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A B S T R A C T

The human mirror neuron system is believed to play an important role in facilitating the ability of athletes to
anticipate the actions of an opponent. This system is often assessed with EEG by measuring event-related
changes in mu (8–13 Hz) sensorimotor oscillations. However, traditional channel-based analyses of this
measure are flawed in that due to volume conduction effects mu and non-mu alpha activity can become mixed.
This flaw means it is unclear the extent to which mu activity indexes the mirror system, as opposed to other
processes such as attentional demand. As a solution to this problem, we use independent component analysis to
separate out the underlying brain processes during a tennis-related action observation and anticipation task. We
investigated expertise-related differences in independent component activity. Experienced tennis players
(N=18) were significantly more accurate than unexperienced novices (N=21) on the anticipation task. EEG
results found significant group differences in both the mu and beta (15–25 Hz) frequency bands in sensorimotor
components, with earlier and greater desynchronisation in the experienced tennis players. In particular, only
experienced players showed desynchronisation in the high mu (11–13 Hz) band. No group differences were
found in posterior alpha components. These results show for the first time that expertise differences during
action observation and anticipation are unique to sensorimotor sources, and that no expertise-related
differences exist in attention modulated, posterior alpha sources. As such, this paper provides a much cleaner
measure of the human mirror system during action observation, and its modulation by motor expertise, than
has been possible in previous work.

1. Introduction

The extent to which future events can be predicted is a key
component of situational awareness that can support skilled perfor-
mance (Endsley, 2000, 1995). Being able to infer the actions of others
is crucial for effective interactions in dynamic environments, such as
interception of a moving target (Wilson and Knoblich, 2005; Zago and
Lacquaniti, 2005). Sport represents an ideal testing ground in which to
study the neurophysiology of human action prediction systems that are
developed with expertise (Makris, 2014). In comparison to less
experienced performers, experienced athletes have an extremely well
developed repertoire of domain-specific actions and a superior ability
to successfully anticipate the actions of opposing players based on
movement kinematics (Rowe and McKenna, 2001; Savelsbergh et al.,
2002; Williams et al., 2011). For example, experienced tennis players
are able to anticipate the direction of an opponent's shot from a wide
range of postural cues and the dynamic positioning of the racket arm
and the trunk (Cañal-Bruland and Williams, 2010; Huys et al., 2009;
Williams et al., 2009).

Prediction of the outcomes of others’ physical actions may be
facilitated by a human mirror neuron system. This system is a network
of brain structures that activate during both the execution and
observation of goal-directed actions (Buccino et al., 2004;
Molenberghs et al., 2012). The human mirror system has been argued
to serve a role in understanding the intentions of other people's actions
by using internal motor representations to form a generative model of
how an action is performed to predict the outcome of the observed
kinematics of others (Kilner, 2011; Kilner et al., 2007; Neal and Kilner,
2010; Rizzolatti et al., 2014). The mirror system may facilitate superior
anticipation ability in athletes (Balser et al., 2014b; Wright et al., 2013,
2011, 2010). For example, superior anticipation ability in professional
basketball players is associated with greater activation of the motor
cortex during observation of basketball free throws (Aglioti et al.,
2008).

There is evidence that mirror system activity can be indexed using
EEG by measuring event-related power changes in mu (8–13 Hz) and
beta (15–25 Hz) cortical sensorimotor oscillations (Pineda, 2005).
Both the above changes are believed to be generated primarily in the
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pre-motor cortex (Babiloni et al., 2015; Meirovitch et al., 2015); a
known mirror system region, as shown by a meta-analysis that found
the pre-motor cortex to be one of several regions that reliably activated
during both the execution and observation of actions (Molenberghs
et al., 2012). Furthermore, ~10 Hz and ~20 Hz event-related desyn-
chronisation (ERD) occurs during both the execution and observation
of goal-directed actions, supporting the hypothesis that they represent
mirror system activity (Fox et al., 2016; Järveläinen et al., 2004;
Muthukumaraswamy et al., 2004; Muthukumaraswamy and Johnson,
2004). Mu activity can be divided into functionally specific subtypes.
During the execution of different movement types, low frequency mu
(8–10 Hz) shows a widespread movement-type non-specific activity
pattern, which was suggested to be indicative of a somatotopically non-
specific activation, and related to more general attentional processes
(Pfurtscheller et al., 2000). Higher frequency mu (11–13 Hz) on the
other hand shows a focused, movement-type specific pattern suggest-
ing activation of somatotopically specific cortical networks
(Pfurtscheller et al., 2000) during goal directed movements (Fumuro
et al., 2015). Thus far, researchers have only focused on action
execution, however on the basis of mirror system principles it would
be predicted that these findings should be found in observation tasks.
Furthermore, while beta activity is believed to play a similar functional
role to mu, some researchers have suggested that beta activity is related
to movement planning and preparation, whereas the primary function
of mu is attentional allocation towards biological motion stimuli
(Brinkman et al., 2014).

We investigate whether the degree of motor expertise one has in a
real-world skill modulates mirror system activity during action ob-
servation. We investigated this question by comparing mirror system
activity in experienced athletes and less experienced novices on a sport-
specific action observation and anticipation task. Previously, research
on expert dancers has shown greater mu and beta ERD in experts
compared to novices during action observation (Orgs et al., 2008).
Relatedly, other work has examined 8–10 Hz mu ERD during the
observation of table tennis shots in participants of varying levels of
expertise. Experienced players had significantly greater 8–10 Hz ERD
when compared with less experienced and non-players (Wolf et al.,
2014). However, in these two studies the authors averaged power
values over large 1 s bins, meaning that fine-grained statistical analysis
of group differences over time was not possible.

Typically, mirror system activity has been assessed using EEG
channel data from electrodes positioned over sensorimotor areas (e.g.
C3 and C4). However, due to volume conduction effects, there is no
guarantee that activity recorded at the scalp electrode will have been
generated in the cortical region directly under the electrode. This
measurement issue is further complicated by the fact that mu oscilla-
tions occur in the same frequency band as posterior alpha (8–13 Hz)
activity, and it has been shown that putative mu activity can become
contaminated with non-mu alpha activity (Braadbaart et al., 2013;
Perry et al., 2010). While task design can help reduce potential non-mu
alpha contamination (Hobson and Bishop, 2016), the fact remains that
EEG electrodes record activity from a mixture of sources, leading to
doubts that activity recorded from sensorimotor electrode sites are
exclusively measuring the activity of the mirror system, and may simply
reflect differences in attentional focus (Perry and Bentin, 2009). The
implication for research into expertise related differences in mirror
system activation using mu ERD measures is that differences could be
due to greater attention in experienced groups, rather than greater use
of the mirror system.

Blind source separation techniques, such as independent compo-
nent analysis (ICA), may offer a potential solution to this problem. ICA
is widely used for separating artefacts from scalp-recorded EEG data
(Jung et al., 1998), and is becoming increasingly popular as a technique
for separating and studying independent brain processes (e.g.
Gramann et al., 2010; Makeig et al., 2002, 2004). ICA identifies
temporally independent signal sources in multi-channel EEG data as

well as their pattern of projection to the scalp surface. Component scalp
maps have been shown to be dipolar, and as such many EEG
components have scalp maps that closely match the projection of a
single equivalent dipole in the brain (Debener et al., 2005b; Delorme
et al., 2012; Onton et al., 2006). The location of this dipole can then be
estimated within a standard head model such as that of the Montreal
Neurological Institute (MNI), giving a better spatial estimate of where
component activity is being generated. Therefore, ICA can be used to
separate sensorimotor mu from posterior alpha into distinct compo-
nents (Makeig et al., 2004). Further analysis of component ERD could
then be performed on the component corresponding to sensorimotor
mu activity that will be free of contamination from activity originating
in other cortical regions, allowing for a more precise estimate of hMNS
activity.

By taking an ICA approach, the current work uses a novel method to
investigate the role of cortical sensorimotor oscillations in facilitating
the anticipation of actions in experienced and less experienced tennis
players. To our knowledge no researchers have directly compared
changes in high and low mu activity during action observation and
anticipation in groups with differing levels of skill and experience with
the actions being observed. We chose tennis as the vehicle to address
the main questions because groundstrokes provide a very clear ‘critical
period’ at which an occlusion can be made (at racket-ball contact) to
assure only kinematic cues are available to participants. Furthermore,
other researchers have used neuroimaging to successfully investigate
expertise differences in neural activity using tennis stimuli (Balser
et al., 2014a, 2014b; Cacioppo et al., 2014).

We hypothesized that during action observation prior to anticipa-
tion, experienced and less experienced players would engage in
different cognitive strategies, with experienced players using their
own motor expertise to aid in the understanding of the opponent's
intention. In contrast, the less experienced participants would not have
the observed motor acts in their repertoire, so would not be able to rely
on their own motor expertise to derive action intention. This difference
in processing would be reflected by earlier and greater mu and beta
ERD in the experienced group, compared to the less experienced group.
A secondary hypothesis was that group differences would arise
differently in the low and high mu frequency band. As low mu is
related to a general movement activity and allocating attentional
resources to motion, both the experienced and less experienced groups
were predicted to show ERD. In the high mu band, only the
experienced group was predicted to show ERD because this activity is
related to the access of movement-specific knowledge (Fumuro et al.,
2015) which will be available to the experienced group but not to the
less experienced novices.

2. Methods

2.1. Participants

Altogether, 18 experienced tennis players (6 females, Mage=21.12,
SD=3.16) were recruited from local university tennis teams. The
experienced players reported an average of 12.94 (SD=4.34) years of
tennis experience, playing on average 7.65 (SD=4.08) hours per week,
and had received formal instruction for an average of 8.06 (SD=2.95)
years. Moreover, 21 psychology undergraduate students were recruited
from the lead institution (14 females, Mage=22.60, SD=6.63) as less
experienced participants. This latter group reported an average of 1.70
(SD=3.05) years of tennis experience, playing on average 0.90
(SD=1.29) hours per week, with an average of 0.90 (2.31) years of
formal instruction. All participants self-reported playing right-handed.
As a result of high levels of noise during the recording period, data
from two participants (one experienced and one less experienced) were
unable to be used in the EEG analysis. Therefore, for the EEG analysis,
the total sample size was 37 (17 experienced players, 20 less experi-
enced novices).
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2.2. Materials

The anticipation video was filmed using a tripod mounted
Panasonic HC-X920 camcorder. The video was initially recorded at
1920×1080 pixels, reduced to 854×480 pixels during editing due to
computational limitations. The video was recorded at 25 frames per
second with a 16:9 aspect ratio. The camera was positioned on the ‘T’
where the centre service line meets the service line. The video footage
was edited using iMovie 11 (Apple Inc., USA). Two skilled left-handed
players featured in the video. One player was a qualified Lawn Tennis
Association (LTA) Level 4 ‘senior performance’ coach, defined as being
able to coach national level players. The other player was a qualified
LTA Level 2 coaching assistant, defined as being able to coach adult
beginner players (https://www.lta.org.uk/coach-teach/coach-
development/coaching-pathway/). Two left-handed coaches were
employed for recording the stimuli as they were the only two
members of coaching staff of sufficient expertise available at the
tennis centre where the stimuli were recorded. The incongruence
between the handedness of the players used for the stimuli and the
handedness of the participants is unlikely to affect hMNS activity, as
other studies have shown motor representations activated during
action observation are effector independent (Sartori et al., 2013).

For the recording, one of the players stood positioned on the back
line of the court and was fed balls by the second player, who was out of
sight of the camera. The position of the camera meant that shots were
filmed approximately from the point-of-view of an opponent player
positioned on the service line (Fig. 1). The player being filmed
performed both forehand and background groundstrokes while re-
maining at the back of the court. The players were instructed to
perform prototypical shots clearly aimed to the left or right hand side of
the court. Each player was recorded hitting 200 shots. The total of 400
shots contained a mixture of forehand and backhand groundstrokes.

The video was segmented into individual shots. Two of the original
blocks of fifty trials were removed due to balls hitting the tripod during
filming, causing discrepancies within these blocks regarding the
camera angle. Shots that hit the net were removed, as were shots
where the ball landed in the tramlines (which had been noted by an
observer during filming). Finally, each remaining clip was judged as to
the final position of the ball. Any shots that went down the middle of
the court, left the camera's field-of-view notably early, or were
ambiguous regarding shot direction were removed. Once suitable shots
had been identified, they were occluded 40 ms (1 frame) prior to
racket-ball contact. This occlusion point was selected as previous
research suggests the largest expertise difference occurs at this occlu-
sion point (Rowe et al., 2009).

Two behavioural experiments were run (not reported) to identify
trials that discriminated experienced and less experienced participants

based on their anticipation accuracy. Based on this initial pilot, 176
trials were selected. The trials were presented on a PC monitor with the
sound turned off. The experiment was controlled from a computer
using a custom MATLAB (The Mathworks inc, USA) script designed
using PsychToolbox 3 (Kleiner et al., 2007). For each trial, participants
were required to indicate via key press which direction they predicted
the ball would go. This response was recorded and used to calculate
anticipation accuracy as the percentage of correct trials.

2.3. Procedure

Trials were presented on a 19 in. Viglen LCD monitor with a spatial
resolution of 1280×1024 pixel display with a temporal resolution of
60 Hz. Participants conducted the task individually in a quiet, dar-
kened room in a single session, sitting 57 cm from the monitor in a
comfortable chair. In order to limit movement artefacts, participants
were requested to remain as still as possible during data collection, and
use the breaks provided to change their posture.

Participants gave informed consent and were instructed on how to
perform the task. They were presented with 10 practice trials (using
shots not presented in the experimental trials). The 176 experimental
trials were split into 4 blocks of 44 trials each, with a break between
each block. Each trial lasted 6 s (4 s baseline, 2 s event), with a 2 s
inter-trial interval. The experimental session took approximately
30 minutes to complete. Once the experimental session had finished,
participants completed a questionnaire regarding their handedness and
tennis experience.

2.4. EEG data acquisition

EEG was recorded in an electrically shielded room using an
ActiveTwo headcap and a Biosemi ActiveTwo system (Biosemi,
Amsterdam, The Netherlands). EEG data were amplified with a
sampling rate of 2048 Hz, and stored using ActiView software
(Biosemi, Amsterdam, The Netherlands). Data were collected from
128 channels using active Ag-Agcl tipped electrodes. Two additional
electrodes, common mode sense (CMS), and driven right leg (DRL)
replaced traditional reference and ground electrodes during recording.
DC offset voltages were kept below ± 25 mV.

2.5. EEG preprocessing

Initially, data were downsampled to 512 Hz using Decimator soft-
ware (Biosemi, Amsterdam, The Netherlands). All pre-processing was
performed in EEGLAB (Delorme and Makeig, 2004), an open source
toolbox for EEG data analysis in the MATLAB environment.

Data were imported and referenced to the vertex electrode, and a

Fig. 1. An example of a single trial. A – Baseline period of 4000 ms showing a still image of the first frame of the trial video. B – Trial begins by video playing, each trial lasting
approximately 1500 ms. C – Trial ends on the frame prior to racket-ball contact. D – Participants anticipate shot direction by key press. Epochs were time-locked to the video start, and
lasted 1500 ms. The baseline period was 1000 ms prior to stimulus onset.
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1 Hz high-pass filter was applied in order to remove low-frequency
drift. Bad channels (exhibiting flatlining, evidence of electrode brid-
ging, or excessive high-frequency noise), and non-eye blink (non-
stereotyped high frequency noise) artefacts were removed manually
from the continuous EEG data, with break event markers placed in the
cleaned data to indicate where data had been rejected. The cleaned data
was re-referenced to an average electrode. Independent component
analysis (ICA) was then run on the cleaned, continuous EEG data (see
below).

Epochs were created with the start of the video at 0ms. The epoch
ended 1500ms post-stimulus onset. Any epochs containing break event
markers were rejected. There was no difference between the experi-
enced (M =150, SD=15.90) and less experienced (M=154, SD=12.38)
groups in terms of total number of accepted epochs; t (35)=1.03,
p=.31, d=0.28. The event period of the epoch captured the observation
period while participants were watching the shot. The baseline period
started at −1000 ms, and featured the still image of the first frame of
the upcoming trial. An example epoch of stimulus presentation is
displayed in Fig. 1.

2.6. Independent component analysis

The EEG data were decomposed into statistically maximally
independent components (ICs) using the infomax algorithm in
EEGLAB. The initial learning rate was set to 10E-4, and training was
stopped when the learning rate fell below 10E-6. Following decom-
position, an equivalent current dipole model was computed for each IC
by using the DIPFIT Autofit routine in EEGLAB. Dipoles were localized
within a three-shell boundary element model (BEM) of the Montreal
Neurological Institute (MNI) standard brain. ICs that had a dipole with
a residual variance smaller than 15% were selected for further analysis.
This procedure led to an average of 18 components being selected per
participant, and the groups did not differ in terms of number of ICs
being selected; t (35)=0.51, p=.61, d=0.17. (Experienced; M=17.24,
SD=6.89; less experienced; M=18.31, SD=5.56).

In order to facilitate group level analyses, all selected ICs were
clustered based on their scalp map, dipole location, power spectrum,
and event related spectral perturbation (ERSP). Clustering was per-
formed within EEGLAB using the K-means algorithm, which produced
clusters with the greatest possible distinction by minimizing variability
within and maximising variability between clusters. ICs with a distance
larger than three standard deviations from the mean of any cluster
centroid were removed from the analysis. A total of 10 clusters were
created. Each cluster was then inspected regarding the total number of
participants contributing to a cluster, and the number of individual
components that each participant contributed to a cluster. In cases
where a participant contributed multiple ICs to one cluster, the IC
whose dipole showed the lowest residual variance was selected
(Grandchamp et al., 2012).

2.7. EEG data analysis

The main analyses were conducted on IC clusters (see Fig. 2). The
event related spectral perturbation (ERSP) is a measure of average
dynamic changes in amplitude of the broad band EEG frequency
spectrum as a function of time relative to an experimental event
(Makeig, 1993). ERSP in the 4–50 Hz frequency range was computed
in EEGLAB using Morlet wavelet decomposition, applied over 200
overlapping windows, starting with a 3 cycle wavelet at the lowest
frequency (Delorme and Makeig, 2004). The window size was
1115.23 ms wide, overlapped by 1105.815 ms, giving a time resolution
of 9.415 ms. ERSP values were transformed into log-units and
converted to decibel units (dB), by multiplying the log ratio with the
factor 10 (Grandchamp and Delorme, 2011). Therefore, ERSP ex-
presses the relative change in power during the event period in dB
compared with the baseline (which in this case is the still video).

Baseline correction was conducted at the single trial level. Reduction
power relative to the baseline is displayed in blue, with increases in
power relative to the baseline displayed in red.

2.8. Statistical analysis

To assess for significant differences in ERSP time/frequency data
between the experienced and less experienced groups, bootstrapped
significance tests were performed. The potential for spurious significant
findings being generated by multiple comparisons was controlled using
the false discovery rate (FDR). The results of these tests are visualised
on a time-frequency plot indicating points where significant differences
at the p < .01 level arose. Each time/frequency plot presents data from
a single independent component.

ERSP values averaged across both frequency band and time were
also calculated. This process created a single baseline ERSP value, and
a single event ERSP value. The overall ERSP value was derived by
subtracting the event ERSP from the baseline ERSP (Pfurtscheller and
Lopes da Silva, 1999). A negative ERSP value indicates overall power
reduction (ERD) across the whole event compared to baseline, and a
positive ERSP value indicates overall power increase (ERS). Group
differences in ERSP values were calculated using two-way mixed
ANOVAs, with group (experienced and less experienced) as a be-
tween-participants factor, and hemisphere (left and right) as a within-
participants factor. The aims of this approach was to aid visualisation
and to enable direct comparison with other published reports using the
same procedure (e.g. Wolf et al., 2014).

3. Results

3.1. Behavioural results

There was a significant effect of experience level on anticipation
accuracy, with the experienced players (M=60.94%, SD=6.83) respond-
ing significantly higher accuracy scores than the unexperienced players
(M=48.52%, SD=5.97), t (37)=6.15, p < .001, d=2.01. There were no
gender (p=.31) or age (p=.55) differences in accuracy.

3.2. Component clustering

From the 10 clusters computed, six were identified as reflecting
clear brain processes, based upon the cluster properties (dipole
location, scalp map, power spectrum, and ERSP). These clusters are
displayed in Fig. 2. Sensorimotor clusters were identified based upon
characteristic peaks in the power spectrum at ~10 and ~20 Hz. A
distinct left and right sensorimotor cluster were found, and were
distinguished by scalp maps showing projections to left and right
central areas respectively. Dipole centroid locations were localised to
sensorimotor areas (left sensorimotor Talariach co-ordinates: X=−19,
Y=−13, Z=53, Brodmann area 6; Right sensorimotor Talariach co-
ordinates: X=34, Y=0, Z=47. Brodmann area 6).

Other clusters reflecting brain processes were found. First, a frontal
cluster showed low frequency theta (~4 Hz) and beta (~20 Hz) peaks in
the power spectrum. The scalp map showed a frontal projection, with
the dipole centroid located in Brodmann area 8 (Talairach co-ordi-
nates: X=−12, Y=30, Z=38). Three separate clusters reflected ongoing
non-mu alpha processes, and were identified based on a clear 10 Hz
peak in the power spectrum. One posterior cluster was identified
(Talariach co-ordinates: X=5, Y=−61, Z=27; Brodmann area 31).
Finally, left (Talariach co-ordinates: X=−26, Y=−78, Z=−11;
Broadmann area 19), and right (Talariach co-ordinates: X=26,
Y=−79, Z=−10) occipital alpha clusters were found.

Of the four clusters not selected for further analysis (Fig. 2B), two
reflected non-brain artefacts. These artefacts were judged based on the
smoothly decreasing power spectrum and far frontal projection of the
scalp map. The final two clusters showed scalp maps resembling
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sensorimotor activity, however the dipole locations did not support a
sensorimotor source. As it was unclear what brain process these
clusters were related to, they were not analysed further.

3.3. EEG results

3.3.1. Group differences during action observation
It was hypothesized that during action observation, greater ERD in

sensorimotor areas would be found in the experienced group when
compared to the less experienced group. Figs. 3 and 4 display group

differences in the two sensorimotor component clusters during action
observation prior to anticipation. In the left sensorimotor cluster,
bootstrapped significance tests showed that group differences arise
relatively early in the epoch, with differences occurring approximately
100 ms post-stimulus onset (Fig. 3). In the right sensorimotor cluster,
similar results were found, though group differences appeared to occur
slightly later in the epoch (Fig. 4).

Across the whole epoch, ERD was greater in the experienced group.
A two-way mixed ANOVA showed a significant main effect of group on
mu ERD; F (1, 30)=17.07, p < .001, np2=.36. ERD was greater in the

Fig. 2. A Dipole centroid location estimate for each independent component (IC) cluster within a three-shell boundary element model (BEM) of the Montreal Neurological Institute
(MNI) standard brain. The projection of the dipole's electric field onto the scalp is shown in each scalp map. For each IC cluster, the number of participants (Ss) contributing to the
cluster, and the mean residual variance (res. var.) are displayed above each scalp map. B Scalp maps for the four IC clusters not selected for further analysis. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.).
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experienced group (Left hemisphere; M=−2.46 dB, 95%
CI=−3.07 dB–−1.85 dB; right hemisphere; M=−1.11 dB, 95%CI=
−1.54 dB–−0.68 dB), compared to the less experienced group (Left
hemisphere; M = −0.68 dB, 95%CI = −1.55 dB–0.19 dB; right hemi-
sphere; M=0.21 dB, 95%CI=−0.13 dB–−0.53 dB). There was also a
significant main effect of hemisphere; F (1, 30) = 8.62, p < .01, np2

=.22, with greater ERD found in the left (M=−1.67 dB, 95%
CI=−2.48 dB −1.29 dB), compared to the right hemisphere
(M=−0.49 dB, 95%CI= −0.83 dB–−0.15 dB). The group x hemisphere
interaction was not significant; F (1, 30)=0.85, p=.37, np2=.03. These
results are presented in Figs. 5A, C and 6A, C.

In the beta band, there was a significant main effect of group on beta
ERD; F (1, 30)=23.56, p< .001, np2=.44, with greater ERD in the
experienced group (Left hemisphere; M=−1.57 dB, 95%CI=−1.90 dB –

−1.24 dB; right hemisphere; M=−1.01 dB, 95%CI=−1.24 dB–−0.78 dB),
compared to the less experienced group (Left hemisphere; M=−0.71 dB,
95%CI=−1.08 dB–−0.34 dB; right hemisphere; M=−0.18 dB, 95%

CI=−0.38 dB–−0.02 dB). The main effect of hemisphere was significant;
F (1, 30)=9.48, p< .01, np2=.24, with greater ERD in the left hemisphere
(M=−1.20 dB, 95%CI=−1.53 dB–−0.86 dB) compared to the right
(M=−0.60 dB, 95%CI=−0.80 dB–−0.39 dB). There was no significant
interaction effect; F (1, 30)=0.14, p=.72, np2=.01. These results are
presented in Figs. 5B, D, and 6B, D.

3.3.2. Differential activity in low and high mu frequency bands
Expertise-related differences in ERD of low and high mu activity

were hypothesized. Visual inspection of the ERSP time/frequency plots
(Figs. 3D–E and 4D–E) suggested there to be differences in activity in
the low (8–10 Hz) and high mu frequency range (11–13 Hz) (Figs. 3D–
E and 4D–E). These differences are shown in Figs. 5E–H and 6E–H.

In the low mu band, there was evidence of ERD in both groups,
though the magnitude was greater in the experienced group. A two-way
mixed ANOVA showed a significant main effect of group on low mu
ERD across the whole epoch; F (1, 30)=17.82, p < .001, np2=.37, with

Fig. 3. Left sensorimotor component cluster. A Cluster scalp map. B Dipole locations for each participant contributing to the cluster, with the centroid location displayed in red. C
Component cluster power spectrum (4–50 Hz). D-E ERSP time/frequency plots for experienced (D) and less experienced (E) groups. F Significant differences between experienced and
less experienced group time/frequency plots at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled for with the false discovery rate (FDR). μ=mu,
β=beta.
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greater ERD in the experienced group (Left hemisphere; M=−3.57 dB,
95% CI= -4.49 dB - -2.65 dB right hemisphere; M=−1.70 dB, 95%
CI=−2.35 dB–−1.05 dB), compared to the less experienced group (Left
hemisphere; M=−1.03 dB, 95%CI = -2.03 dB–−0.03 dB; right hemi-
sphere; M=−0.04 dB, 95%CI=−0.44 dB–0.36 dB). There was also a
significant main effect of hemisphere; F (1, 30)=10.29, p < .01,
np2=.26, with greater ERD found in the left (M=−2.46 dB, 95%
CI=−3.37 dB–−1.54 dB) compared to the right hemisphere
(M=−0.92 dB, 95%CI=−1.38 dB–−0.45 dB). The group x hemisphere
interaction was not significant; F (1, 30)=1.81, p=.19, np2=.06.

Only the experienced group showed evidence of ERD in the high mu
band. A two-way mixed ANOVA showed there was a significant main
effect of group; F (1, 30)=9.98, p < .01, np2=.25, with greater ERD in
the experienced group (Left hemisphere; M=−1.17 dB, 95%CI =
−1.52 dB–−0.82 dB; right hemisphere; M=−0.43 dB, 95%
CI=−0.69 dB–−0.17 dB), compared to the less experienced group
who showed no evidence of ERD occurring (Left hemisphere;
M=−0.27 dB, 95%CI = -1.00 dB - 0.46 dB; right hemisphere;

M=0.50 dB, 95%CI=0.18 dB–0.82 dB). The main effect of hemisphere
was significant; F (1, 30)= 4.90, p < .05, np2=.14, with greater ERD in
the left hemisphere (M=−0.74 dB, 95%CI=−1.32 dB–−0.16 dB) com-
pared to the right (M=0.01 dB, 95%CI=−0.27 dB–0.28 dB). There was
no significant interaction effect; F (1, 30)=0.02, p=.90, np2 < .01.

3.3.3. Group differences in other component clusters
ERSP plots for both the experienced and less experienced groups in

other component clusters are displayed in Fig. 7. Bootstrapped
significance testing did not reveal any significant group differences in
ERSP between 4–50 Hz in any of the component clusters (all not
significant at p > .05).

3.3.4. Channel analysis
In order to compare the findings reported here with existing

literature, the same set of analyses as reported above was performed
on channel data from electrodes C3 (positioned above left motor
cortex) and C4 (positioned above right motor cortex), commonly used

Fig. 4. Right sensorimotor component cluster. A Cluster scalp map. B Dipole locations for each participant contributing to the cluster, with the centroid location displayed in red. C
Component cluster power spectrum (4–50 Hz). D-E ERSP time/frequency plots for experienced (D) and less experienced (E) groups. F Significant differences between skilled and less
experienced group time/frequency plots at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled for with the false discovery rate (FDR). μ=mu, β=beta.
(For interpretation of the references to color in this figure legends, the reader is referred to the web version of this article.).
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sites for investigating mu rhythm activity (e.g. Cannon et al., 2014;
Wolf et al., 2014). All group based analyses produced similar results to
those reported above indicating group differences between experienced
and less experienced participants were apparent in both the EEG
channel data and the independent components. These data are shown
in the supplementary information.

4. Discussion

We examined differences in mirror system activity during sports-
related action observation prior to making an anticipatory judgment in
experienced and less experienced tennis players. We hypothesized that
greater mu and beta ERD would be observed in experienced players
during action observation, reflecting greater use of the mirror system.

Fig. 5. Relative power changes in mu and beta bands in the left sensorimotor component cluster. A-B. Relative power changes in the mu (8–13 Hz) (A) and beta (15–25 Hz) (B)
frequency bands. Shaded areas represent 95% confidence intervals. C-D Relative power changes over the whole event period relative to baseline in the mu (8–13 Hz) (C) and beta (15–
25 Hz) (D) frequency bands. Error bars represent 95% confidence intervals. E-F. Relative power changes in the low mu (8–10 Hz) (E) and high mu (11–13 Hz) (F) frequency bands.
Shaded areas represent 95% confidence intervals. G-H Relative power changes over the whole event period relative to baseline in the low mu (8–10 Hz) (G) and high mu (11–13 Hz) (H)
frequency bands. Error bars represent 95% confidence intervals. **=p < .01, *=p < .05.
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Behavioural results showed a large group difference in anticipation
accuracy, providing construct validity and satisfying criteria for this
test being informative on the processes that underlie skilled anticipa-
tion (Ericsson and Smith, 1991; Williams and Ericsson, 2005). As such,
it was possible to investigate differences in neural activity between
groups during the action observation period. The experienced group

showed significantly greater ERD in both the mu and beta frequency
bands during action observation, compared to the less experienced
group. These results are in line with previous research (Aglioti et al.,
2008; Balser et al., 2014b; Wright et al., 2013, 2011, 2010), and
suggest a stronger perception-action coupling in the mirror system of
experienced tennis players. This coupling may facilitate superior

Fig. 6. Relative power changes in mu and beta bands in the right sensorimotor component cluster. A-B. Relative power changes in the mu (8–13 Hz) (A) and beta (15–25 Hz) (B)
frequency bands. Shaded areas represent 95% confidence intervals. C-D Relative power changes over the whole event period relative to baseline in the mu (8–13 Hz) (C) and beta (15–
25 Hz) (D) frequency bands. Error bars represent 95% confidence intervals. E-F. Relative power changes in the low mu (8–10 Hz) (E) and high mu (11–13 Hz) (F) frequency bands.
Shaded areas represent 95% confidence intervals. G-H Relative power changes over the whole event period relative to baseline in the low mu (8–10 Hz) (G) and high mu (11–13 Hz) (H)
frequency bands. Error bars represent 95% confidence intervals.***= p < .001, **=p < .01.
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anticipation ability.
We found that group differences were observed only in sensor-

imotor component clusters, and not in clusters that reflected parietal
alpha or visual activity in the occipital cortex. This finding suggests that
experience related differences in neural activity during this task were
unique to sensorimotor areas. This finding also suggests that our
results are not solely due to differences in attention between the two
groups. If this were the case, it would be expected that significant group

differences would occur in other clusters showing a clear alpha
component, as posterior alpha is modulated by attentional demand
(Klimesch, 1999; Sauseng and Klimesch, 2008). Therefore, our results
show that mu and beta activity from sensorimotor locations are key in
distinguishing experienced from less experienced participants during
action observation. Whilst this task did not find any evidence for a role
of alpha ERD in action anticipation, it is plausible that group
differences could emerge in a more challenging task. For example,

Fig. 7. Scalp map, dipole location, power spectrum, and ERSP for experienced and less experienced group for A frontal IC, B posterior alpha IC, C left occipital alpha IC, and D right
occipital alpha IC.
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increasing task complexity e.g. by including more information on which
to base the anticipation, or increasing the number of response options,
may lead to greater alpha ERD in unexperienced participants as they
begin to find the task more demanding. On the other hand, experienced
player's would be able to cope with the increased demands, due to their
domain specific expertise, and so would show less alpha ERD (Del
Percio et al., 2009).

Only the experienced group showed overall ERD in the high mu
band (11–13 Hz), with no ERD in the less experienced group. This
difference could reflect the activation of specific motor representations
in the experienced group, which are unavailable to the less experienced
participants. This suggestion is supported by evidence showing that
high mu activity indicates activation of somatotopically specific cortical
networks, relevant to specific goal-directed actions being performed
(Fumuro et al., 2015; Pfurtscheller et al., 2000). By extending those
previous findings into action observation in the present work, our
finding implies that experienced players were able to access their
specific motor representation for the shot being observed, and use this
to understand the information present in the kinematics.

In the low mu band (8–10 Hz), significantly greater magnitude of
ERD was observed in the experienced group. During action execution,
low mu is believed to reflect general attentional processes and non-
specific motor behaviour. Relating this to action observation, ERD in
the less experienced group would be expected as they are still able to
process biological motion for an action without having specific motor
expertise. It is possible then that low mu ERD in the less experienced
group reflects general orientation to, and recognition of, biological
motion. Even so, the experienced group still showed greater ERD,
implying that they possess greater knowledge of general movement
patterns (Romeas and Faubert, 2015).

Differences in the beta band appeared similar to the mu band, with
a greater magnitude of ERD in the experienced group. Whilst these
results do not point to any clear differences between mu and beta
activity, one possibility is that beta activity indexes the degree of
uncertainty in the participants’ understanding. Recent published
reports suggest that beta band activity plays a role in the execution
of forward models (Palmer et al., 2016). These are internally generated
motor models that estimate the end outcome of an action faster than is
possible by external feedback (Kilner et al., 2007; Miall, 2003; Wolpert
and Miall, 1996), and have been hypothesized to allow for the
anticipation of another's action (Yarrow et al., 2009). For instance,
research into motor preparation found the amount of uncertainty of an
action's goal affected the degree of beta power changes, with greater
ERD associated with greater response certainty (Tzagarakis et al.,
2015, 2010). It may be that greater beta ERD in the experienced group
reflects greater certainty as to the outcome of the action being
observed, due to their superior motor expertise. It is worth noting that
the level of uncertainty is this task was relatively low. As the
anticipation task required a selection between two outcomes, there
was a 50% chance of guessing correctly. Therefore, greater group
differences between experienced and less experienced athletes may
become apparent in a task where a greater number of response options
are available. It would be expected that experienced players should still
show a higher degree of certainty due to their superior ability to
understand their opponent's intention. Unexperienced players would
however become less certain as the chances of guessing correctly are
reduced.

Group differences in the beta band appeared clearer in the analysis
on ICs compared to the channel analysis (see supplementary materi-
als). One possible explanation for this is that the IC analysis has
improved source separation capability compared to analyses based on
EEG channels. In the channel data, volume conduction makes it
possible that beta activity recorded at the central electrodes could have
multiple different generator sources. If group differences only occur in
sensorimotor areas, these differences may be obscured by beta activity
generated by different sources, which do not differ between groups.

When using the ICs for analysis, it assures that only beta activity
generated from a sensorimotor site is analysed. Therefore, a cleaner
measure of sensorimotor generated beta activity is analysed, making
group differences clearer. Other work has shown that analysis of ICs
can provide a clearer measure of neural activity than analyses of EEG
channel data (e.g. Debener et al., 2005a).

Despite the use of ICA, source localisation with EEG is imprecise,
only providing an estimate as to the generator of the activity. As such
we were unable to determine whether mu/beta activity arose in the
motor or sensory cortex. However, dipole location estimates for the two
sensorimotor clusters analysed here do correspond to the findings of
fMRI studies that have shown sensorimotor areas to exhibit greater
activations in experienced athletes (Balser et al., 2014b; Wright et al.,
2013, 2011, 2010). It is important that researchers work to further
improve the accuracy of the localisation of mu and sensorimotor beta
activity, and simultaneous EEG-fMRI may be one way of achieving this
(Huster et al., 2012). Although precise source localisation was not
possible in the current study, precision was sufficient to clearly
distinguish and separate sensorimotor locations from posterior and
occipital locations.

We examined mirror system activity during action observation, but
did not have an action execution condition. It may be that the neural
activity during action observation would differ if subsequent execution
is required to respond to the observed action. While such a design was
not possible here, due to movement artefacts that would be present in
the EEG data, such studies remain an important area for future
research (Walsh, 2014). Recent advances in mobile brain/body ima-
ging (Gramann et al., 2011), and mobile EEG applied to sport (Park
et al., 2015), may make such studies possible in the future.

One issue when studying real world experts is that it is not possible
to fully dissociate motor expertise from visual familiarity. As a function
of their expertise, the tennis players recruited will have developed
highly defined motor plans required for playing tennis at a high level.
They also will have a high degree of visual familiarity of observing
tennis shots. Other researchers have shown the mu and beta activity
during action observation are not modulated by the amount of visual
familiarity one has (Cannon et al., 2014). Furthermore, researchers
comparing experienced players with experienced ‘watchers’ (such as
spectators, referees, and coaches) have shown that only players are able
to use motor-specific knowledge to anticipate, and show higher
accuracy than experienced watchers (Aglioti et al., 2008; Williams
and Davids, 1995). These findings make it unlikely that our results are
due to differences purely in visual familiarity between the two groups.
As such, our results suggest that experienced tennis players are able to
use their own motor expertise and activate stored motor representa-
tions of specific actions being observed, that then may play a role in
aiding the accuracy of subsequent anticipation.

We have shown that neural activity in sensorimotor areas occurs
during the observation of other people's actions, supporting the theory
that areas involved in executing actions are also activated during action
observation. Furthermore, we report that the level of expertise one has
in the observed action modulates this sensorimotor activity. We extend
the findings of previous work by using ICA, to show for the first time
that these expertise differences are unique to sensorimotor sources,
and that no expertise-related differences exist in attention modulated,
posterior alpha sources. As such, we provide a much cleaner measure of
the human mirror system during action observation, and its modula-
tion by motor expertise, than has been possible in previous work.
Whilst tennis was the specific domain studies here, we predict that
similar processes underlie skilled anticipation both in other similar
sports and dynamic real-world contexts.
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