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The academic community could make rapid progress on quantifying the impacts 10 

of limiting global warming to 1.5 degrees, but a refocusing of research priorities 11 

is needed in order to provide reliable advice. 12 

 13 

The decision on whether to increase the ambition of climate change mitigation efforts 14 

to stabilise temperatures at 1.5oC rather than 2oC above pre-industrial is arguably one 15 

of the most momentous to be made in the coming decade, and should be informed by 16 

sound scientific analysis. In its Paris Agreement of 2015 the Conference of the Parties 17 

of the United Nations Framework Convention on Climate Change (UNFCCC) invited 18 

the Intergovernmental Panel on Climate Change (IPCC) to prepare a special report in 19 

2018 “on the impacts of global warming of 1.5oC above pre-industrial levels and 20 

related greenhouse gas emission pathways.” The IPCC have now accepted this, 21 

however, there is currently a paucity of scientific analysis of the relative risks 22 

associated with this outcome, particularly regarding the role of extreme weather.  To 23 

inform the proposed IPCC assessment, research will therefore need to be undertaken 24 

immediately, over the period 2016 to 2017. 25 

 26 

A two-year review of the adequacy of the 2°C goal has just been completed.1 While 27 

this included a comparison to 1.5°C, the lack of research to inform that comparison 28 

was repeatedly highlighted during the UNFCCC expert dialogue2. Specific research 29 

into the impacts of 2°C has increased in recent years, as well as studies into 4°C and 30 

beyond3,4, but there has been very little attention to 1.5°C (notable exceptions include 31 

refs 5 and 6). The widely held assumption that 2°C represents the lowest feasible 32 

outcome has undoubtedly led to a lack of research into the impacts of lower 33 

stabilisation trajectories. The Paris Agreement has directly prompted an overview of 34 

the science questions around 1.5°C7, and a specific discussion on the mitigation 35 

needed to achieve 1.5°C8. Here, we focus on the analysis needed to understand the 36 

impacts of a 1.5°C warmer world. 37 

 38 

Much research on climate change projections and impacts considers changes for 39 

specific time periods, such as 2080-2100, under a particular emission scenario or 40 

Representative Concentration Pathway (RCP). But the UNFCCC has chosen not to 41 

frame the climate mitigation problem as a choice between emission scenarios, or even 42 

target CO2 concentrations, but as an adaptive process based on global temperature 43 

goals. The scenario-driven design is not ideal for this purpose, particularly for 44 

ambitious mitigation scenarios: globally averaged surface air temperatures under the 45 

lowest scenario considered in CMIP5 (RCP2.6) stabilise over a 5-95% range of 0.9-2.3 46 

degrees above preindustrial9, where the response range on these timescales arises 47 

primarily from the model uncertainty rather than internal variability10. Responses to a 48 



more ambitious scenario, as is planned for CMIP6, with a 0.5°C lower median 49 

outcome would overlap this range heavily. This does not mean there is no significant 50 

difference between a 1.5°C and a 2°C world, just that uncertainty in the global 51 

temperature response to a specific emission scenario is larger than 0.5°C. The 52 

UNFCCC did not ask for an assessment of the relative risks associated with scenarios 53 

that give a median response of 1.5 or 2°C, they asked for the risks associated with 54 

these two outcomes, accepting uncertainties in what it will take to achieve them11. 55 

 56 

Hulme12 argues that that the academic community should be cautious in “undertaking 57 

new cycles of studies in the expectation they will make a difference to the world of 58 

politics.” However, we also add that it is our job as scientists, first and foremost, to 59 

inform. Whether or not the information we provide “makes a difference” is ultimately up 60 

to others.  61 

 62 

Policy-makers generally understand that no one knows what it will take to achieve a 63 

2°C or 1.5°C goal, and that they will only find out after many years of mitigation 64 

experience: hence the call for specific research into the relative impacts of different 65 

temperature outcomes before updating their decision on the overall goal in 2020. This 66 

seems to us to be precisely the kind of “pragmatic and decision-centred” research 67 

Hulme is calling for. But can such research be carried out in time with a high enough 68 

level of reliability to properly inform such a momentous policy decision? 69 

 70 

The adequacy of our current climate experiments 71 

Hulme warns that research attempting to compare the impacts of 2°C and 1.5°C may 72 

not be scientifically robust. This is a risk, especially for regional-scale assessments 73 

and particularly for extreme weather, if such studies are not appropriately designed. 74 

The impact community often utilize climate experiments that have not explicitly been 75 

designed for the problem at hand. This makes sense if the experiments are fit for 76 

purpose, as they often are, but for some issues, new specifically targeted experiments 77 

may be needed. 78 

 79 

At present, the most commonly-used tool in the IPCC Working Group 1 (WG1), 80 

Coupled Model Inter-comparison Project (CMIP) scenario driven experiments, are 81 

somewhat limited in being able to address impacts at 1.5 degrees. Whilst it is possible 82 

to extract anomalies from CMIP scenario experiments at 1.5°C and 2°C, it is difficult to 83 

assess whether the resulting differences are due to the enhanced global warming or 84 

some other factor.  85 

 86 

Precipitation, for example, does not only respond solely to rising temperatures13. The 87 

global mean precipitation response to a 1.5-degree warming is very different under 88 

RCP2.6 and RCP8.5 (see Fig. 1a or Figure 12.6 of ref 9). The distribution of global 89 

precipitation change (and, by implication, the overall intensification of the hydrological 90 

cycle) is very different between the two scenarios (Fig. 1b). This is in part driven by 91 

non-CO2 forcings, which play a larger role in the middle of the 21st century than 92 

towards the end, but also because the sensitivity of precipitation is known to be 93 

emission-scenario dependent14,15. Since the hydrological cycle does not response 94 

uniformly, any assessment of impacts at 1.5 degrees based on transient simulations 95 

could not simply be scaled to agree with a more realistic, equilibrated 1.5-degree 96 



scenario without a considerable amount of guesswork. This is especially true when 97 

considering localised extremes or events that have been amplified through feedback 98 

mechanisms such as soil moisture15. Dedicated experiments should be assessed to 99 

understand the relative impacts of climate equilibrated at 1.5 and 2 degrees for the 100 

2018 special report. Why rely on a scaling pattern when we have spent the last several 101 

decades developing GCMs to give us a physically coherent response? 102 

 103 

New experiments needed 104 

Impacts of a global warming of 1.5oC, and the impacts avoided by stabilising 105 

temperatures at 1.5 instead of 2oC, will be dominated, in many regions, by changing 106 

risks of extreme weather events exceeding critical thresholds (e.g. for human health17). 107 

Relatively small ensembles of coupled model integrations, as requested by CMIP, are 108 

primarily suited to the assessment of expected changes in mean climate, not weather 109 

extremes. To quantify these changes, both high atmospheric resolution and large 110 

initial-condition ensembles are required.  111 

 112 

The attribution community has been using large ensembles to deal with low signal-to-113 

noise problems for over a decade, and their methodology18 could be directly applied to 114 

this climate projection problem. To directly address impact differences between a 1.5 115 

and 2-degree world, climate modellers could run large ensembles (>50 members) of 116 

10-year periods for recent observed and 1.5°C and 2°C warmer worlds, using 117 

projected changes in sea surface temperatures drawn from existing coupled model 118 

simulations. The use of 10-year time slices would allow for the assessment of long-119 

lived extreme events, such as droughts, while still allowing for large ensembles. The 120 

use of >50 ensemble members of a 10-year analysis period should allow for 121 

statements to be made regarding policy-relevant return-times such as 50-100 years. 122 

The resultant probabilistic assessment of climate would allow for any clear and 123 

tangible differences to be detected between small changes in global temperature.  124 

 125 

If additional research is not undertaken as a matter of urgency, there is a danger, 126 

under the UNFCCC/IPCC timetable, that the 2018 special report will present all the 127 

negative economic constraints of achieving 1.5 degrees19 but with insufficient evidence 128 

to distinguish between impacts at 1.5oC and 2oC of warming, even if very different 129 

levels of risk are associated with these two outcomes in reality. The resources 130 

required for targeted “attribution-style” ensembles addressing this question are small 131 

relative to the investment planned in CMIP6. The climate research community prides 132 

itself on its policy relevance20. For once, we have been asked a very specific question, 133 

so we need a very good reason indeed not to step up and answer it. 134 
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 142 
Figure 1: Precipitation response to different Representative Concentration Pathways (RCPs). (a) 143 
Changes in global mean precipitation (mm/day) verses changes in global mean surface temperature (

o
C) for 144 

annual‐mean multi‐model‐mean data from CMIP‐5. Data cover the period 2006‐2100 for (blue) RCP2.6 and 145 
(red) RCP8.5. (b) Smoothed PDFs of precipitation change for all CMIP‐5 models that have a global 146 
temperature response of between 1.35‐1.65

o
C. All anomalies are relative to 1850‐1900. Only the first 147 

ensemble member of each model is used. 148 
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