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The Impact of System Effects on Estimates of
Faraday Rotation From Synthetic Aperture

Radar Measurements
Shaun Quegan, Member, IEEE, and Mark R. Lomas

Abstract—Radio waves traversing the Earth’s ionosphere suffer
from Faraday rotation with noticeable effects on measurements
from lower frequency space-based radars, but these effects can be
easily corrected given estimates of the Faraday rotation angle, i.e.,
Ω. Several methods to derive Ω from polarimetric measurements
are known, but they are affected by system distortions (crosstalk
and channel imbalance) and noise. A first-order analysis for the
most robust Faraday rotation estimator leads to a differentiable
expression for the bias in the estimate of Ω in terms of the
amplitudes and phases of the distortion terms and the covariance
properties of the target. The analysis applies equally to L-band
and P-band. We derive conditions on the amplitudes and phases of
the distortion terms that yield the maximum bias and a compact
expression for its value for the important case where Ω = 0. Exact
simulations confirm the accuracy of the first-order analysis and
verify its predictions. Conditions on the distortion amplitudes that
yield a given maximum bias are derived numerically, and the
maximum bias is shown to be insensitive to the amplitude of the
channel imbalance terms. These results are important not just for
correcting polarimetric data but also for assessing the accuracy of
the estimates of the total electron content derived from Faraday
rotation.

Index Terms—Calibration, Faraday rotation, ionospheric struc-
ture, radar imaging, radar polarimetry.

I. INTRODUCTION

THE presence of the geomagnetic field causes radio waves
traversing the Earth’s ionospheric plasma to suffer from

Faraday rotation, which rotates the plane of polarization of the
propagating wave through an angle given by [1, p. 343]

Ω =
e3

8π2ε0m2c

B cosψ

f2
0

TEC sec θ (1)

where e is the electron charge, m is the mass of the electron,
ε0 is the permittivity of free space, B is the geomagnetic field
intensity, f0 is the radio frequency, ψ is the angle between the
radar beam and the geomagnetic field, TEC is the (vertical) total
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electron content (TEC), and θ is the angle of the ray to the verti-
cal. Studies at L-band (wavelength ∼24 cm) have presented the
likely variations of Ω under latitude, season, and solar activity
variations [2], and they have shown that Ω can take values up
to ±20◦ for the large values of the TEC encountered under
solar maximum conditions [3]. These calculations can be easily
converted to the P-band case (wavelength ∼70 cm) since the
Faraday rotation scales as wavelength squared [see (1)]; hence
it is an order of magnitude greater at P-band than at L-band.
If left uncorrected, this would seriously distort the polarimetric
measurements to be gathered by the European Space Agency
P-band BIOMASS mission [4].

The correction of the Faraday rotation simply involves coun-
terrotating the data once Ω has been measured, which has
prompted the development of several algorithms to estimate Ω
from polarimetric SAR data [5]–[8]. These estimates are also
of interest in their own right since (1) indicates that they allow
the TEC to be measured. The sensitivity of the BIOMASS
signal to the Faraday rotation will thus enable ionospheric struc-
ture and dynamics to be routinely monitored along the satellite’s
dawn–dusk orbit, which cuts across such important ionospheric
features as the midlatitude trough and the auroral oval [9].
Furthermore, proposed methods for correcting scintillation ef-
fects in SAR images require accurate estimates of the Faraday
rotation [10], [11].

Faraday rotation transfers energy between polarizations and
needs to be corrected to better than 5◦ in order to avoid sig-
nificant errors in derived geophysical parameters, such as the
woody biomass [2], [3]. Meyer and Nicoll [12] suggested a
more stringent requirement of 1.2◦ for accurate applications
of polarimetry over a general set of ground cover types. How-
ever, three factors affect the accuracy of Faraday rotation esti-
mates as follows.

1) Different estimators give different levels of accuracy de-
pending on the type of distortion. For the published es-
timators, the best overall performance against a range of
metrics (see [13] and [14]) is given by the Bickel and Bates
algorithm [5]. In this paper, we therefore exclusively deal
with this algorithm.

2) All published algorithms rely on estimating covariance
terms for distributed targets; thus, they are subject to
the statistical properties of such estimates [15]. However,
it is not easy to relate this knowledge to the statistics
of Faraday rotation measurements, and simulations are
usually required to explore this issue.
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3) Faraday rotation estimates are disturbed by unknown
or imperfectly known system distortions. These include
crosstalk (caused by undesired coupling between polar-
izations on both transmit and receive), channel imbalance
(which describes the system-induced deviations of the
amplitude ratio from unity and the phase difference from
zero for the orthogonal polarizations used by the system
on both transmit and receive), and noise.

This paper is concerned with the third of these factors and
aims to disentangle the complex interaction between system
distortions and Faraday rotation. Earlier studies have made
partial progress with this problem but were largely based on
simulation and made various simplifying assumptions, such as
that all crosstalk components were equal or that the crosstalk
was reciprocal [6], [8], [16], [17]. Here, instead, we provide an
algebraic first-order analysis that illuminates the relative impor-
tance of crosstalk, channel imbalance, and noise in degrading
the estimates of the Faraday rotation, and that makes clear the
role of both the phases and amplitudes of the distortion terms
in controlling the bias in these estimates.

Section II takes the system model in [6] as a basis for
the analysis and gives the key expressions for polarimetric
measurements that have been either calibrated using imper-
fectly known values of crosstalk and channel imbalance or
are left uncalibrated; the underlying details are set out in a
companion paper [18]. In Section III, we use these expressions
to derive a compact differentiable formula for the bias in the
estimated Faraday rotation given the phases and amplitudes of
the distortion terms. The bias is shown to depend on particular
combinations of the crosstalk and channel imbalance terms and
on the covariance properties of the scene. We then exploit this
formula to find the conditions under which the maximum bias
occurs. In the general case, this leads to equations that do not
have simple analytic solutions, but they can be readily solved
when the true value of the Faraday rotation is zero. This case
is important since the analysis applies not only to P-band but
also to L-band, where the Faraday rotation is much smaller;
thus, the bias could become significant relative to the mean
value of the Faraday rotation. In addition, in order to minimize
ionospheric effects, BIOMASS calibration is best performed
near the geomagnetic equator where the Faraday rotation is
small, but account must still be taken of its deviation from zero.
It is also shown in Section V-B that, if the channel imbalance is
negligible, the largest biases occur when the Faraday rotation is
small.

To test the predictions from the analysis, an exact simulation
scheme is also developed, as described in Section IV. This not
only confirms the predictions of the analysis but also allows us
to derive the statistical properties of the estimation errors as the
system distortion and noise vary, as illustrated in Section V.
Conclusions are given in Section VI.

II. FIRST-ORDER ANALYSIS OF SYSTEM EFFECTS

The measured scattering matrix, i.e., M, with Faraday rota-
tion and system errors (channel imbalance, crosstalk, and noise)

is given in [6] as

M =

[
Mhh Mvh

Mhv Mvv

]

=A(r, θ)ejϕ
[
1 δ2
δ1 f1

] [
cosΩ sinΩ
− sinΩ cosΩ

] [
Shh Svh

Shv Svv

]

×
[
cosΩ sinΩ
− sinΩ cosΩ

] [
1 δ3
δ4 f2

]
+

[
Nhh Nvh

Nhv Nvv

]
(2)

where Shh, Shv, Svh, and Svv are the components of the true
scattering matrix, Ω is the Faraday rotation angle, f1 and f2
are the channel imbalance terms, δi, i = 1–4, are the crosstalk
terms, and Npq are the noise terms. Note that notations Spq

and Mpq indicate the scattering into channel q from a received
signal in channel p, whereas several studies use the opposite
(e.g., see [12]).

Equation (2) can be written as

M = A(r, θ)ejϕGFS+N (3)

where

G =

⎡
⎢⎢⎣

1 δ2 δ4 δ2δ4
δ1 f1 δ1δ4 f1δ4
δ3 δ2δ3 f2 f2δ2
δ1δ3 f1δ3 f2δ1 f1f2

⎤
⎥⎥⎦ (4a)

F =

⎡
⎢⎢⎣

c2 cs −cs −s2

−cs c2 s2 −cs
cs s2 c2 cs
−s2 cs −cs c2

⎤
⎥⎥⎦ . (4b)

Here, the measured and true scattering vectors are M =
[Mhh,Mhv,Mvh,Mvv]

T and S = [Shh, Shv, Svh, Svv]
T , re-

spectively, N = [Nhh, Nhv, Nvh, Nvv]
T is an additive noise

vector, c = cosΩ, and s = sinΩ. This paper does not deal
with absolute calibration; thus, in the following, we omit the
scalar term, i.e., A(r, θ)ejφ. In addition, we will write fi as
fi = 1 + εi, where εi is expected to be small; this assumes that
the channel imbalance has been corrected for any significant
nonzero mean phase, which is a standard step before level-1A
processing, but there might be a small residual unknown phase
offset.

If the system matrix, i.e., G, is known, the system distortion
can be removed by multiplying (3) by G−1 to give

G−1M = FS+G−1N. (5)

However, in practice, G and its inverse will not be exactly
known either because the radar is engineered well enough that
correction for the system distortion is considered unnecessary
or because G has been estimated to yield a matrix Ĝ. Methods
to derive Ĝ using instrumented calibration sites (which nor-
mally require the effects of the Faraday rotation to be accounted
for) are described in [17] and [19]–[23], but for positions close
enough to the magnetic equator, the Faraday rotation can be
neglected, and methods based on either instrumented sites or
distributed targets can be used [24]–[26].

A more realistic form of (5) is therefore

Ĝ−1M = Ĝ−1GFS+ Ĝ−1N. (6)
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This also covers the case where no correction is applied, in
which case Ĝ is replaced by the identity matrix. It is shown
in [18] that to first order (6) can be written as

M̂ = Ĝ−1M = FS+ (E1 +E2)FS+N′ (7)

where N′ = Ĝ−1N, and E1 and E2 are matrices only contain-
ing crosstalk and channel imbalance terms as follows:

E1 =

⎡
⎢⎢⎣

0 Δδ2 Δδ4 0
Δδ1 0 0 Δδ4
Δδ3 0 0 Δδ2
0 Δδ3 Δδ1 0

⎤
⎥⎥⎦

E2 =

⎡
⎢⎢⎣
0 0 0 0
0 Δε1 0 0
0 0 Δε2 0
0 0 0 Δε1 +Δε2

⎤
⎥⎥⎦ .

Here, Δδi = δi − δ̂i, and Δεi = εi − ε̂i, where δ̂i and ε̂i are
the estimates of δi and εi, respectively, if calibration is per-
formed, or they are zero if not. If the data are uncalibrated, Δδi
and Δεi should be replaced by δi and εi, respectively, in these
and all subsequent expressions.

The terms on the right-hand side of (7) can be expanded as

FS =

⎛
⎜⎜⎝

c2Shh − s2Svv

−cs (Shh + Svv) + Shv

cs (Shh + Svv) + Shv

−s2Shh + c2Svv

⎞
⎟⎟⎠ (8a)

E1FS =

⎛
⎜⎜⎝
Δδ2[FS]2 +Δδ4[FS]3
Δδ1[FS]1 +Δδ4[FS]4
Δδ3[FS]1 +Δδ2[FS]4
Δδ3[FS]2 +Δδ1[FS]3

⎞
⎟⎟⎠ (8b)

E2FS =

⎛
⎜⎜⎝

0
Δε1[FS]2
Δε2[FS]3

(Δε1 +Δε2)[FS]4

⎞
⎟⎟⎠ (8c)

where [FS]i denotes the ith component in the 4 × 1 vector FS.

III. EFFECT OF DISTORTION UNCERTAINTIES ON

ESTIMATES OF FARADAY ROTATION

Here, we analyze the accuracy with which the Faraday rota-
tion can be estimated using the algorithm in [5] under the first-
order approximations in (7) and (8). When the system distortion
and noise are neglected, we can set

A =Mhh +Mvv = (Shh + Svv) cos 2Ω (9a)

B =Mvh −Mhv = (Shh + Svv) sin 2Ω. (9b)

Defining

Z1 =A+ jB = (Shh + Svv)e
2jΩ (10a)

Z2 =A− jB = (Shh + Svv)e
−2jΩ (10b)

an estimator for Ω is given by [5]

Ω̂ =
1

4
arg (Z1Z

∗
2) . (11a)

More generally, since the covariance term in (11a) is subject
to large statistical fluctuations, a good estimate of Ω requires
taking the expected value, which is denoted by 〈·〉, so that

Ω̂ =
1

4
arg 〈Z1Z

∗
2〉 . (11b)

In practice, this is approximated by averaging over many pixels
(or looks), and somewhat imprecisely, we use the same notation
for the average.

When the system distortion and noise are present, the expres-
sions in (9) become modified to

Â=A+ΔA=(Shh+Svv) cos 2Ω+A1+A2+N′
hh+N′

vv

(12a)

B̂=B+ΔB=(Shh+Svv) sin 2Ω+B1+B2 +N′
vh −N′

hv

(12b)

where

A1 =Shv(Δδ1 +Δδ2 +Δδ3 +Δδ4)

+ cs(Shh + Svv)(Δδ1 −Δδ3 +Δδ4 −Δδ2) (13a)

B1 =Shh(c
2[Δδ3 −Δδ1]− s2[Δδ2 −Δδ4])

+ Svv(c
2[Δδ2 −Δδ4]− s2[Δδ3 −Δδ1]) (13b)

A2 =(Δε1 +Δε2)(−s2Shh + c2Svv) (13c)

B2 =Shv(Δε2 −Δε1) + cs(Shh + Svv)(Δε2 +Δε1)
(13d)

and the N ′
pq terms come from the noise vector Ĝ−1N in (7).

Set

X31 =Δδ3 −Δδ1 = P + jQ (14a)

X24 =Δδ2 −Δδ4 = U + jV (14b)

Σδ =Δδ1 +Δδ3 +Δδ2 +Δδ4 (14c)

Y21 =Δε2 −Δε1 (14d)

Σε =Δε2 +Δε1 = C + jD. (14e)

Here, X31 is the difference between the corrected crosstalk
from V into H on transmit and the corrected crosstalk from H
into V on receive, whereas X24 is the difference between the
corrected crosstalk from V into H on receive and the corrected
crosstalk from H into V on transmit. An involved calculation
(see the Appendix) then yields〈
Ẑ1Ẑ

∗
2

〉
≈
〈
(Â+ jB̂)(Â− jB̂)∗

〉
≈ e4jΩ

(〈
|Shh + Svv|2

〉
+ 2R cos θ(jP+jU+C)

)
+ 2e3jΩ (P (jcσhh − sσvv) + U(−sσhh + jcσvv)

+ C(jsσhh + cσvv)) + 2e2jΩR sin θ

× (−jQ+ jV +D) + 2e2jΩ

× 〈Re ((Shh + Svv)S
∗
hvΣ

∗
δ)

+ jRe ((Shh + Svv)S
∗
hvY

∗
21)〉 . (15)
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where the copolarized backscattering coefficients are written as

σpp =
〈
|Spp|2

〉
and the HH–VV covariance is given by

Rejθ = 〈ShhS
∗
vv〉 .

Here, we have assumed that there is no correlation between
the signal and the noise or between the noise in each channel
and that the noise powers are the same in all channels. Hence,
the noise does not lead to bias, although it will cause higher
variability in regions where the signal-to-noise ratio is smaller.
However, if the sum of the noise powers in the copolarized
channels is different from the sum in the cross-polarized chan-
nels, some noise bias will remain (see the Appendix).

The argument of the left-hand side of (15) is, by definition,
4Ω̂; thus, we can write〈∣∣∣Ẑ∗

1Ẑ2

∣∣∣ cos 4Ω̂〉 =
〈
|Shh + Svv|2

〉
cos 4Ω

− 2(Pcσhh + Ucσvv + Csσhh) sin 3Ω

− 2(Psσvv + Usσhh − Ccσvv) cos 3Ω

+ 2R cos θ (−(P+U) sin 4Ω+C cos 4Ω)

+ 2R sin θ (−(V −Q) sin 2Ω+D cos 2Ω)

+ 2 cos 2Ω 〈Re ((Shh + Svv)S
∗
hvΣ

∗
δ)〉

− 2 sin 2Ω 〈Re ((Shh+Svv)S
∗
hvY

∗
21)〉

(16a)〈∣∣∣Ẑ∗
1Ẑ2

∣∣∣ sin 4Ω̂〉 =
〈
|Shh+Svv|2

〉
sin 4Ω

+ 2(Pcσhh + Ucσvv + Csσhh) cos 3Ω

+ 2(−Psσvv − Usσhh + Ccσvv) sin 3Ω

+ 2R cos θ ((P + U) cos 4Ω + C sin 4Ω)

+ 2R sin θ ((V −Q) cos 2Ω +D sin 2Ω)

+ 2 sin 2Ω 〈Re ((Shh + Svv)S
∗
hvΣ

∗
δ)〉

+ 2 cos 2Ω 〈Re ((Shh + Svv)S
∗
hvY

∗
21)〉 .

(16b)

In the Appendix, (16) is used to derive the first-order form
for tan(4Ω̂− 4Ω) shown at the bottom of the page, where
quantities T and W are target dependent as follows:

T =
σhh − σvv + 2jR sin θ

σhh + σvv + 2R cos θ
(18a)

W =
〈(Shh + Svv)S

∗
hv〉〈

|Shh + Svv|2
〉 . (18b)

Hence, the bias only depends on Re(X31 +X24), X31 −X24,
Σε, T , and W . Note that (17) simplifies under reflection sym-
metry since 〈ShhS

∗
hv〉 = 〈SvvS

∗
hv〉 = 0, W = 0, and the last

terms in the numerator and the denominator vanish. Note also

TABLE I
(a) COVARIANCE MATRIX VALUES FOR DIFFERENT BIOMASS VALUES

AND (b) ASSOCIATED VALUES OF T , t, τ , AND THE MAXIMUM BIAS IN Ω
WHEN Ω = 0◦ DERIVED FROM THE FIRST-ORDER APPROXIMATION (30)

WHEN THE DISTORTION AMPLITUDES DO NOT EXCEED

(a) 0.1 (−20 dB) AND (b) 0.0316 (−30 dB)

that the presence of system distortion means that the mea-
sured Faraday rotation is no longer decoupled from the target
properties, unlike in the ideal case [the first term in (15)].

Although the focus of this paper is on the bias in the esti-
mated Faraday rotation derived from (17), it should be noted
that the overall error includes a random component arising from
the noise and the fact that (11b) uses an estimated covariance
term, which is subject to an uncertainty that decreases as the
number of looks increases [15]. This does not form part of our
analysis but can be investigated using simulation, as discussed
in Section IV.

The single-look form of T can be written as

Shh − Svv

Shh + Svv

but this is not applicable since averaging is needed to estimate Ω
with reasonable accuracy. Note also that |T | can, in principle,
range from 0 to ∞ since, if θ = π and R takes its maximum
possible value

√
σhhσvv, we have

|T | = |σhh − σvv|
σhh + σvv − 2

√
σhhσvv

=

∣∣(√σhh +
√
σvv

) (√
σhh −√

σvv

)∣∣(√
σhh −√

σvv

)2
=

∣∣∣∣
√
σhh +

√
σvv√

σhh −√
σvv)

∣∣∣∣
which tends to ∞ as σvv → σhh. However, in the calcula-
tions in Section V, which are based on measurements from
boreal forest for different levels of biomass, 0.25 < |T | < 0.75
[see Table I(b)].

E = tan(4Ω̂− 4Ω) =
Re {X31 +X24 + T (Σε sin 2Ω + (X31 −X24) cos 2Ω) + 2W (−Σ∗

δ sin 2Ω + Y ∗
21 cos 2Ω)}

1 + Re {Σε + T (−Σε cos 2Ω + (X31 −X24) sin 2Ω) + 2W (Σ∗
δ cos 2Ω + Y ∗

21 sin 2Ω)}
(17)
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A. Maximizing Bias in Ω

Equation (17) can be used to find the largest possible bias
in Ω and the properties of the distortion terms that give rise
to it since this is equivalent to finding the maximum absolute
value of tan(4Ω̂− 4Ω). However, this becomes complicated in
the general case; thus, here, we only perform the analysis for
azimuthally symmetric targets, i.e., we set W = 0 in (17). All
references to (17) in the following assume this simplified form.

To carry out the optimization, we set

X31 =uejφ3

X24 = vejφ2

Σε ≡ pejψ

T ≡ tejτ

C̃ = cos 2Ω

S̃ = sin 2Ω. (19)

The reason for indexing the angles in X31 and X24 as 3 and 2,
respectively, will become clear in the following. We can then
write

E =
N

D
(20a)

where

N =u cosφ3+v cosφ2+Re
{
S̃TΣε + C̃T

(
uejφ3 − vejφ2

)}
=u cosφ3 + v cosφ2 + S̃pt cos[τ + ψ]

+ C̃t {u cos[τ + φ3]− v cos[τ + φ2]} (20b)

D =1 + Re(Σε)− C̃Re(TΣε) + S̃Re
{
T
(
uejφ3 − vejφ2

)}
=1 + p cosψ − C̃pt cos[τ + ψ]

+ S̃t {u cos[τ + φ3]− v cos[τ + φ2]} (20c)

are the numerator and the denominator in (17), respectively.
Hence

∂E

∂u
=

(
cosφ3 + C̃t cos[τ + φ3]

)
D − S̃t cos[τ + φ3]N

D2

=
D cosφ3 + t cos[τ + φ3](C̃D − S̃N)

D2
. (21a)

Similarly

∂E

∂v
=

D cosφ2 − t cos[τ + φ2](C̃D − S̃N)

D2
. (21b)

Set K = S̃pt cos[τ + ψ] and L = 1 + p cosψ − C̃pt cos[τ +
ψ]; thus, K and L are independent of u, v, and φi. Then,
C̃D − S̃N = C̃L− S̃(u cosφ3 + v cosφ2 +K), and we can
write the numerator of (21a) as

t cos[τ + φ3]
{
C̃L− S̃ (v cosφ2 +K)

}
+ cosφ3

{
L− S̃tv cos[τ + φ2]

}
. (22a)

Hence, the sign of ∂E/∂u is independent of u; thus, E is
monotonic in u. Similarly, the numerator of (21b) is

−t cos[τ + φ2]
{
C̃L− S̃ (U cosφ3 +K)

}

+ cosφ2

{
L+ S̃tu cos[τ + φ3]

}
(22b)

so that E is monotonic in v. Similar analysis also applies to
p in (17). Hence, the bias in the Faraday rotation will have
its maximum modulus when each of u, v, and p attains its
maximum value.

The maximum values of u, v, and p can be readily related
to the values of Δδi and Δεi. For given values of |Δδ1| and
|Δδ3|, u will be maximized when Δδ1 and Δδ3 have opposite
signs, i.e., their arguments are π out of phase. If |Δδ1| and |Δδ3|
have the same value, then Δδ1 = −Δδ3, X31 = 2Δδ3, and
arg(Δδ3) = arg(X31) = φ3. Similarly, Δδ4 = −Δδ2, X24 =
2Δδ2, and arg(Δδ2) = arg(X24) = φ2 (hence the choice of
the indexing for the angles). For the maximum Faraday rotation
bias, the amplitudes of Δδi should be as large as possible,
and if they all have the same upper bound, i.e., ΔδM , then
u = v = 2ΔδM . Similarly, if the channel imbalance terms have
the same upper bound, i.e., ΔεM , the maximum value of p
occurs when Δε1 = Δε2 and |Δε1| = ΔεM ; thus, p = 2ΔεM ,
and arg(Δε1) = ψ. Hence, for the maximum Faraday rotation
bias, X31, X24, and Σε should be replaced by 2ΔδMejφ3 ,
2ΔδMejφ2 , and 2ΔεMejψ , respectively, in (17).

A relation between the phases of the crosstalk terms giving
the maximum bias can be derived by differentiating (17) as
follows:

∂E

∂φ3
=

−
(
u sinφ1+C̃tu sin[τ+φ3]

)
D + S̃tu sin[τ + φ3]N

D2

so that

D2

u

∂E

∂φ3
= − sinφ3D − (C̃D − S̃N)t sin[τ + φ3]. (23a)

Similarly

D2

v

∂E

∂φ2
= − sinφ2D + (C̃D − S̃N)t sin[τ + φ2]. (23b)

For the maximum Faraday rotation bias, both these expressions
should be set to 0. Multiplying (23a) by sinφ2 and (23b) by
sinφ3 and subtracting leads to the following relation:

sinφ2 sin(τ + φ3) + sinφ3 sin(τ + φ2) = 0

which is equivalent to

2 cos(τ+φ3+φ2)−cos(τ−φ3+φ2)− cos(τ + φ3 − φ2) = 0

or

cos(τ + φ3 + φ2)− cos τ cos(φ3 − φ2) = 0.
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Fig. 1. Relationship between angles φ2 and φ3 giving the maximum Faraday
rotation estimation bias for the values of τ indicated on each curve.

Hence

−2 cot τ = cotφ2 + cotφ3. (24)

The plot of (24) for fixed values of τ in Fig. 1 shows that,
when τ is close to 0◦ or 180◦, φ2 or φ3 must be close to zero for
the bias to be a maximum, whereas when τ is close to 90◦,
the maximum bias occurs when φ2 + φ3 = 180◦. Note that the
phase relation (24) does not depend on Ω, but substituting it
back into (23a) and (23b) and setting both to zero yields equa-
tions that depend on both Ω and the channel imbalance terms.

B. Bias in Faraday Rotation Estimate When Ω = 0

For a general value of Ω, an analytic approach to maximizing
(17) is complicated but can be readily developed if Ω = 0,
which, as explained in Section I, is important for both P-band
and L-band. As shown in Section III-A, the maximal bias in Ω
requires |X31| = |X24| = 2ΔδM and |Σε| = 2ΔεM , assuming
all the crosstalk terms are constrained to have maximum am-
plitude ΔδM and the channel imbalance terms have maximum
amplitude ΔεM . Hence, when Ω = 0, (17) becomes

E = 2ΔδM
cosφ3 + cosφ2 + t {cos[τ + φ3]− cos[τ + φ2]}

1 + 2ΔεM {cosψ − t cos[τ + ψ]} .

(25)

The terms in ψ can be written as

cosψ(1− t cos τ) + t sinψ sin τ ≡ R1 sin(ψ + α1) (26a)

where

R2
1 =(1− t cos τ)2 + (t sin τ)2

=1 + t2 − 2t cos τ = |1− T |2 (26b)

tanα1 =
1− t cos τ

t sin τ
. (26c)

Similarly, we can write

cosφ2(1− t cos τ) + t sinφ2 sin τ ≡ R2 sin(φ2 + α2) (27)

where R2 = R1, and α2 = α1, and

cosφ3(1+t cos τ)−t sinφ3 sin τ≡R3 cos(φ3+α3) (28a)

where

R2
3 =1 + t2 + 2t cos τ = |1 + T |2 (28b)

tanα3 =
t sin τ

1 + t cos τ
. (28c)

Hence

E = 2ΔδM
|1 + T | cos(φ3 + α3) + |1− T | sin(φ2 + α2)

1 + 2ΔεM |1− T | sin(ψ + α2)
.

(29)

This will be maximized by making the numerator as large
as possible and the denominator as small as possible, which
clearly implies setting φ3 = −α3, φ2 = π/2− α2, and ψ =
−π/2− α2. Hence, the maximal bias in tan(4Ω̂− 4Ω) is

E = 2ΔδM
|1 + T |+ |1− T |
1− 2ΔεM |1− T | . (30)

This occurs when Δδ3 = −Δδ1 = ΔδMe−jα3 , Δδ2 =
−Δδ4 = jΔδMe−jα1 , and Δε1 = Δε2 = −jΔεMe−jα1 ;
thus, arg(Δε1) = arg(Δε2) = arg(Δδ4), where α1 and α3

are given by (26c) and (28c), respectively.
This analysis makes clear that the Faraday rotation bias

depends not just on the amplitudes of the distortion terms but
also on their relative phases and the relation between these
phases and the phase of the HH–VV covariance in the target
region. Hence, the bias will vary with position in a scene.

IV. EXACT SIMULATIONS

To test the accuracy of the first-order approximations
derived in Sections II and III, we developed a simulator for
the measurement process that makes no approximations and
directly works from the system model (2). The simulator also
contains modules that allow the system distortion terms to be
estimated from a set of point target measurements by a range of
algorithms, e.g., see [16]. These estimates can then be applied
to carry out the calibration procedure in (6). However, in the
simulations in this paper, no calibration is performed, and the
errors in the estimates arise purely from uncorrected system
distortions and noise.

In order to define the values of T and W in (17), the
simulation procedure needs as input a covariance matrix char-
acterizing the cover type where the measurement is being made.
Here, we take advantage of the BIOMASS End-to-End Mission
Performance Simulator (BEES) [27], which is able to provide
the P-band covariance matrices of forest regions as a function of
their biomass density based on airborne measurements. In this
paper, we use the values from BEES appropriate to a boreal
forest, the underlying data of which were taken during the
2007 BIOSAR-1 campaign in Sweden [28]. A range of biomass
values is considered that gives a wide variation in covariance
properties (see Table I), from similar copolarized backscatter-
ing coefficients for a lower biomass to a factor five difference
between them for a high biomass, with copolarized phase
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differences varying by nearly 90◦. (Note that the simulated
covariance for a biomass of 350 t · ha−1 is outside the observed
range but is included here because the increased dominance
of the double-bounce scattering simulated by BEES produces
large HH/VV ratios and large copolar phase differences.) This
allows the sensitivity of the Faraday rotation errors to variation
in the cover type to be explored in a way that is not specific to
forest regions. It also means that, in the calculations, “biomass”
is effectively just a way of labeling different covariance matri-
ces and is not in itself a relevant variable.

Although it would, in principle, be feasible to do so, the
simulations carried out in this paper do not account for dis-
tortions in the polarimetric covariance matrix caused by topo-
graphic variation (particularly azimuth slopes [29]) and assume
azimuth symmetry (i.e., W = 0) with no correlation between
the copolarized and cross-polarized channels. This is for prac-
tical reasons, i.e., representing topography would involve the
simulation of different topographic conditions in addition to
variability in the distortion terms, which would greatly increase
the computation necessary in order to derive statistically valid
conclusions.

The simulation involves four steps as follows.

1) Scene data generation. For biomass value B, we generate
a large set of independent scattering matrix realizations
from a zero-mean Gaussian distribution with covariance
matrix C(B) using Choleski decomposition. Hence, the
data are exactly characterized and can be used to test the
validity of the first-order theory without complications in-
troduced by interpixel correlation, point-spread function
effects, etc. However, the simulator can readily accept
data from other sources, such as real data or the output
from BEES [27].

2) Data distortion. The data are corrupted with system dis-
tortion, Faraday rotation, and noise, as in (2). Typically, a
set of equally spaced values of Ω in the range −π < Ω <
π is considered, and for each value of Ω, many random
realizations of the distortion matrix are generated under
constraints on the amplitude of the distortion terms. In all
the simulations in Section V, the phases are taken to be
uniformly distributed between ±π.

3) Estimation of the Faraday rotation. Estimate Ω at each
position using (11b).

4) Derivation of measurement statistics and worst case es-
timates. By performing Steps 1–3 for many realizations
of the scene, the system distortion terms, the Faraday
rotation, and the noise, we can derive histograms of the
estimated distortion terms and Ω. This allows us to assess
the accuracy of the first-order theory and to visualize how
representative the worst case biases are.

Note that discrepancies between exact calculations and the
first-order approximation can arise (see Section V-A) from both
the approximation itself and the fact that the approximation
uses exact values for the covariance terms. In contrast, the
simulations use many realizations derived using the same co-
variance values (as described in Step 1) but are subject to
statistical fluctuation. Hence, for example, the sample values

of the co/cross-polarization covariance will not be identically
zero.

V. TESTING PREDICTIONS FROM FIRST-ORDER ANALYSIS

A comparison between the error Ω̂− Ω = (tan−1 E)/4 from
(17) and that from the exact simulation is shown in Fig. 2(a)
and (b) as a function of Ω for two random realizations of
the distortion matrix, in which the amplitudes of all distortion
terms are constrained not to exceed 0.1 (−20 dB) and the noise
is neglected. The covariance values used in the calculations
are for a biomass of 200 t · ha−1 [see Table I(a)]. Fig. 2(a) is
typical, with the first-order approximation being very similar
to the exact calculations, whereas Fig. 2(b) is an example of a
less good match. The overall spread of errors is represented in
Fig 2(c), which shows a histogram of the error in Ω using the
exact calculations for 50 000 random realizations of the system
distortion, where each realization was generated by sampling
from uniform distributions over the ranges [0, δM ] and [0,
εM ] for the amplitudes of δi and εi, respectively, whereas the
phases of δi, εi, and Ω are uniformly distributed on [0, 2π];
each of these 13 variables is independently sampled. The error
is unbiased and has a standard deviation of 1.3◦. Over the same
set of distortion values, the first-order approximation is also
unbiased and has the same standard deviation. The difference
between these two estimates, whose histogram is given in
Fig. 2(d), is normally small, but for a small proportion of re-
alizations, it can be as large as 0.5◦. This suggests that, even for
distortion amplitudes as large as 0.1, the first-order approxima-
tion is tenable. System noise up to NESZ = −20 dB has a neg-
ligible effect on either the bias or standard deviation of the error.

A. Maximum Bias in Faraday Rotation When Ω = 0

The first-order estimates of the maximum possible Faraday
rotation bias when Ω = 0 for the covariance values correspond-
ing to biomass values of 50, 200, and 350 t · ha−1 are given in
Table I(b). These were calculated using (30), with the covari-
ance values derived using BEES [27] [see Table I(a)]. The cal-
culations use two values of this maximum distortion amplitude,
i.e., 0.1 (−20 dB) and 0.0316 (−30 dB). The bias can exceed 6◦

for the −20 dB bound and 1.9◦ even for the −30 dB bound. As
predicted, the maximum Faraday rotation bias varies, although
not greatly, as the covariance properties of the target vary.

Table II gives the maximum Faraday rotation bias when
Ω = 0 derived from both (30) and the numerical optimization
for the same three covariance matrices when the maximum
permitted amplitude of the distortion terms is 0.1 (−20 dB) and
0.0316 (−30 dB), and when the noise is neglected. In addition,
the phases of the crosstalk and channel imbalance terms giving
rise to these maximal biases from both approaches are shown
(in the optimization, the amplitudes of the distortion terms are
all found to take their maximum possible values, as expected).
The optimization was carried out as a constrained minimization
problem using the negative of the square of the Faraday rotation
error as the error function and with the amplitudes of the
distortion terms constrained not to exceed the given values of
ΔδM and ΔεM ; the phases were unconstrained. (In fact, since
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Fig. 2. (a) and (b) Comparison of the first-order approximation (dashed
lines) and the simulated values (solid lines) of the error in Ω as a function
of Ω for two random realizations of the system distortion with amplitudes
< 0.1. (c) Histogram of the error in Ω using the exact simulation, i.e., ΩE ,
for 50 000 random realizations of the system distortion, with amplitudes
< 0.1 and values of Ω uniformly distributed between ±π. (d) Histogram of the
difference between the exact error in Ω and its first-order approximation, i.e.,
ΩFO, corresponding to the data used in (c). The calculations are for a biomass
of 200 t · ha−1 and neglect system noise.

TABLE II
MAXIMUM VALUE (IN DEGREES) OF THE FARADAY ROTATION BIAS FOR

THREE LEVELS OF BIOMASS WHEN Ω = 0 DERIVED FROM THE

NUMERICAL OPTIMIZATION AND THE FIRST-ORDER APPROXIMATION

(30) WHEN THE DISTORTION AMPLITUDES DO NOT EXCEED (a) 0.1
(−20 dB) AND (b) 0.0316 (−30 dB), AND WHEN THE SYSTEM NOISE IS

NEGLECTED. AT THE MAXIMUM BIAS, THE DISTORTION TERMS ALL

ASSUME THEIR MAXIMUM AMPLITUDE, WHEREAS THEIR

PHASES ARE SHOWN IN THE TABLE

the amplitudes always took their maximum possible values at
the optima found by the algorithm, it could be treated as an
unconstrained problem with the amplitudes fixed at their max-
ima.) A variety of algorithms were compared, all of which gave
the same solutions, but the sequential quadratic programming
algorithm [30] was found to be the quickest.

The predicted maximum bias agrees well with that found
by the optimization, particularly when the distortion am-
plitudes are smaller. As predicted, the maximum bias oc-
curs for arg(δ2)− arg(δ1) = arg(δ2)− arg(δ4) = 180◦ (thus,
δ3 = −δ1, and δ2 = −δ4), and the phases of the crosstalk terms
are also close to their predicted values, although with larger
differences for the covariance matrices corresponding to the
higher biomass values. However, the prediction that arg(ε2) =
arg(ε1) = arg(δ4) is (approximately) satisfied only for the co-
variance matrix corresponding to a biomass of 50 t · ha−1. The
apparent discrepancies for the other covariance matrices can be
traced to the fact that the sample co/cross covariances in the
simulated data are small but nonzero. It can be shown that this
changes the phase relations between the εi terms for which the
maximum bias occurs but with only small effects on the size of
the bias and on the δi terms. The closer approximation between
the theory and the simulation for 50 t · ha−1 is because the
sample co/cross covariance was particularly small in this case,
simply as a result of statistical fluctuation in the simulated data.

To assess how representative the worst case biases are, the
simulation was used to derive the histograms of the bias in
Ω when Ω = 0 for 50 000 random realizations of the system
distortion, with amplitudes less than 0.1 and with no system
noise [see Fig. 3(a)]. Similar calculations were also performed
with all the distortion terms having a fixed amplitude of 0.1 [see
Fig 3(b)]. The calculations are for a biomass of 200 t · ha−1;
thus, the maximum bias in both cases is 6.3◦ [see Table II(a)].
This bias occurs far out in the tail for both cases, but the corre-
sponding cumulative density functions [see Fig. 3(c)] indicate
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Fig. 3. (a) Histogram of the bias in Ω when Ω = 0 for 50 000 random
realizations of the system distortion with amplitudes < 0.1 and with no system
noise. (b) Similar to (a) but with the system distortion amplitudes fixed at 0.1.
(c) Cumulative distribution of the absolute bias corresponding to (a) (solid line)
and (b) (dashed line). The calculations are for a biomass of 200 t · ha−1.

that there is a 1% probability of the bias exceeding 3.4◦ when
the amplitudes are treated as random, and exceeding 5.2◦ when
the amplitudes are fixed at their largest permitted value of 0.1.

B. Maximum Bias in Faraday Rotation for Nonzero
Values of Ω

In order to test whether the predictions are met for other
values of Ω, the maximum biases derived from the numerical

TABLE III
MAXIMUM VALUES (IN DEGREES) OF THE FARADAY ROTATION BIAS

DERIVED USING THE NUMERICAL OPTIMIZATION WHEN THE

AMPLITUDES OF THE DISTORTION TERMS DO NOT EXCEED 0.1 AND

WHEN THE NOISE IS NEGLECTED. (a) CHANNEL IMBALANCE ASSUMED

NEGLIGIBLE. (b) ALL DISTORTION TERMS INCLUDED. THE AMPLITUDES

OF THE DISTORTION TERMS ALL ASSUME THEIR MAXIMUM VALUE

OF 0.1, WHEREAS THE PHASES ARE GIVEN IN THE TABLES.
THE CALCULATIONS ARE FOR A BIOMASS OF 200 t · ha−1

optimization for several values of Ω are given in Table III, along
with the phases of the associated distortion terms; the ampli-
tudes of the distortion terms are constrained not to exceed 0.1,
and the noise is neglected. The channel imbalance is set to zero
in the calculations in Table III(a) but is included in Table III(b).
The optimization again confirms the first-order predictions that
the distortion terms will all take their maximum permitted
values and that arg(δ3)− arg(δ1) = arg(δ2)− arg(δ4) ≈ π.
In addition, arg(ε1) ≈ arg(ε2), although this relation is less
accurately met for Ω = 0◦ and 90◦. Note that, in Table III(a),
the maximum biases occur when Ω = 0◦ or 90◦, which rein-
forces the importance of the case where Ω = 0◦ considered in
Section V-A.

The behavior shown in Table III can be explained under the
coarse assumption that all the distortion terms in the denomina-
tor of (17) are negligible compared with 1, which is equivalent
to ignoring all second-order terms in the binomial expansion
of (17). Then

E ≈ u cosφ3 + v cosφ2 + pt cos(ψ + τ)S̃

+ tC̃ (u cos(φ3 + τ)− v cos(φ2 + τ)) (31)

where we have used the notation in (19). Using a similar
approach to that in Section III-B, this can be written as

E = |1 + C̃T |u cos(φ3 + ω3)

+ |1− C̃T |v sin(φ2 + ω2) + S̃tp cos(ψ + τ) (32)

where

ω3 = tan−1

(
C̃t

1 + C̃t cos τ

)
ω2 = tan−1

(
1− tC̃ cos τ

tC̃

)

and T is defined in (18a). By choosing φ2 = π/2− ω2, φ3 =
−ω3, and ψ = −τ or π − τ (depending on the sign of S̃), E
achieves its maximum positive value as follows:

E = 2ΔδM

(
|1 + C̃T |+ |1− C̃T |

)
+ 2ΔεM |S̃|t. (33)
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Before examining the behavior of E as a function of Ω, it
helps to establish the range of values of its first term. Setting

R1 = |1 + C̃T | =
√
1 + C̃2t2 + 2C̃t cos τ

R2 = |1− C̃T | =
√
1 + C̃2t2 − 2C̃t cos τ

then

d(R1 +R2)

dτ
= C̃t sin τ

(
− 1

R1
+

1

R2

)
. (34)

If C̃ > 0, then R1 ≥ R2, whereas if C̃ < 0, then R2 ≥ R1.
Hence, in either case, we have

d(R1 +R2)

dτ
≥ 0 for 0 ≤ τ ≤ π/2

and this derivative is 0 only when τ = 0 or τ = π/2. Since
R1 +R2, as a function of τ , is symmetric about every mul-
tiple of π/2 and increases from a value of 2 when τ = 0 to a

value of 2
√

1 + C̃2t2 at τ = π/2, then R1 +R2 ≥ 2 whatever
the value of t, τ , and Ω.

Now, consider E in (33) as a function of Ω. Then

d(R1 +R2)

dΩ
= −2tS̃

(
C̃t+ cos τ

R1
+

C̃t− cos τ

R2

)
. (35)

It is easy to show that, in the range 0 ≤ Ω ≤ π/4, d(R1 +
R2)/dΩ = 0 if and only if Ω = 0 or π/4 (or if τ = kπ, in
which case R1 +R2 = 2 whatever the value of Ω). Hence,
R1 +R2 either continually increases or decreases over this
range. However, when Ω = 0◦, we have

R1 +R2 =
√

1 + t2 + 2t cos τ +
√

1 + t2 − 2t cos τ ≥ 2

whatever the value of t and τ (with equality only if τ is a
multiple of π or t = 0), whereas when Ω = π/4, R1 +R2 =
2. Hence, R1 +R2 decreases as Ω increases from 0 to π/4.
Furthermore, R1 +R2 is symmetric in Ω about every multiple
of π/4; thus, it will increase from π/4 to π/2.

For the calculations in Table III, t = 0.54, and τ = −38.5◦

[see Table I(b)]; thus, at Ω = 0◦, R1 = 1.46, R2 = 0.67, and
the range of R1 +R2 is only from 2 to 2.13. Substituting these
values into (33) with ΔδM = 0.1 and ΔεM = 0 yields Faraday
rotation biases ranging between 5.45◦ and 5.76◦. Hence, both
the overall trend and the range of variation of the biases shown
in Table III(a) are consistent with this analysis, although the ab-
solute values of the bias are less than those found by the numer-
ical optimization. These underestimates are unsurprising given
the coarseness of approximation (31) and the fact that the er-
rors in the amplitudes of the distortion terms are as large as 0.1.

For the full expression (33), E is symmetric about π/4 in the
range 0 ≤ Ω ≤ π/2 and

dE

dΩ
= 2ΔδM

d(R1 +R2)

dΩ
+ 4C̃tΔεM . (36)

When Ω = 0, dE/dΩ = 4tΔεM > 0, and when Ω = π/4,
dE/dΩ = 0. However, whether the turning point at Ω = π/4
is a maximum or a minimum depends on t and τ , as can be

seen by examining the sign of the second derivative of E at this
point. Writing

d(R1 +R2)

dΩ
=−2tS̃

(
C̃t

{
1

R1
+

1

R2

}
+cos τ

{
1

R1
− 1

R2

})
,

differentiating with respect to Ω, and using the facts that,
when Ω = π/4, R1 = R2 = 1, dR1/dΩ = −2t cos τ , and
dR2/dΩ = 2t cos τ , then it is readily shown that, at this point

d2(R1 +R2)

dΩ2
= 4t2(1 + sin2 τ).

From (36), we have

d2E

dΩ2
= 2ΔδM

d2(R1 +R2)

dΩ2
− 8S̃tΔεM (37)

which therefore takes the value 8t((1 + sin2 τ)tΔδM −ΔεM )
at Ω = π/4. For the calculations in Table III(b), ΔδM =
ΔεM = 0.1; thus, the second derivative (37) is negative, and
the turning point is a maximum, i.e., the bias increases from its
minimum at Ω = 0 to its maximum value at Ω = π/4, as shown
in Table III(b). Since the range of the values of E is only from
0.426 to 0.508, we again only find a small range of variation in
the bias, i.e., from 5.77◦ to 6.73◦, and these approximate values
are again underestimates of the values found by the numerical
optimization.

The weak dependence of the maximum bias on Ω is a general
property since the maximum value of R1 +R2 is

√
1 + t2 +√

1− t2, which occurs when cos τ = 0. If the values of t in
Table I(b) are typical, then t < 1, and 2 ≤ R1 +R2 < 2

√
2,

which implies a variation of at most 20% in the Faraday rotation
bias about its midvalue as Ω varies.

C. Constraining Maximum Faraday Rotation Bias

The aforementioned simulations all assume that the maxi-
mum amplitudes of the crosstalk and channel imbalance terms
are the same and hence do not reveal the sensitivity of the
maximum Faraday rotation bias to the individual types of
distortions. To assess this, the combinations of the crosstalk
and channel imbalance amplitudes giving rise to a defined
maximum bias when Ω = 0 were evaluated using simulation.
These are displayed in the contour plot in Fig. 4, in which
individual contours are labeled with the maximum bias in
degrees; the calculations use covariance values appropriate to
a biomass of 200 t · ha−1.

Note that, except for the largest values of εM where the first-
order approximation is no longer tenable, the behavior of this
plot is very similar to that predicted by (30) when it is written
in the following form:

(ΔδM )dB = 20 log10

×
(
tan 4(Ω̂− Ω)

2

(
1− 2× 10(ΔδM )dB/20|1− T |

)
|1 + T |+ |1− T |

)
. (38)

For example, when Ω̂− Ω = 1◦, the value of ΔδM predicted by
(38) declines from −35.5 to −36.7 dB as ΔεM increases from
−60 to −20 dB, whereas when Ω̂− Ω = 0.5◦, the decline in
ΔδM over the same range of ΔεM is from −41.2 to −42.4 dB.
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Fig. 4. Contour plot derived from the simulation showing the combinations
of the crosstalk and the channel imbalance that give rise to the given maximum
Faraday rotation bias when Ω = 0; the bias in degrees is marked on the
contours. The calculations are for a biomass of 200 t · ha−1.

It is apparent that, while the bias in Ω depends on the channel
imbalance, as shown by (17), the key control on its maximum
possible value is the crosstalk amplitude. Unless the crosstalk
is less than −35 dB, the maximum bias is nearly independent
of the amplitude of the channel imbalance term. This plot also
makes clear that keeping the maximum bias as low as 1.2◦, as
recommended in [12], requires the crosstalk terms to have an
amplitude less than around −35 dB. However, as Fig. 3(c) in-
dicates, this requirement will be less demanding if we accept
a 99% probability of the maximum bias being less than 1.2◦.
The requirement that the Faraday rotation bias be less than 5◦,
as suggested in [2] and [3], will always be met if the crosstalk
amplitude does not exceed −21.4 dB. This condition will
depend on the covariance matrix, as shown by (38), but for the
three covariance matrices considered, the variation is slight, i.e.,
the corresponding values for 50 and 350 t · ha−1 are −21.1 and
−21.2 dB, respectively.

VI. CONCLUSION

This paper has provided a first-order differentiable approx-
imation to the bias in Faraday rotation estimates caused by
system distortions and noise, from which the conditions on the
amplitudes and phases of the crosstalk and channel imbalance
terms that give rise to the largest possible bias in Ω are derived,
given the constraints on the amplitude of the distortion terms.
In addition to confirming the predictions from the analysis,
simulation allows the statistical properties of the estimate to
be investigated when the amplitudes and phases of the distor-
tion terms are treated as random variables. In particular, the
cumulative density function of the Faraday rotation bias can be
empirically derived so that the likelihood of the bias exceeding
a given threshold can be quantified.

The following are demonstrated.

1) The phases of the distortion terms have significant effects
on the size of the Faraday rotation bias, and the largest
bias occurs for particular phase relationships between the
distortion terms. These worst case phases depend on the

target covariance, thus varying across a scene, as does
the size of the maximum possible bias. However, the
maximum bias only exhibits a weak variation over the
range of covariance matrices considered in this paper.

2) When Ω = 0, a bias exceeding 1.9◦ can occur even when
the distortion amplitudes are as small as 0.0316 (−30
dB). This makes it hard to guarantee that the bias should
not exceed 1.2◦, as proposed in [12]. The condition on
the crosstalk amplitude would be less stringent, however,
if we only require, e.g., a 99% probability that the bias
should not exceed 1.2◦.

3) The maximum Faraday rotation bias can be constrained
by assigning a maximum amplitude just to the crosstalk
since the maximum bias is very insensitive to the ampli-
tude of the channel imbalance terms.

This paper has focused on the bias in the Faraday rotation
estimate and hence has not considered the uncertainty arising
from the window size used in the estimate, i.e., the number of
looks. This uncertainty is effectively absent from the simula-
tions since they use 10 000 looks to represent the scene, but it
can be readily investigated, at the cost of computer time, using
simulation.

The presence of bias in the Faraday rotation estimates can
be most easily investigated near the magnetic equator. This
is because, from (1), the Faraday rotation is zero if the angle
between the radar beam and the geomagnetic field is 90◦. This
condition will be met in some equatorial locations for a polar-
orbiting satellite orbit. The nonzero estimates of the Faraday
rotation at these locations indicate the presence of bias, which
will affect all measurements along the orbit.

Finally, the simulations in this paper have not made any
assumptions about how accurately calibration procedures can
estimate the system distortion terms and, hence, what the
realistic constraints on their amplitudes are. For the Phased
Array type L-band SAR (PALSAR), this has been addressed
in [21] and [23], where values of the crosstalk less than −35 dB
were found; from (38), this corresponds to a maximum Faraday
rotation bias of 1.08◦. Significant channel imbalance was found,
but this was largely removed by calibration and is not of major
importance as regards the maximum bias (see Section V).
Further opportunities to assess the L-band system distortion
both before and after calibration and its effects on the estima-
tion of the Faraday rotation will be provided by the Advanced
Land Observing Satellite-2 (ALOS-2) and the Argentine Mi-
crowaves Observation Satellite (SAOCOM) radars, but our first
chance to carry out similar studies at P-band awaits the launch
of BIOMASS.

APPENDIX

FIRST-ORDER ESTIMATE OF FARADAY ROTATION BIAS

A1 =ShvΣδ − cs (Shh + Svv) (X31 +X24) (A1a)

B1 =Shh(c
2X31 − s2X24) + Svv(c

2X24 − s2X31)

=X31(c
2Shh − s2Svv) +X24(c

2Svv − s2Shh) (A1b)

A2 =(−s2Shh + c2Svv)Σε (A2a)

B2 =ShvY21 + cs(Shh + Svv)Σε (A2b)
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(A+ jB)(A1 − jB1)
∗ + (A− jB)∗(A1 + jB1)

= e2jΩ (Shh+Svv)
(
ShvΣδ−e−jΩ {X31(jcShh + sSvv) +X24(sShh+jcSvv)}

)∗
+ e2jΩ (Shh + Svv)

∗ (ShvΣδ + ejΩ {X31(jcShh − sSvv) +X24(−sShh + jcSvv)}
)

= 2e2jΩRe {(Shh + Svv)S
∗
hvΣ

∗
δ}

+ e3jΩ {X31(Shh + Svv)
∗(jcShh − sSvv)−X∗

31(Shh + Svv)(−jcS∗
hh + sS∗

vv)}

+ e3jΩ {X24(Shh + Svv)
∗(−sShh + jcSvv)−X∗

24(Shh + Svv)(sS
∗
hh − jcS∗

vv)} (A9)

where

X31 =Δδ3 −Δδ1 ≡ P + jQ

X24 =Δδ2 −Δδ4 ≡ U + jV

Σδ =Δδ1 +Δδ2 +Δδ3 +Δδ4

Y21 =Δε2 −Δε1

Σε =Δε2 +Δε1 ≡ C + jD. (A3)

Hence

A1+jB1=ShvΣδ

+X31

{
−cs (Shh + Svv) + j(c2Shh − s2Svv)

}
+X24

{
−cs (Shh + Svv) + j(c2Svv − s2Shh)

}
=ShvΣδ

+ejΩ {X31(jcShh−sSvv)+X24(−sShh+jcSvv)} .
(A4a)

Similarly

A1−jB1=ShvΣδ

−e−jΩ{X31(jcShh+sSvv)+X24(sShh+jcSvv)} .
(A4b)

In addition

A2 + jB2 = jShvY21 + ejΩ(jsShh + cSvv)Σε (A5a)

A2 − jB2 = − jShvY21+e−jΩ (−jsShh+cSvv) Σε. (A5b)

Expanding (Â+ jB̂)∗(Â− jB̂) and discarding the quadratic
terms leads to the following expression:

Z1Z
∗
2 =(Â+ jB̂)(Â− jB̂)∗

≈(A+ jB)(A− jB)∗ + (A+ jB)(A1 − jB1)
∗

+ (A+ jB)(A2 − jB2)
∗ + (A− jB)∗(A1 + jB1)

+ (A− jB)∗(A2 + jB2). (A6)

The noise terms are omitted since they occur in products with
the signal and in the following product:

(N′
hh +N′

vv + j(N′
vh −N′

hv))

× (N′
hh +N′

vv + j (N′
vh −N′

hv))
∗
.

Hence, if the noise terms are uncorrelated with the signal and
with each other, and are of equal power, the expected value of
all terms containing noise is 0.

Since

A+ jB =e2jΩ (Shh + Svv)

A− jB =e−2jΩ (Shh + Svv) (A7)

the first term in (A6) can be written as

(A+ jB)(A− jB)∗ = e4jΩ |Shh + Svv|2 . (A8)

The terms involving δ are given in (A9), shown at the top of the
page.

Averaging over looks and using the notation in (A3), the
terms involving X31 can be written as

X31 〈(Shh + Svv)
∗(jcShh − sSvv)〉

−X∗
31 〈(Shh + Svv)(−jcS∗

hh + sS∗
vv)〉 (Shh + Svv)

= (P + jQ)(jcσhh − sσvv +R[jcejθ − se−jθ])

+ (P − jQ)(jcσhh − sσvv +R[−sejθ + jce−jθ])

= 2P (jcσhh − sσvv + jRejΩ cos θ)− 2jQRe−jΩ sin θ
(A10)

where σpp = 〈|Spp|2〉, and 〈ShhS
∗
vv〉 = Rejθ.

The corresponding expression for X24 is

X24 〈(Shh + Svv)
∗(−sShh + jcSvv)〉

−X∗
24 〈(Shh + Svv)(sS

∗
hh − jcS∗

vv)〉

= 2U(−sσhh + jcσvv +RjejΩ cos θ) + 2jV Re−jΩ sin θ.
(A11)

Similarly, for the channel imbalance terms, we have

(A+ jB)(A2 − jB2)
∗ + (A− jB)∗(A2 + jB2)

= e2jΩ (Shh + Svv)
(
−jShvY21 + e−jΩ (−jsShh + cSvv) Σε

)∗
+ e2jΩ (Shh + Svv)

∗ (jShvY21 + ejΩ(jsShh + cSvv)Σε

)
= je2jΩ2Re ((Shh + Svv)S

∗
hvY

∗
21)

+ e3jΩ ((C − jD)(Shh + Svv)(jsS
∗
hh + cS∗

vv)

+(C + jD)(Shh + Svv)
∗(jsShh + cSvv)) .

(A12)



4296 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 8, AUGUST 2015

After averaging, the coefficient of e3jΩ can be more simply
written as

〈(C − jD)(Shh + Svv) (jsS
∗
hh + cS∗

vv)

+(C + jD)(Shh + Svv)
∗(jsShh + cSvv)〉

=(C + jD)
(
jsσhh + cσvv +R[jsejθ + ce−jθ]

)
+ (C − jD)

(
jsσhh + cσvv +R[cejθ + jse−jθ]

)
=C(2jsσhh + 2cσvv + 2RejΩ cos θ) + 2DRe−jΩ sin θ

(A13)

Gathering the terms, we find〈
(Â+ jB̂)(Â− jB̂)∗

〉
≈ e4jΩ

(〈
|Shh+Svv|2

〉
+2R cos θ(jP+jU+C)

)
+2e3jΩ

× (P (jcσhh − sσvv) + U(−sσhh + jcσvv)

+C(jsσhh + cσvv))

+ 2e2jΩR sin θ(−jQ+ jV +D) + 2e2jΩ

× 〈Re ((Shh+Svv)S
∗
hvΣ

∗
δ)+jRe ((Shh+Svv)S

∗
hvY

∗
21)〉

(A14)

Hence〈∣∣∣Ẑ1Ẑ
∗
2

∣∣∣ cos 4Ω̂〉 = cos 4Ω
(〈

|Shh + Svv|2
〉
+ 2RC cos θ

)
− sin 4Ω (2(P + U)R cos θ)

+ 2 cos 3Ω(−sPσvv − sUσhh + cCσvv)

− 2 sin 3Ω(cPσhh + cUσvv + sCσhh)

+ 2R sin θ (D cos 2Ω + (Q− V ) sin 2Ω)

+ 2 cos 2ΩRe 〈(Shh + Svv)S
∗
hvΣ

∗
δ〉

− 2 sin 2ΩRe 〈(Shh + Svv)S
∗
hvY

∗
21〉 (A15)〈∣∣∣Ẑ1Ẑ

∗
2

∣∣∣ sin 4Ω̂〉 = sin 4Ω
(〈

|Shh + Svv|2
〉
+ 2RC cos θ

)
+ cos 4Ω (2(P + U)R cos θ)

+ 2 sin 3Ω(−sPσvv − sUσhh + cCσvv)

+ 2 cos 3Ω(cPσhh + cUσvv + sCσhh)

+ 2R sin θ {D sin 2Ω− (Q− V ) cos 2Ω}

+ 2 sin 2ΩRe 〈(Shh + Svv)S
∗
hvΣ

∗
δ〉

+ 2 cos 2ΩRe 〈(Shh + Svv)S
∗
hvY

∗
21〉 . (A16)

Now, using

2 sin 3Ω cosΩ = sin 4Ω + sin 2Ω

2 cos 3Ω sinΩ = sin 4Ω− sin 2Ω

2 cos 3Ω cosΩ =cos 4Ω + cos 2Ω

2 sin 3Ω sinΩ =− cos 4Ω + cos 2Ω

the middle lines of (A15) become

−(sin 4Ω−sin 2Ω)(Pσvv+Uσhh)+(cos 4Ω+cos 2Ω)Cσvv

−(sin 4Ω+sin 2Ω)(Pσhh+Uσvv)−(− cos 4Ω+cos 2Ω)Cσhh.

Hence〈∣∣∣Ẑ1Ẑ
∗
2

∣∣∣ cos 4Ω̂〉
= cos 4Ω

(〈
|Shh + Svv|2

〉
+ Cσvv + Cσhh + 2RC cos θ

)
− sin 4Ω (2(P+U)R cos θ+Pσvv+Uσhh+Pσhh+Uσvv)

+ cos 2Ω (2DR sin θ + Cσvv − Cσhh)

+ sin 2Ω (2(Q−V)R sin θ+Pσvv+Uσhh−(Pσhh+Uσvv))

+ 2 cos 2ΩRe 〈(Shh + Svv)S
∗
hvΣ

∗
δ〉

− 2 sin 2ΩRe 〈(Shh + Svv)S
∗
hvY

∗
21〉

which can be written as〈∣∣∣Ẑ1Ẑ
∗
2

∣∣∣ cos 4Ω̂〉
=
〈
|Shh + Svv|2

〉
((1 + C) cos 4Ω− (P + U) sin 4Ω)

+ cos 2Ω (2DR sin θ + C(σvv − σhh))

+ sin 2Ω (2(Q− V )R sin θ + (P − U)(σvv − σhh))

+ 2 cos 2ΩRe 〈(Shh + Svv)S
∗
hvΣ

∗
δ〉

− 2 sin 2ΩRe 〈(Shh + Svv)S
∗
hvY

∗
21〉 . (A17)

Similarly〈∣∣∣Ẑ1Ẑ
∗
2

∣∣∣ sin 4Ω̂〉
=
〈
|Shh + Svv|2

〉
((1 + C) sin 4Ω + (P + U) cos 4Ω)

+ sin 2Ω (2DR sin θ + C(σvv − σhh))

− cos 2Ω (2(Q− V )R sin θ + (P − U)(σvv − σhh))

+ 2 sin 2ΩRe 〈(Shh + Svv)S
∗
hvΣ

∗
δ〉

+ 2 cos 2Ω 〈(Shh + Svv)S
∗
hvY

∗
21〉 . (A18)

Equations (A17) and (A18) can be combined to give
〈|Ẑ1Ẑ

∗
2| exp(4jΩ̂)〉.

Setting

L =
〈
|Shh + Svv|2

〉
J =cos 2Ω (2DR sin θ + C(σvv − σhh))

+ sin 2Ω (2(Q− V )R sin θ + (P − U)(σvv − σhh))

K =sin 2Ω (2DR sin θ + C(σvv − σhh))

− cos 2Ω (2(Q− V )R sin θ + (P − U)(σvv − σhh))

M =2Re 〈(Shh + Svv)S
∗
hvΣ

∗
δ〉

N =2Re 〈(Shh + Svv)S
∗
hvY

∗
21〉
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tan(4Ω̂− 4Ω)

=
P + U + 1

L
Re
{
〈(Svv+Shh)

∗(Svv−Shh)〉 (−Σε sin 2Ω+(X24−X31) cos 2Ω)+2 〈(Shh+Svv)S
∗
hv〉 (−Σ∗

δ sin 2Ω+Y ∗
21 cos 2Ω)

}
1+C+ 1

L
Re
{
〈(Svv+Shh)

∗(Svv−Shh)〉 (Σε cos 2Ω+(X24−X31) sin 2Ω)+ 2〈(Shh+Svv)S
∗
hv〉 (Σ∗

δ cos 2Ω+Y ∗
21 sin 2Ω)

}
=

Re
{
X31 +X24 + T (Σε sin 2Ω + (X31 −X24) cos 2Ω) + 2W (−Σ∗

δ sin 2Ω + Y ∗
21 cos 2Ω)

}
1 + Re

{
Σε + T (−Σε cos 2Ω + (X31 −X24) sin 2Ω) + 2W (Σ∗

δ cos 2Ω + Y ∗
21 sin 2Ω)

} (A21)

and using tan(A−B) = (tanA−tanB)/(1+tanA tanB),
then

tan(4Ω̂− 4Ω)

=

(1+C) sin 4Ω+(P+U) cos 4Ω+(K+M sin 2Ω+N cos 2Ω)/L
(1+C) cos 4Ω−(P+U) sin 4Ω+(J+M cos 2Ω−N sin 2Ω)/L − sin 4Ω

cos 4Ω

1+ (1+C) sin 4Ω+(P+U) cos 4Ω+(K+M sin 2Ω+N cos 2Ω)/L
(1+C) cos 4Ω−(P+U) sin 4Ω+(J+M cos 2Ω−N sin 2Ω)/L

sin 4Ω
cos 4Ω

.

(A19)

Since

K cos 4Ω− J sin 4Ω

= cos 4Ω (sin 2Ω {2DR sin θ + C(σvv − σhh)}

− cos 2Ω {2(Q− V )R sin θ + (P − U)(σvv − σhh)})

− sin 4Ω (cos 2Ω {2DR sin θ + C(σvv − σhh)}

+sin 2Ω {2(Q− V )R sin θ + (P − U)(σvv − σhh)})

= −{2DR sin θ + C(σvv − σhh)} sin 2Ω

− {2(Q− V )R sin θ + (P − U)(σvv − σhh)} cos 2Ω

= −Re {〈(Svv+Shh)
∗(Svv−Shh)〉

× (Σε sin 2Ω+(X31−X24) cos 2Ω)} (A20a)

and similarly

K sin 4Ω + J cos 4Ω

= Re (〈(Svv + Shh)
∗(Svv − Shh)〉

× (Σε cos 2Ω− (X31 −X24) sin 2Ω)) (A20b)

(A19) simplifies to (A21), shown at the top of the page, where

T =− 〈(Svv + Shh)
∗(Svv − Shh)〉〈

|Shh + Svv|2
〉

=
σhh − σvv + 2jR sin θ

σhh + σvv + 2R cos θ
(A22a)

W =
〈(Shh + Svv)S

∗
hv〉〈

|Shh + Svv|2
〉 . (A22b)
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