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Abstract The population of electrons in the Earth’s outer radiation belt increases when the
magnetosphere is exposed to high-speed streams of solar wind, coronal mass ejections, magnetic clouds,
or other disturbances. After this increase, the number of electrons decays back to approximately the initial
population. This study statistically analyzes the lifetimes of the electron at Geostationary Earth Orbit (GEO)
from Los Alamos National Laboratory electron flux data. The decay rate of the electron fluxes are calculated
for 14 energies ranging from 24 keV to 3.5 MeV to identify a relationship between the lifetime and energy
of the electrons. The statistical data show that electron lifetimes increase with energy. Also, the statistical
results show a good agreement up to ∼1 MeV with an analytical model of lifetimes, where electron losses
are caused by their resonant interaction with oblique chorus waves, using average wave intensities obtained
from Cluster statistics. However, above 500 keV, the measured lifetimes increase with energy becomes less
steep, almost stopping. This could partly stem from the difficultly of identifying lifetimes larger than 10 days,
for high energy, with the methods and instruments of the present study at GEO. It could also result from
the departure of the actual geomagnetic field from a dipolar shape, since a compressed field on the
dayside should preferentially increase chorus-induced losses at high energies. However, during nearly quiet
geomagnetic conditions corresponding to lifetime measurement periods, it is more probably an indication
that outward radial diffusion imposes some kind of upper limit on lifetimes of high-energy electrons near
geostationary orbit.

1. Introduction

The fluxes of energetic electrons in Earth’s outer radiation belt strongly vary with geomagnetic activity
[Reeves et al., 2003]. Determining the main actors in the energization and loss processes of electrons is
essential for providing accurate space weather forecasts of these energetic particle populations, which can
damage satellite electronic components [Horne et al., 2013]. Various loss processes are present in the outer
belt, such as gyroresonant scattering by whistler mode waves and electromagnetic ion cyclotron (EMIC)
waves (e.g., see the review by Thorne [2010]), while radial diffusion by electric and magnetic ULF fluctuations
can either accelerate electrons or scatter them outward to the magnetopause [e.g., see Shprits et al., 2008;
Turner et al., 2014].

The motivation of the present study comes from the results obtained in Balikhin et al. [2011] and Boynton
et al. [2013b, 2013c] where the Nonlinear AutoRegressive Moving Average eXogenous input (NARMAX) sys-
tem identification technique was used to find the most influential solar wind control parameters for the
energetic particle fluxes at Geostationary Earth Orbit (GEO) for a range of energies. In the work by Boynton
et al. [2013b], it was discovered from the NARMAX results that the solar wind density seemed to play an
important role in the loss of electrons at GEO for energies approximately above 900 keV. By including the
density parameter in the NARMAX electron flux model [Boynton et al., 2013a], which is online at http://www.
ssg.group.shef.ac.uk/USSW/UOSSW.html, the prediction efficiency increased by roughly 10%. One of the
questions that arose from these results was: Why does the solar wind density seem to affect the high energy
electrons but not the low-energy electrons? To help answer this, Boynton et al. [2013b] inspected an event of
highly increased electron flux, shown in Figure 1 [Boynton et al., 2013b, Figure 5], which displays solar wind
velocity, density, and pressure; the electron flux for three energy ranges; and magnetopause location at sub-
solar point according to the Shue et al. [1997] model for a period from 17 November 2000 to 23 November
2000. Here the solar wind data are taken from OMNIWeb, while the electron flux data were from the Los
Alamos National Laboratory (LANL) spacecraft. The 270 keV and the 625 keV electron flux data are from the
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Figure 1. (a–g) Figure 5 from Boynton et al. [2013b] redrawn, which displays a solar wind velocity, density, and pressure;
three energies of the logarithmic electron fluxes; and magnetopause position.

Synchronous Orbit Particle Analyzer (SOPA) [Belian et al., 1992], and the 1.8–3.5 MeV electrons are from the
Energetic Sensor for Particles (ESP) [Meier et al., 1996].

In Figure 1d, the 1.8–3.5 MeV electron flux increases from 10 to 12 November then remains approximately
constant until 18 November, where there is a dramatic loss (a dropout) of high-energy electrons, which coin-
cided with a relatively large increase in density. The dropout may be due to strongly enhanced outward
transport toward a much closer magnetopause in the presence of an increased dynamic pressure of the
solar wind, as observed in recent studies during more disturbed periods [Turner et al., 2013]. It can be seen
from Figure 1f that the 270 keV electrons start to decrease immediately after it has peaked and does not
plateau like the higher-energy electrons. Instead, the 270 keV electrons decay back to the preevent levels
by 17 November. Therefore, the dropout on 18 November, which has a powerful effect on the 1.8–3.5 MeV
electrons and a moderate effect on 625 keV electrons, does not influence the 270 keV electrons because on
18 November, the latter fluxes are already relatively low. Thus, Boynton et al. [2013b] hypothesized that the
lower energy fluxes most often decay back to preevent levels before any subsequent increase of solar wind
density, preventing any marked influence of density changes on lower energies. But to assess this more
accurately, some kind of statistical measure of the electron flux decay as a function of energy is required.

This leads to another important question about the actual relationship linking the decay of electrons at GEO
and their energy, a relationship that the present study precisely aims to investigate. Since the 1962 Starfish
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experiment, a number of studies have already been performed to evaluate electron flux decay timescales
on the basis of more and more refined satellite measurements [Van Allen, 1966; Baker et al., 1986; Meredith
et al., 2009; Benck et al., 2010; Su et al., 2012]. However, the present work is the first comprehensive study
making use of almost two solar cycles of satellite data to determine the variations of electron lifetimes at
geosynchronous orbit over a very wide energy range going from 20 keV to 3.5 MeV. To this aim, statistics
of electron flux decays were gathered from all events similar to the one shown in Figure 1 for 14 ranges of
energy. The average electron lifetime was then calculated from the decays and the relationship with the
energy further analyzed and compared with theory. Section 2 discusses the data employed for this study
and outlines the methodology used to determine the decay periods and calculate the electron lifetimes. The
relationship between the electron lifetimes and electron energy is examined in section 3, while section 4
is devoted to comparing the statistical measured lifetimes to those computed analytically for losses due to
cyclotron resonant interaction with oblique chorus waves. In section 5, other loss mechanisms are discussed.
The paper is concluded in section 6.

2. Data and Methodology
2.1. LANL Data
Electron flux data from LANL SOPA [Belian et al., 1992] and ESP [Meier et al., 1996] instruments were used
for this study. This is available online at http://onlinelibrary.wiley.com/doi/10.1029/2010JA015735/suppinfo
[Reeves et al., 2011]. This study considered 14 energies, ranging from 24.1 keV to 3.5 MeV. LANL has multiple
satellites at GEO each with the SOPA and ESP instruments. The electron fluxes, for each of the energy chan-
nels, were combined into a uniform daily average. The data cover a 20 year period from 22 September 1989
to 31 December 2009.

Data from the SOPA instrument were used for the lower 13 energies of this study (24.1 keV to 2.0 MeV). The
original energy channels of the SOPA instrument response as a function of energy and penetrating back-
grounds were modeled by Monte Carlo simulations. This was fit to a relativistic bi-Maxwellian spectrum and
then employed to evaluate the fluxes at fixed virtual energy channels [Cayton and Tuszewski, 2005]. The low-
est and highest of these evaluated energies (24.1 keV and 2.0 MeV) were extrapolations of the bi-Maxwellian
fit and thus could not be as accurate as the other virtual channels [Cayton and Tuszewski, 2005]. The high-
est energy used in this study, centered at 2.65 MeV, was from the ESP. A detailed methodology of the data
processing can be found in the supporting information published with Reeves et al. [2011].

2.2. Defining Decay Intervals and Calculating Electron Lifetimes
To gather the statistics of the electron decay rates and thus lifetimes, the periods where the decay actually
occurred need to be defined. This interval should start after the electron flux has peaked. Here the first and
second derivative of logarithmic electron flux, Jl(t) = log10(J(t)), were used to find the start of the decay
interval, t1, and the end of the interval, t2. Where the first derivative, dJl(t), is defined as Jl(t)− J(t−1) and the
second derivative, d2Jl(t), is dJl(t)−dJl(t−1). The start of the interval was defined as the local maximum in the
daily averaged data; however, the end of the decay period was more difficult to define due to t2 occurring in
three different cases. These three cases are shown in Figure 2. In the first case (Figure 2 (left)), the decay of
the electron flux is interrupted by a subsequent increase in flux. For the second case (Figure 2 (middle)), the
flux levels off after decaying back to preevent values, similar to Figure 1f. In the third case (Figure 2 (right)),
the electron flux decay is interrupted by a sudden dropout, akin to Figure 1d.

As mentioned above, each electron flux energy range was individually searched for local maxima to find
the start of each decay period. Here as shown in all panels of Figure 2, dJl(t1) must be positive, d2Jl(t1 + 1)
must be negative and < d2Jl(t1 + 2). This is true even if the buildup in fluxes happens over more than 1 day.
This occurs on day 2 for all cases in Figure 2. To find the end of the decay interval, t2, the data between each
consecutive t1 were searched. If there is no significant changes in gradients within this interval, as in Case 1
of Figure 2, then t2 is the point before the next increase in flux (day 7).

The end of the decay interval for Case 2 is largely influenced by noise since there is no large variation in dJl

and d2Jl . In Case 2, t2 was defined by Jl(t2) having a magnitude to within a threshold of the flux before the
increase, dJl(t2 +1) ∼ 0 and d2Jl(t2 +1) is positive (it occurs on day 7). In the third case of Figure 2, the end of
the decay period occurs at the point before the dropout. This can be seen as a large change in gradient and
was detected by |d2Jl(t2+1)| greater than a threshold relating to the standard deviation of Jl , thus excluding
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Figure 2. Three cases showing the start, t1, and end, t2, of decay intervals in (top) the logarithmic electron flux, Jl , (middle) the first derivative, dJl , and (bottom)
the second derivative, d2Jl . Case 1: decay immediately followed by another increase in flux. Case 2: fluxes level off after decaying to preevent levels. Case 3: decay
interrupted by a dropout.

any fast dropouts from the study, including those observed in the storm main phase. This occurs on day 10

in Figure 2 (right).

The data for each energy of electron flux were individually searched for decay intervals by employing the

above criteria. The thresholds of the algorithm were tuned to a number of decays which would allow for

a certain amount of noise resistance in detecting the events. All the decay intervals were then manually

checked, removing any decays which seemed unreasonable, such as when the decay leveled off gradually

(similar to Case 2) so that the end of the decay was not correctly detected, thus overestimating the lifetime.

The number of decay intervals found was between 129 intervals for 24.1 keV and 255 for 1.3 MeV. Figure 3

displays an event of increased electron flux taking place between 19 November 1997 and 1 December 1997

for seven electron energies. The black line, for each of the seven plots, indicates the interval used to calculate

the corresponding decay rate and lifetime.

In this event, the electron fluxes at low energies (Figures 3a and 3b) start a fast decay immediately after

having peaked with a large gradient. In Figure 3d, the 172.5 keV flux starts to decrease with a less steep

slope after it peaks. As the energy increases further, Figures 3e and 3f show that the gradient of this decay

becomes smaller. Finally, for 2 MeV electrons shown in Figure 3g, the fluxes seem to plateau. This implies

that the rate of depletion depends upon the energy range, decreasing with the increase of energy or, in

other terms, that the electron lifetimes increase with increasing energy. For high energies such as 2 MeV,

the loss rate is so small that the decrease of fluxes is not evident for this event, corresponding to very long

lifetimes. The 2 MeV electron flux remain roughly constant until there is a dropout, which effects all electrons

above 170 keV, during this event, on 29 November 1997. It can clearly be seen that the decay of electrons

decreases as the energy increases relative to the magnitude of the increase. Moreover, the measured decays

generally appear to be roughly exponential over all the selected intervals.

It must be noted that the decreases in the second derivative on 24–25 November for 62.5 keV (Figure 3b)

were not big enough to signal the end of the decay period, while on 29 November for the 925 keV, there

was a big enough change in the second derivative to stop the decay interval. If this feature was common

in the data, then lifetimes for low-energy electrons will be underestimated and those for MeV electrons

will be overestimated. However, there are also cases where the high-energy decays are not so smooth and

where the decay is less steep for a day (i.e., 27–28 November for 127.5 keV), which would overestimate the

decay. Therefore, any underestimation/overestimation should roughly average out over the whole 100 to

200 decay periods considered for each energy channel.
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a)
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d)

e)

f)

g)

Figure 3. The decay of the electron flux, depicted in a range of ener-
gies: (a) 31.7 keV, (b) 62.5 keV, (c) 127.5 keV, (d) 270 keV, (e) 407.5 keV, (f )
925 keV, and (g) 2.0 MeV. The black line superimposed on each electron
flux displays the corresponding interval considered to calculate the decay
and lifetime.

For each of the clearly identified decay
intervals from the 20 years of LANL
data, the decay rate, 𝜆, of the electron
flux, J, was calculated assuming an
exponential form

J = Ae−𝜆t (1)

ln J = −𝜆t + ln A (2)

where A is a constant and t is the time.
On this basis, the decay rate can then
be found from a least squares fit for
each clearly identified decay period:

𝜆 =
n

n∑
i=1

t(i) ln J(i) −
n∑

i=1
t(i)

n∑
i=1

ln J(i)

n
n∑

i=1
t2(i) −

( n∑
i=1

t(i)
)2

(3)
The mean decay rate was then calcu-
lated after averaging over all the clearly
identified decay periods between 22
September 1989 and 13 December
2009 and the mean electron lifetime
calculated from 𝜏 = 1∕𝜆. Moreover,
we also evaluated the 20% and 80%
percentile of the distribution of decay
rates 𝜆, allowing us to provide an esti-
mate of the observed variability around
the mean decay rates and lifetimes
(i.e., experimental error bars).

3. Electron Lifetime Relation-
ship With Energy

Figure 4 shows the relationships
between the lifetime of electrons and
their energy (red) as well as between
electron decay rate and energy (black).
The lifetime clearly increases propor-
tionally to the logarithm of the energy
up to 500 keV, where there is a discon-
tinuity. Between 60 keV and 280 keV,
one can see that there is a good agree-
ment with lifetimes obtained from the
SCATHA satellite at L ∼ 6.1–6.5 in a pre-
vious study [Su et al., 2012]. Analyzing
storm events in 1979–1984, Baker et al.
[1986] have also reported typical decay

timescales of about 4 days for 3 MeV electrons at L = 6.6 which compare well with our results.

Above 500 keV, the lifetime still continues to increase with energy, but at a noticeably reduced pace. The
presence of such a “knee” between quickly increasing lifetimes at energies below 500 keV and more slowly
increasing lifetime at higher energies is an interesting feature of Figure 4. It could be indicative of an impor-
tant change in the prevalent loss mechanism at higher energies. However, we cannot rule out the possibility
that it could also be due to peculiarities of the SOPA instrument and the way by which the decay rates were
evaluated at each energy.
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Figure 4. Electron decay rate versus electron energy (black) and electron
lifetime versus electron energy (red).

It should be emphasized that very long
lifetimes, larger than 10 days, actually
correspond to less than 30% reduc-
tions in electron fluxes over a typical
decay interval of calculation of 4 days
at GEO (see Figures 3f–3g and 1d).
Furthermore, long lifetimes generally
concern high energies (larger than
1 MeV) for which measured fluxes are
considerably smaller than at lower
energy (e.g., compare flux levels in
Figures 3e–3g). Consequently, such
long lifetimes should be much less
accurately determined: relatively small
fluctuations in the electron count rates
can be sufficient either to suppress a
small decay (for a positive fluctuation)
or to significantly increase it (for a neg-
ative fluctuation). Both these effects

should actually concur to make long lifetimes (>10 days) much less likely to be spotted with the above
discussed method.

4. Comparison With Analytical Lifetimes for Chorus-Induced Losses

The decay of energetic electron fluxes observed on satellites is the result of a competition between dif-
ferent loss and source mechanisms. One of the most important loss processes is pitch angle scattering of
electrons toward their loss cone (and precipitation in the atmosphere) due to wave-particle interactions.
Relatively high amplitude chorus whistler mode waves are pervasive at GEO, which should generally make
their resonant scattering of electrons one of the dominant processes. EMIC waves are most frequently
observed during disturbed periods (such as the main phase of storms), near the plasmapause, or in regions
of strongly decreasing plasma density less than one Earth radius away from the compressed plasmasphere,
or (but seemingly more rarely) near the edge of plasmaspheric plumes formed during storms [e.g., see
Thorne and Kennel, 1971; Carson et al., 2013; Usanova et al., 2013; Mann et al., 2014; Usanova et al., 2014, and
references therein]. In contrast, our flux decays are measured only during rather moderately disturbed peri-
ods (recovery phase) at GEO. In a first approach, it is therefore reasonable to consider only chorus-related
wave-induced losses.

Energization by chorus waves of lower energy electrons up to the considered energy range is another
important source process for E > 100 keV electron fluxes [Horne et al., 2005]. But the timescale for electron
acceleration is usually longer than their lifetimes during low to moderate geomagnetic activity [Mourenas
et al., 2014], which justifies a priori to consider only their losses by pitch angle diffusion after the flux decay
has started. Actually, the beginning of the decay should correspond to the time when loss-limited energiza-
tion has reached its peak and losses start to take over (e.g., see equations (7)–(8) in the work by Mourenas et
al. [2014]). It is also worth noting that if such a source of energetic electrons by acceleration of lower energy
ones were more important than losses during the observed flux decays, then the measured lifetimes would
be increased as compared with chorus-induced losses alone. We shall see below that it is not the case. Con-
sequently, energization is likely much weaker than losses during the observed decay periods, which agrees
well with calculations performed by Mourenas et al. [2014] during similarly not-too-disturbed periods such
that Dst > −30 nT at L ∼ 7. Besides, radial diffusion of electrons is also very important at GEO [Brautigam and
Albert, 2000; Shprits et al., 2008; Ozeke et al., 2014] and it will certainly influence the observed flux decays.
Notwithstanding, we shall compare here the observed electron flux decays with analytical lifetime estimates
obtained for losses by chorus waves alone. This should help us to assess whether additional loss or source
mechanisms are necessary or not to explain the measured lifetimes—such as radial diffusion or other kinds
of wave-particle interactions.

A number of studies have been devoted to calculating electron lifetimes for losses due to resonant cho-
rus wave-particle interactions [e.g., see Summers et al., 2007; Shprits et al., 2008; Albert and Shprits, 2009;
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Thorne, 2010, and references therein]. In the present study, the measured lifetimes have been compared to
the approximate analytical lifetime model derived by Mourenas et al. [2012], because this work is the only
one which accounts for a sensible proportion of whistler mode chorus waves propagating very obliquely
with respect to the magnetic field. Recent statistics of 10 years of Cluster lower band chorus wave data
have indeed shown that a significant portion of these waves is propagating near the resonance cone angle
[Agapitov et al., 2013; Mourenas et al., 2014]. Numerical and analytical studies have demonstrated the impor-
tant impact of these oblique waves and the resulting modification (generally reduction) of electron lifetimes
[Mourenas et al., 2012; Artemyev et al., 2013a; Mourenas et al., 2014].

Following Miyoshi and Kataoka [2008], the decay of the electron flux should generally take place during peri-
ods of moderate geomagnetic activity, after the end of the main phase of storms where energization usually
occurs. During such nearly quiet periods, oblique waves are more present than during high geomagnetic
activity [Agapitov et al., 2013; Mourenas et al., 2014]. Based on Cluster statistics at latitudes 𝜆 ∼ 10◦–40◦

when Dst > −30 nT, a small but influential portion (≥ 1%−5% typically) of the chorus wave intensity B2
w lies

in the very oblique range such that the wave normal angle 𝜃 > 45◦. In this situation, electron pitch angle
scattering rates are increased near the loss cone by the contribution of higher-order cyclotron resonances in
addition to the fundamental one (the only contributing one for parallel waves). Then, one can use the ana-
lytical lifetime estimate 𝜏 derived in case of a significant presence of oblique chorus waves [Mourenas et al.,
2012; Artemyev et al., 2013a; Mourenas et al., 2014]. It is roughly valid for electron energies E ∼ 20–30 keV
to ∼ 3 MeV:

𝜏 ≈ 35
B2

w

𝛾(𝛾2 − 1)1∕2Ωpe (4)

where Bw is the bounce-averaged RMS wave amplitude in pT, 𝛾 is the Lorenz factor, and Ωpe is the electron
plasma frequency. Assuming for simplicity a dipolar magnetic field and a typical 1∕L4 plasma density profile,
the plasma frequency to electron gyrofrequency ratio can be written approximately as

Ωpe∕Ωc ≈ 5.78(L∕6.6) (5)

where L is the L shell and Ωc is the equatorial electron gyrofrequency and is approximately

Ωc[days] ≈ 0.22(L∕6.6)−3 (6)

Therefore, the lifetime 𝜏 (in days) of an electron as a function of its energy E (in keV) and of chorus wave RMS
amplitude Bw (in pT) reads as

𝜏[days] =
45[days ⋅ pT2](E[keV]∕511 + 1)((E[keV]∕511 + 1)2 − 1)1∕2

(Bw[pT]L∕6.6)2
(7)

The above analytical expression can then be compared to the statistical mean lifetimes found in this study
on the basis of satellite measurements.

Figure 5 displays the analytical lifetime for electrons at GEO (L = 6.6) overlaid on the statistical electron life-
times (red asterisks). Moreover, we also evaluated the 20% and 80% percentile of the distribution of electron
lifetimes, allowing us to provide an estimate of the observed variability around the mean decay rates and
lifetimes (i.e., experimental error bars). Here we have considered a mean wave amplitude of ∼5 pT (black
solid line) in agreement with statistical results from Cluster at L∼6–7 after averaging over latitudes 𝜆∼0◦–40◦

during nearly quiet times such that Dst > −20 nT [Mourenas et al., 2014]. A factor of 3 variance in the wave
intensity around the average value has also been considered in rough concordance with Cluster obser-
vations. Therefore, the upper limit on lifetimes (grey dashed line) corresponds to Bw = 3 pT while for its
lower limit we use Bw = 9 pT (black dashed line). Note that the average amplitude of chorus waves gen-
erally increases with latitude, while we used a constant (mean) amplitude here. Since the latitudinal range
of resonance increases with energy (although much less for oblique waves), it could lead to slightly overes-
timated (underestimated) lifetimes at high (low) energy when using a constant mean amplitude Bw∼5 pT.
Moreover, while the average chorus wave power is relatively weak at GEO during nearly quiet periods, it
is known to increase dramatically during more disturbed geomagnetic conditions [e.g., see Agapitov et al.,
2013; Mourenas et al., 2014; Orlova and Shprits, 2014], which would reduce lifetimes in such situations.
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Figure 5. Plot of electron lifetime versus electron energy. The
red asterisks show the statistical results from the present study
of LANL satellite data with the 20% and 80% percentile of the
distribution of lifetimes, the black solid line shows the Mourenas et
al. [2012] analytical lifetime estimates for an average chorus wave
amplitude of 5 pT, the dotted lines show a factor of 3 variance in
chorus wave intensity around the mean, and the blue dots show
the statistical results of electron decay times from Su et al. [2012]
for 45◦ pitch angle and 6.1 < L ≤ 6.5.

Figure 5 shows that for low electron energies,
E∼24 keV to ∼1 MeV, the statistical flux decay
timescales roughly agree with the theoretical
lifetime estimates derived for losses induced
only by resonant interaction with average
(nearly quiet time) chorus waves. Lifetimes
due to scattering by chorus waves scale
as 𝜏∼𝛾 p∼

√
E to ∼E in this domain (corre-

sponding to smaller pitch angle scattering of
higher-momentum particles, e.g., see Moure-
nas et al. [2012]), which remains comparable
to the energy dependence of observed decay
timescales as long as E < 0.5 MeV. Therefore,
scattering by chorus waves seems to be the
dominant loss factor for E < 0.5 MeV elec-
trons at GEO during weakly disturbed periods.
However, for E > 1.5 MeV, the measured elec-
tron lifetimes become sensibly smaller than
the analytical estimates, while the energy
dependence of analytical lifetimes becomes
𝜏∼E to ∼E2 for E > 0.5 MeV, clearly depart-
ing from the very weak energy dependence
of measured decay timescales. Some possi-
ble explanations for these discrepancies are
discussed below.

5. Discussion

We have already pointed out at the end of
section 3 that long lifetimes (𝜏 > 10 days)
should be much less easily identified with
the present methods and instruments than
smaller lifetimes, as indicated by the increas-
ing width of the error bars as energy increases
above 1 MeV in Figure 5. Moreover, the lowest
(24 keV) and highest (2 MeV) energy channels

of the SOPA instrument could also be less accurate than the other ones (see explanations in section 2.1),
while the 2.65 MeV channel is provided by another instrument (ESP). Thus, one should be very careful before
drawing any definitive conclusions from the apparent discrepancy at E ∼2–2.7 MeV between analytically
estimated and mean measured lifetimes.

One possible reason could be that the identified flux decays of E ≥ 2 MeV electrons may correspond to
a higher mean geomagnetic activity than the flux decays identified at lower energies. Using higher cho-
rus wave amplitudes corresponding to a slightly higher geomagnetic activity Dst ≈ −30 nT to −40 nT, i.e.,
Bw ∼12–15 pT at L ∼7 [Agapitov et al., 2013; Mourenas et al., 2014], the analytical lifetimes obtained above for
quiet time chorus wave-electron interaction [Mourenas et al., 2012] would be reduced by an additional fac-
tor of 2 as compared to the lower bounds plotted in Figure 5, in much better agreement with observations
for E > 1 MeV. However, the mean Dst over the considered decay periods actually varies from ∼−20 nT to
∼−11 nT from low to high electron energies. Therefore, low-energy decay periods occur at times of slightly
higher geomagnetic activity. This could be due to the increase of lower energy fluxes just after the storm
main phase by injections and rapid heating, while the higher energies take 1 to 2 days more for their fluxes
to increase by progressive acceleration of less energetic electrons. By this time, geomagnetic activity should
have subsided slightly more toward quiet time levels.

The fact that mean lifetimes increase less rapidly with increasing electron energy above E ∼0.5 MeV in
Figures 4 and 5, together with the discrepancy with analytical estimates at E >1.5 MeV, may also be an
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indication that some additional and important physical processes are at work. In this regard, one impor-
tant limitation of geosynchronous measurements stems from the fact that electron fluxes measured at GEO
are close to the outer boundary of the radiation belt, especially in the night sector. As a result, the defor-
mation of the geomagnetic field shape may have strong consequences on losses and radial transport of
high-energy electrons (>1 MeV), while continuous injections of 10–100 keV electrons from the plasma sheet
may reduce apparent losses (as measured by satellites) at low energies.

Let us first consider the well-known deformation of the geomagnetic field at GEO. It has recently been
shown that using a realistic Tsyganenko 89 model for the magnetic field can decrease lifetimes of E ≥ 1 MeV
electrons at L ∼ 6.6 by about a factor of 2 when Kp ∼ 2, as compared to values obtained in a dipolar field,
in the case of resonance with parallel chorus waves (see Figures 3c–3e in the work by Orlova and Shprits
[2014]). Although the latter numerical calculations did not consider oblique waves, a similar reduction of
high-energy electron lifetimes can be expected in this case because strong wave-particle coupling then
occurs at higher latitudes, where the magnetic field gradient should be reduced on the dayside, widening
the latitudinal range of scattering and decreasing lifetimes [Artemyev et al., 2013a]. However, the more likely
situation, where Kp < 2, would probably lead to almost no reduction of the magnetic local time-averaged
lifetimes. Another possibility would be an increased pitch angle diffusion of high-energy (>1 MeV) elec-
trons caused by a strongly reduced magnetic field line curvature in the midnight sector at GEO during
disturbed periods [Artemyev et al., 2013b]. But such effects are expected to occur at GEO only during impor-
tant disturbances, while the present study focuses instead on moderately disturbed periods during the long
recovery phase of storms. Finally, drift orbit bifurcations in the dayside-compressed geomagnetic field can
lead to enhanced outward radial transport of energetic electrons toward the magnetopause even during
relatively quiet periods [Ukhorskiy et al., 2014], which could accelerate energetic electron flux decreases
at GEO.

Actually, radial diffusion probably plays a prominent role in the dynamics of electrons at GEO, potentially
explaining the weak variation of observed lifetimes with energy, as suggested in the work by Su et al. [2012].
Many recent studies have demonstrated that there are positive (negative) radial gradients in low-energy
(high-energy) electron phase space densities, with the transition from positive to negative gradient typically
occurring for a magnetic moment 𝜇 ≈ 200 MeV/G, corresponding at L ∼ 6.6 to E ≈ 0.5–0.2 MeV for pitch
angles 𝛼0 ∼ 40◦–90◦ [e.g., see Chen et al., 2005; Turner et al., 2012]. Radial diffusion should preferentially
scatter particles toward lower phase space density. By continually replacing lost (or inward transported)
low-energy electrons by new ones coming from higher L shells, it can make the observed lifetimes of elec-
trons apparently longer for energies lower than E ∼ 0.5 MeV. Conversely, by scattering higher-energy
electrons toward the magnetopause (replacing energetic ones by less energetic, decelerated ones), it can
reduce the measured lifetimes of E > 0.5 MeV electrons.

A recent analytical formulation for the electric field radial diffusion coefficient DE
LL due to ULF waves has

been provided by Ozeke et al. [2014]. Let us assume a characteristic gradient scale of the phase space density
of ΔL ∼ Δr∕RE ≈ 1 at L = 6.6 (where RE is Earth’s radius). The corresponding loss timescale 𝜏rd of high-energy
(E > 1 MeV) electrons due to outward radial diffusion can be very roughly estimated as 𝜏rd ≈ (ΔL)2∕DE

LL ≈ 20
days to 7 days for Kp = 0 to Kp = 1 (similar values obtain when using Brautigam and Albert [2000] elec-
tromagnetic radial diffusion coefficient). In addition, outward transport should be increased by drift orbit
bifurcations at GEO [Ukhorskiy et al., 2014]. Thus, outward transport could really impose some additional
upper limit 𝜏 < 𝜏rd ≈ 10 days on the lifetimes of E > 1 MeV electrons at geosynchronous orbit. Numer-
ical simulations of the Fokker-Planck diffusion equation including realistic magnetic field configurations,
radial diffusion, chorus-induced losses, and realistic gradients in phase space density will be necessary in the
future to investigate this point.

6. Conclusions

The decay rates of electrons after enhanced fluxes at GEO were found from LANL satellite data for 14 ener-
gies ranging from 24 keV to 3.5 MeV over a long-term period, from 22 September 1989 to 31 December
2009. These results show a good agreement with lifetimes obtained from the SCATHA satellite at L ∼ 6.1–6.5
in the study by Su et al. [2012], as shown by the blue dots in Figure 5. From these decay rates, a relationship
between the average electron lifetime and electron energy was found, where electron lifetime increased
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with energy. This increase is shown to be proportional to the logarithm of the energy up until approximately
500 keV, where the lifetime increase with energy starts to saturate.

For energies below 0.5–1 MeV, the mean statistical satellite results show a good agreement with the ana-
lytical lifetime estimates obtained by Mourenas et al. [2012] for losses due to resonant interaction between
electrons and average (nearly quiet time) oblique chorus waves, since analytical lifetimes increase at a sim-
ilar rate with energy. However, above 0.5–1 MeV, where the statistics show a change in proportionality
between lifetime and energy, the discrepancy between the model and the statistics starts to grow, although
the upper bounds of the measurement error bars still remain within the lower bounds of the model. The
results of this study show that measured mean electron lifetimes increase only by a small amount with
energy above 500 keV, while the lifetimes increase exponentially further in the analytical model. This could
be intrinsically related to our method of identification of lifetimes, which could be biased toward lifetimes
smaller than 10 days at high energy at GEO. Higher initial geomagnetic activity levels are probably required
to produce higher-energy electron flux enhancements, which could lead to higher wave amplitudes and
thus smaller analytical lifetimes than with average, quiet time amplitudes. Moreover, Orlova and Shprits
[2014] have shown that using a realistic, nondipolar magnetic field, more appropriate during somewhat dis-
turbed periods at GEO, could decrease lifetimes at high energies. Finally, it has been suggested that outward
radial diffusion of high-energy electrons might further reduce their lifetimes at GEO, potentially explaining
the “knee” in Figures 4–5. However, other mechanisms could also play a part.
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