. Another point of difference concerns the range of speed covetbd three datasets:
the two Italian datasets show most of the points in more limited speesbrél®y25 m/s for IT_1, 15-35 m/s for IT_2),
while the UK experiment covers a greater speed range. However, the cqraimbim the three datasets is the growing
trend of the equilibrium spacing with respect to the speed. The average weltgase with speed in all the datasets
(albeit assuming different values). This result is intuitive, and also omfieferences from the literature. Indeed,
considering studies carried out in different countries some analogie® daarfdl with respect to our collected data. In
particular, Fig. 6 compares the results of this work with the findoig2arker (1996) obtained in England, thade
Huddart and Lafont (1990) concerning French drivers, and theatiwhs of the California Code reported by Chandler
et al. (1958).
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Fig. 6 Distribution of the equilibrium spacing computed in different datasets with respect to the follower’s speed

Note that our data are in accordance with other observer data such as tHaddart-Lafont and Parker. The two
Italian datasets are aligned on different sides with respect to the UK dataset. This tdappeao to highlight
systematic effect of drivers’ nationality nor of the time the data were collected (the UK data are much less recent than
the Italian data). It can be noted that the larger the observed datasdf(ffbto UK and then to IT_2), the greater the
average spacing (for any given follower speed). This tendentheafata to be dependent on sample isizhscussed
below.

Other more formal analyses can be carried out to identify the dispersitime afata observed in the three
experiments. Our analyses start from the IT_2 dataset. Given the parixpggiimental conditions, the detected points
were grouped it four ranges of speed, equally spaced, from 16.65+2.78.8082.78 m/s (which corresponds to
covering the interval from 50 to 130 km/h with one speed class e@ekynzh). This choice was influenced by the
particular experimental conditions in the IT_2 dataset, where during mticé ekperiment each driver was committed
to following a corporate vehicle at 80, 100 and 120 km/h. Pointscim @fthe classswere used to build an empirical
probability density function (PDF). The empirical distributions of the fdasses are plotted in Figure 7. Once selected,
pointsin each class were used to fit a lognormal distribution. The fitted distnilsytas well as the relative Q-Q plots,
are also plotted in Fig. 7. The Q-Q plot is a plot of the percentiles of a staldanormal distribution against the
corresponding percentiles of the observed data. It shows the expectextiug value on the X axis plotted against the
observations on the Y axis. If the data are log-normally distributed athepdints are close to the diagonal. If the data
points stray from the line in an obvious non-linear fashion, the atatamot log-normally distributed (Montella et al.,
2015, 2015h.

Parameters of the four distributions and their statistics (mean, starelaatiah and coefficient of variation) are
given in Table 2. The same analyses were also repeated for the otltatasets. For comparison, they are limited to
the four speed classes used for the analysis of the IT_2 dataset; aluttearsreported in Table 2 as well. Also in

these cases the lognormal distributions fit the observed data well.
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Fig. 7 Estimated lognormal distribution for the four speed classes in the ITagtlacompared with the empirical distribution

TABLE2 Parameters of the lognormal distributions estimated in the three datasets asidtistcs

Lognormal spacing distribution parameters
Dataset Speed class CcVv
m S Mean SD (SD/Mean)
I: 50-70 km/h 2.74 0.27 16.12 4.437 0.275
T 1* II: 70-90 km/h 2.94 0.28 19.58 5.546 0.284
- 1lI: 90-110 km/h - - - - -
1V: 110-130 km/h - - - - -
I: 50-70 km/h 3.11 0.32 23.63 7.787 0.330
UK 1I: 70-90 km/h 3.22 0.24 25.74 6.373 0.248
11I: 90-110 km/h 3.58 0.29 37.50 10.95 0.292
1V: 110-130 km/h 3.56 0.21 36.13 7.740 0.214
I: 50-70 km/h 3.25 0.43 28.18 12.79 0.454
T 2 II: 70-90 km/h 3.38 0.48 33.12 16.94 0.512
- 111: 90-110 km/h 3.57 0.46 39.52 19.14 0.484
1V: 110-130 km/h 3.74 0.53 48.60 27.94 0.575

*The IT_1 dataset does not present points in speed classesl IV

The hypotheses on the significance of distributions were also testesingythe Kolmogorov-Smirnov and the Chi-

square non-parametric tests. All data significantly fit the lognormal distriutiéh all values of the tests less than
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0.05. Handy to note, the values of the estimated parameters of thegspatribution differ in the three datasets.
Interestingly, the variances of the equilibrium spacing within each class ieasthsspeed; this is fully true for IT_1
(even if only two classes are evaluated) and especially for IT_2, Wksleontroversial for the UK sample. Note that
the values of the standard deviations of observed equilibrium spggimficantly increase according to the size of the
sample. This is a further indication that some differences in thewaloséehaviours can also be explained by the

greater variability (and number) of observed driving conditionsbaha@viours.

IT_1 dataset UK dataset IT_2 dataset
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Fig. 8 Estimated cumulative distribution of the observed headway for atiptbed classes and all the datasets

Considering the headway cumulative distributions depicted in Figutres§ossible to carry out an evaluation of the
observed safety conditions. It is worth noting that the cumulativeldison of the observed headways are obtained as
a linear transformation of those estimated for the spacing (eabk epacing distribution parameterized in Table 2 has
been scaled using the corresponding speed class value). Once anyh#adsalaold is chosen, the corresponding
percentile in the cumulative distribution can be computed. Of course, theatimalgan be made with respect to
different thresholds. As an example a first threshold of 2 siscoan be fixed according to the perception-reaction time
given in the geometric design standards from Australasia (Ausfr2@iy and France (SETRA, 2001). It is worthy to
note that in North America the perception-reaction time is assumed 2.5 s€@dx@HTO, 2011; TAC, 1999)The
probability of observing a headway greater than the 2 secondsdlarésivery low in the IT_1 and UK dataseltsis
only slightly greater in the IT_2 dataset, with probabilities rangiomf0.17 to 0.28 for the four speed classes. For an
insight on the phenomenon, a second threshold of 1 seconc damd according to Vogel (2003 this case, the
probability of observing headways greater than the thresholesaingm 0.28 to 0.39 in the IT_1 dataset, and from
0.60 to 0.84 in the other two datasets. However, this means thgh dréguency of headways lower than the second
threshold fixed can be still observed in all the samples. These data dbavlythat several following too close
behaviours are observed in all the three samples. As a consequencs, ahgmeaier potential for reduction of rear-end
crashes by introducing proper driving automation solutions aimed atudimgit control of vehicles.

A difference in the values of estimated parameters could be reasonaldinecpoy different behaviours being
actually observed in the three datasets. However, in order to better digsugsult, note that elaborations in Table 3
show some interesting analyses about the statistical similarity of tieeediffsamples of drivers. Indeed, for the points
in the UK and IT_1 datasets the null hypothesis is tested that they camdideced samples of the distributions
estimated (for the four speed classes) using points of the IT_2 datasetind@ingsf may be considered quite

controversial. The null hypothesis is always rejected (p-values les®@nfor the IT_1 dataset, so that we can be
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more confident on the hypothesis that the two datasets actually presemndiffehaviours. Differently, the hypothesis

is not rejected (except for the Kolmogorov-Smirnov test in the sespeed class) in the UK dataset. In other words, if
the distribution that results from IT_2 is sampled, then the UK dataskt bewbtained. Put simply, there is more

dispersion within the IT_2 dataset than across the drivers of the Uthedh@l 2 datasets.

The previous issue is interesting also with reference to the adoptitatasfets collected in different periods. Indeed
UK experiments were performed about 10 years before those cartiéd kbaly, but no significant difference was
found between the UK and IT_2 datasets, in contrast with differencesiegnbggween IT_1 and IT_2 data that were
both collected in Italy, with the same vehicle, and more recently (refégue 6, and Tables 2 and 3). This result
reassured us about going ahead with the use of all three datasets #isdrfdirect comparisons carried out in the rest
of the paper.

TABLE 3 Testing the hypothesis that datasets IT_1 and UK can be considered raadanfrdm the distribution
estimated for dataset IT_2

Dataset Speed class Kolmogorov-Smirnov Chi-square
p-value p-value
I: 50-70 km/h <0.01 <0.01
T 1* II: 70-90 km/h <0.01 <0.01
- Ill: 90-110 km/h - -
IV: 110-130 km/h - -
I: 50-70 km/h 0.07 0.13
UK II: 70-90 km/h 0.02 0.06
I11: 90-110 km/h 0.69 0.55
IV: 110-130 km/h 0.08 0.08

*The IT_1 dataset does not present points in speed classes! IV

TABLE4 Parameter distributions in the three datasets

Dataset

Model Paramete IT 1 UK IT 2

25" | 50" | 75" | 25" | son | 75" | 25" | 50" | 75"
w1 0.011 0.044 0.147| 0.015 0.050 0.101| 0.019 0.058 0.199
2 0.332 0641 0.942| 0.514 0.709 1.185| 0.222 0575 1.507
Bo 0.031 0.082 0.167| -0.041 0.238 0.985]| -0.952 0938 5.712

State-space

_ B1 -0.007 -0.004 -0.002| -0.052 -0.025 -0.012| -0.026 -0.008 -0.003
Stimulus-respons

B2 0.572 0586 0.591| 0.368 0.446 0.496| 0.551 0594 0.621

B3 -0.004 0.002 0.005| -0.011 0.012 0.040| -0.179 -0.015 0.065

Waves a -0.0008 0.0002 0.0013|-0.0003 0.0004 0.0020| -0.0006 -0.0005 0.0003

a -0.076 -0.055 -0.048| -0.054 -0.038 -0.029| -0.037 -0.027 -0.019

Indeed, indirect analyses were also carried out. The three datasets were cdoypaiagd the interpretive models
introduced in Section 2. The result of the identification of the modelling paraneteported in Table 4.

Identification of the state-space model was carried out using the MatiarSydentification Toolbagxfor the
calibration of the parameter of the other two models the Matlab Statistical Tosmused. With respect to the
stimulus-response model and that based on waves, good fitting ddtth@as obtained, as ensured by the computed r-
square statistics; they are not reported in Table 4 because for all thhelidues assumed were between 0.85 and 1,
without any significant difference between the datasets. For each wiothelling parameters the respectB&", 50",
and 7% percentile of the values assumed in the dataset are shown (median valngsolty parameters in the three

datasets are fully comparable. With reference to the state-space model, posigége cealfirm the rational driving
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behaviour hypothesis. In order to maintain safe car-following conditivivers should increase their acceleration when
there is an increase spacing (the actual spacing becomes greater than the desired one&cr@adelit in the opposite
situation. The same should happen with respect to relative speed (VEDE&),this happens whe®,, w, = 0. In the
stimulus-response model, parametgrand Bz assume quite low valseHence the main stimulus is that associated to
B2, the relative speed. The wave-based model shows the mairddésr across the three datasetsthe one hand,;a

is negligible (as expected, the value aefshould be zero) for all three cases; on the other, the valugdefceeases
(hence the slope of the trend curve) from IT_1 to IT_2. Ibmered in the quadrant with negative DV, the slopésee
also Figure 2 in section 2) interpolates points where an action is perfoynthd briver in correspondence to a given
relative speed and a corresponding (inverse of) tovedllision. Given the relative speed, the (inverse) time-
collision is strictly related to the relative spacing at which the action is madenétusion, smaller slopes correspond
to larger relative spacing for any given relative speed, that is mecautionary (less risk-prone) behaviours. Thus,
values ain Table 4 suggest that the IT_2 dataset is, overall, more risk-aversthe¢hdK dataset and, in turn, the UK
dataset is more sk-averse than the IT_1 dataset; this result confirm safety considerations filoan the analysis on
the observed headway described for Figure 8. The difference in thevethdehaviours can be interpreted in two ways
the behaviours could be considered different because, say, differengdstyles may be due to some systematic
difference in the datasets;, @s has been already noted, the observed datasets differ in termgeddidis of observed

behaviours, and the larger the sample, the greater is the probabdigerving uncommon behaviours. Viewed from

the latter standpoint, the decreasingséope indicates that uncommon behaviours could be more risk-averse than

common ones and that the former appear more probably in larger dafasetmfirm the different structure of the
dispersion as the size of the dataset increases, note that in Table 4 the inter-quart{lQR)nglmost always increases
from the IT_1 to the IT_2 dataset. It should also be noted that inftl dataset drivers were recruited in order to
reproduce the main characteristics (in terms of gender, age, etc.)w@fitrepopulation of drivers. In summary, larger
(and more representative) samples allow observation of a wider range of behawvlich adds non-negligible
information to the collected datasets. This, in our opinion, is an expectdadtévasting) finding that emerges from our

analyses.

7. Conclusions and futureresearch directions

The results presented in section 6 refer to direct observation$viofigdbehaviour in three different experimental
datasets, as well as indirect comparisons allowed by the identification of modellamgepens able to describe the
observations. Data were obtained thanks to the development of a machiimglepproach, able to identify and select
equilibrium conditions in automatically collected car-following data. Albeit engaolgere in an off-line approach,
once implemented in real time the method is a useful toobffeoard identification of equilibrium behaviours
desired/applied by drivers. Thus the analyses here applied off-line éanHse developed to be applied on-line. In this
way off-line characterisation of driving behaviours and on-line tesfirgtoally observed behaviour can be combined
to set up customised/localised driving assistance solutions, oriented ® safiéty systems. For instance, the on-line
observed driving behaviour, once analysed in terms of equilibriianirgp actually applied by the driver, can be
compared with the off-line estimated statistical distributions; if theahapacing is shorter than (say) the tenth-
percentile of the observed distribution, the driver could be warnedpfalying too aggressive (and thus dangerous)
driving behaviour. This could be a practical enhancement of traffic safietyled by our study, given the impact of
poor headways on rear-end crashes, as discussed in Austroads [t %nplementation of this solution will be

addressed in future works.

AAP-D-15-00793R2



© 0 N O 0o~ WDN P

A DA W W W W W W W W W W N DN DNDNDNDNDMDNDNDNDDNMNDNDERPEPREPEPEPRPPEPRP PP PR P BB
P O © 00 N O 0o A W N P O O 0O N O O W N P O O 00NN O O b W N P+ O

Longitudinal control behaviour: analysis and modelling based on experimental surveys in Italy and the UK 20

Our reallts herén concern off-line observations and the characterisation and compafisdifferent datasets
collected in different experiments in different years and countries. The analyee that the lognormal distributions fit
the observed data well, and confirm the findings of previous stu@regnberg (1966) in his early paper introduced the
hypothesis of lognormal distribution of the headway. This Hg®sis was confirmed several times in subsequent years
(e.g., Piao et al., 2003; Li et al., 2010) up to the recent paper of Jidhg §2015).

It is also evident from our analyses that the variances of the equilitsfiacing within each class increase with
speed, showing that drivers’ behaviours are less dispersed at lower speeds. This was also confirmeldy Jiang and Lu
(2015) with respect to Chinese drivers. The main reagomwould suggest for such a result is that at higher speeds
drivers’ aggressiveness tends to produce greater effects: the more aggressive a driverighat Bpeedshe closer the
spacing he/she adopts with respect to non-aggressive drivers. This iefless evident at lower speeds, where
aggressive and non-aggressive drivers tend to adopt more similangsf&tefteriadou, 2014)As regards the
comparison across the three different datasets, the average influespgeedf on equilibrium conditions is similar
(piecewise linear) and in line with previous studies (Figure 6): it all fallsite @ narrow band (except for the curve
obtained by Chandler which seems very conservative).

The equilibrium spacing results to be differently dispersed in the tatesets with respect to both the estimated
lognormal distributions and to the inter-quartile range values of theadstimarameters of the considered models. This
result is correlated to the different size of the three datasets: increasingriper of drivers observed (as well as the
duration of the driving sessions) increases the probalufitybserving different (and even uncommon) behaviours.
Moreover, as discussed at the end of section 6, the values of slupa decreases if the size of the sample increases,
and this indicates that uncommon behaviours are more risk-averseotiamon ones. Put simply, studies based on a
relatively small (but statistically significant) sample can be usefuthferobservation of the average phenomenon,
while an increased sample allowsdepth understanding, especially in the case of car-following behlavibich is
confirmed to be a complex phenomenon.

Indirect comparison of observed behaviours, based on behavioural mboels, the rationality of the parameters
obtained. Moreover, similar average distributions of the parametersbaeeved across the three datasets. Hence
reactions to stimuli are similar in the different (observed) groupsi\adrd.

On the other hand it should be considered that although the threerifietd experiments have been carried out in
similar contexts and speed ranges, they exhibit a varialiilitpoth the detected equilibrium conditions and the
parameters of the models. The results are probably influenced bijfénertes in the sample compositions in terms of
gender, age and other personal characteristics of the driversisTiaportant lower-order factors may have been
neglected due to the very different size of the datasets. Also within-gdviability (Wagner, 2012) could represent
another significant source of randomness; the latter aspects are eeediffimrlt to addres, considering how difficult
it is to carry out larger naturalistic observations of driving behaviche.ahalysis of within-driver variability and of the
impact of composition in terms of age and gender is the main goalthers set for themselves as a further research
perspective. These aspects are of ever greater importance, as it is ingredesamghat not onlylo they affect models
aimedat (microscopic) traffic simulation, but strongly impact in this caserdfrd) assistance/automation solutions.
Indeed, the desired driving behaviour (with which the automation systernohinteract) can be observed to vary for a
given driver, depending on the context, purpose and duration of thertdp other parameters specif@ each trip,
which are often very difficult to fully undeestd. The availability of a large amount of vehicle trajectory data (collected
at the road-side or on board), such as what we have, can be aubcésesited with appropriate algorithms (e.g.,

Taylor et al., 2015) in order to investigate within-driver variabdity future stage.
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