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Abstract—The reverberation chamber time constant quantifies
how fast a reverberation chamber loses its stored energy at
different frequencies, which makes it a very important parameter
in many power related tests, such as the measurement of antenna
efficiency, the measurement of absorption cross section, and the
electromagnetic immunity test of electronic devices. The chamber
time constant is usually obtained by doing regressions of power
delay profile and calculating its gradient. But the shape of power
delay profile can sometimes be distorted by the band limited
window function applied in the frequency domain. A non-linear
curve fitting technique which can cancel the effect of window
function was developed, aiming to give a robust determination
of the chamber time constant. With the help of this technique,
window functions with much smaller bandwidth can be applied
without introducing error in the evaluation of chamber time
constant. In this paper, a 1 MHz wide window function in which
only 10 samples of S21 are available was put under test and it
was found a robust answer of chamber time constant can still
be given by non-linear curve fitting techniques. Therefore the
measurement time can be reduced and the frequency resolution
of the chamber time constant can be increased at the same time.

Keywords: reverberation chamber, chamber time constant,
power delay profile, non-linear curve fitting

I. INTRODUCTION

A reverberation chamber (RC) is a cavity loaded with a
moving stirrer whose shape and size are carefully designed in
order to create a stochastic field configuration. The applications
of RC cover many areas ranging from communications to bio-
medical uses. Because it is a multipath environment in a RC,
the RC can be used for simulating the indoor Rician channel
with arbitrary K factor [1][2]. As a enclosed environment, it
is relatively easy to build up a power balance model in an
RC, thus making the RC very useful in a lot of power related
tests such as the calibration of antenna efficiency [3], and
determining the averaged absorption cross section(ACS) of a
lossy object or human body [4][5].

The reverberation chamber time constant is a very impor-
tant parameter, because it can give a lot of useful information
about an operating RC, such as the total energy stored, rate
of energy loss, total effective absorbing area [6] and so on.
This information is very important to many electromagnetic
compatibility (EMC) tests. For instance, the chamber time
constant should be known before testing a pulse generator or
a pulse radar, because a reverberation chamber with a high
chamber time constant will change the pulse shape [7][8].
On the other hand, the total ACS of absorbers loaded in a
reverberation chamber is found to be a function of chamber

time constant, so the chamber time constant can tell the
performance of absorbers [9].

The reverberation chamber time constant is usually ob-
tained by doing linear regression of power delay profile (PDP)
in the semi-logarithmic coordinate and calculating its gradient
[11]. The PDP is the power response of a signal transmitted
through a multipath channel as a function of time delay. A
common way of getting PDP in a RC is to measure the fre-
quency domain response and than calculate its inverse discrete
Fourier transform (IDFT) within a small band. However, the
PDP obtained in this way would have a ”tail-like” form, where
power rises rapidly at the end of the response, as can be easily
seen in Fig.4 of [10], and Fig. 1 in this paper.

This ”tail-like” form of PDP is caused by the ringing of
band limited window function in time domain, which could not
show the rate of power loss. Therefore the ”tail” part should
be gated away for doing linear regression when calculating the
chamber time constant, but there are some problems with the
gating techniques. Firstly, more data of PDP being gated away
means less data remaining for doing linear curve fitting, thus
lowering the accuracy of regression. Secondly, the position
of gating is hard to choose because the boundary between
the linear part and the non-linear ”tail” is unclear. Including
the ”tail” into the linear regression would introduce error in
the final results. Especially in broadband measurements, it is
a great nuisance to check PDP frequency by frequency and
choose a good linear curve fitting span.

This non-linear ”tail-like” form is found to be caused by
the band-limited window function applied in frequency domain
(Details can be found in the followed Section II). So a non-
linear curve fitting technique was developed which can fully
cancel the effect coming from arbitrary window function.
Because of the robustness of this new method, the window
function with much smaller window width can be applied with
no obvious change in the final output of chamber time constant.
Thus the frequency resolution of chamber time constant can
be increased at the same time.

II. THEORY

The mathematical definition of PDP is [3]

PDP(ti) =< |h(ti, n)|2 > (1)

where h(ti, n) is the impulse response of a reverberation
chamber, and because here it is a discrete series, ti means



time with index i. The angle bracket ”< · >” means ensemble
average over ”n” independent stirrer positions.

Usually the impulse response h(ti, n) is obtained by doing
IDFT of a frequency domain response (such as S21(fk, n))
filtered by a band-limited window function, as follows:

h(ti, n) = IDFT
[

S21(fk, n) · win(fk)
]

(2)

where win(fk) is an arbitrary window function, fk means
frequency with index k in frequency domain. h(ti, n) would
be changed by the application of different types of window
functions.

To study the effect of window function on the PDP, one
can start by generating S21(fk, n) in an ideal reverberation
chamber manually. The effect of the window function could
then be predicted by filtering this S21 with specific window
function.

The generation of S21 starts from the modeling of the ideal
impulse response in time domain, and S21 can be obtained by
just calculating the discrete Fourier transform (DFT). Three
basic assumptions of an ideal reverberation chamber have been
made and the ideas come from the ”reverberation model” and
”discrete multipath model” mentioned in Hill’s review on the
modeling of PDP in diffuse environment [11]:

1) Every single path in a reverberation chamber is fully
band-pass, which means the shape of signal transmitted
through any single path would not be distorted by losing part
of its frequency components.

2) Because the power of received signal decays exponen-
tially with time delay, so the mathematical model of ideal

S21(fk, n) should contain a exponential term like e
ti

τ , where
τ is the chamber time constant, ti is the time delay.

3) The reverberation chamber creates a multipath envi-
ronment, therefore the signal received at any moment is the
sum of signals transmitted through many independent paths.
According to the central limit theorem, the total response
of received signal at any moment would follow a Gaussian
distribution.

In terms of all the three assumptions above, the original
form of S21(fk, n) is:

S21(fk, n) = DFT
[

hideal(ti, n)
]

= DFT[Ae−
ti

2τ X0,1(ti)] (3)

where hideal(ti) is the impulse response of an ideal reverber-
ation chamber, which is not distorted by any window function;
A is a constant which controls the amplitude of the response;
there is a constant 2 in front of the chamber time constant τ
because the loss of energy is two times slower than the drop
of level of transmitted signal; X0,1(ti) is a Gaussian random
process with zero mean and unit variance. Because the variance
of hideal(ti, n) at any moment can be controlled by A together
with X0,1(ti), the variance of X0,1(ti) is set to be unit for
easy application.

Eq.(3) can be substituted back to Eq.(2) to calculate the
PDP. As an example, Fig 1 shows the generated PDP filtered
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Fig. 1. The generated PDP filtered by 100 MHz rectangular window at 1
GHz

by a 100 MHz rectangular window at 1 GHz. The PDP is
calculated by averaging over 200 independent sets of h(ti, n).

This model is not good for regression so far because it is
a random process. What is needed is the expectation of Eq. 1
as the number of independent data sets tends to infinity.

Substituting Eq.(2) back into Eq.(1) and making use of the
convolution theory, there is:

PDP(t) =< |Ae−
ti

2τ X0,1(ti) N IDFT
[

win(fk)
]

|2 > (4)

where ” N ” means circulated convolution with resulting
length N. The value of N is the number of full band responses
of S21(fk, n) which starts from zero frequency. In real mea-
surements, if the measured S21(fk, n) does not start from zero
frequency, zero padding should be done from zero frequency
to the minimum frequency of measured S21. Also, The window
function should also has the same vector length as the padded
S21(fk, n) does. Then taking advantage of the independent
characteristic of Gaussian random process, the expectation of
PDP can be calculated, and the form is simple:

E
(

PDP(ti)
)

= A2e−
ti

τ N
∣

∣

∣
IDFT[win(fk)]

∣

∣

∣

2

(5)

The expectation of PDP is a circulated convolution of
two power responses. This expectation can be used as a
non-linear model for curve fitting because the random term
X0,1(ti) is gone, and the model is controlled by only two
parameters - A and τ . The non-linear model can be imported
into the MATLAB function ”fit()” for the non-linear least
square analysis, and the ”Levenberg-Marquardt” algorithm is
applied as a default algorithm of function ”fit()” to search for
the optimized value of A and τ [12]. But before doing the
non-linear curve fitting, the starting values of A and τ should
be set for the ”Levenberg-Marquardt” algorithm.

Firstly, the starting value of τ can be simply selected as
the output of linear regression of PDP. There is no need to
worry about the selection of the curve fitting span in which



the shape of PDP is purely linear, because the output of linear
regression is just used as a starting value, and the rest of the
job of evaluating the chamber time constant is done by the
”Levenberg-Marquardt” algorithm.

Secondly, the starting value of A is set to make the
generated S21(fk, n) have the same variance at a specific
frequency as the measured S21(fk, n) does, which is shown
mathematically as follows:

Var
[

S21(fk = f0, n)
]

= Var
[

S21,meas(fk = f0, n)
]

(6)

where Var[·] means to calculate the variance of S21 at
a specific frequency over n different stirrer positions. f0 is
constant which shows where the frequency is. The subscript
’meas’ at the right side of the equation means ’the measured
data’.

Research found the variance of generated S21 in Eq.(6) has
an analytic form. Here is a brief derivation. According to the
convolution theorem, Eq.(3) changes into a form:

S21(fk, n) =
1

N
DFT(Ae−

ti

2τ ) N DFT[X0,1(ti)] (7)

The DFT of a Gaussian random process with unit variance
would still be a Gaussian random process but with variance
N which equals the number of responses. So Eq.(7) changes
into:

S21(fk, n) =
1

N
DFT(Ae−

ti

2τ ) N X0,N (fk) (8)

Therefore the independent characteristic of Gaussian pro-
cess can be used again here in calculating the variance of
S21(fk, n), the result is as follows:

Var[S21(fk = f0, n)] =
A2

N

N
∑

k=1

∣

∣DFT(e−
ti

2τ )
∣

∣

2

(9)

Eq.(9) can be substituted back into Eq.(6) to calculate the
starting value of A, which gives the form:

A =

√

√

√

√

√

NS21,meas(fk = f0, n)
N
∑

k=1

∣

∣DFT(e−
ti

2τ )
∣

∣

2

(10)

Then the starting value of τ can be substituted into Eq.(10) to
calculate the starting value of A.

III. MEASUREMENT

To validate the effectiveness of Eq.(5) in curve fitting, an
experiment was done in the University of York reverberation
chamber whose size is 4.70 m × 3.00 m × 2.37 m. The
chamber was loaded with two horn antennas (ETS 3117 as
transmitting antenna and ETS 3117 as receiving antenna). Both
antennas were placed with boresights pointed away from each
other in order to avoid direct coupling. There is a moving
stirrer between two antennas which provided continuously
changing boundary conditions. Both antennas are connected
to a vector network analyzer Agilent E5071B via bulkheads

Fig. 2. Basic set up of experiment (transmitting antenna)

Fig. 3. Basic set up of experiment (receiving antenna)

on the chamber wall. The diagram of experiment set up is
shown in Fig. 2 and Fig. 3

The measurement ranges from 1 GHz to 7 GHz and the
frequency step was set to be 100 kHz. The stirrer in the
chamber was driven by a stepper motor which will move
200 steps so that 200 sets of independent sets of S21 can be
measured. Firstly, a rectangular window whose width is 100
MHz was selected for validation, and the central frequency of
the windows was randomly selected at 2 GHz, 4 GHz, 6 GHz.
The PDP measured is as shown in Fig 4.

Even though the chamber time constant can be found
by doing linear regression of PDP in Fig. 4, a good curve
fitting span should be selected beforehand. Otherwise the non-
linearity of filtered PDP would introduce error in the evaluation
of chamber time constant. Fig. 5 shows the chamber time
constant as a function of the linear curve fitting span, with the
centre of the span fixed at 5 µs. Due to the shortage of data for
linear curve fitting, the chamber time constant calculated firstly
shows a big variation when the curve fitting span is smaller
than 3 µs. Then the chamber time constant reaches a region
where the curve is relatively flat, which means the linear curve
fit gives a stable answer. But the chamber time constant rises as
the curve fitting span keeps expanding, because the span starts
to include some of the non-linear ”tail” of the PDP in the linear
regression. Because chamber time constant is a frequency-



Fig. 4. Measured PDP (filtered by 100 MHz rectangular window) and non-
linear curve fitting results

Fig. 5. Chamber time constant vs. linear curve fitting span (S21 filtered by
an 100 MHz rectangular window)

dependent value, careful selection of curve fitting span should
be done for each single frequency in wide band measurement.
This is a very time consuming job if it is being done manually,
and especially when the window width is small, it is more
difficult to find a curve fitting span around which the output
of chamber time constant is stable.

However, the whole range of PDP can be included in the
non-linear curve fitting without introducing error because the
non-linear curve fitting can fully describe the form of PDP
in time domain. As shown in Fig. 4, the fitted curve matches
well with the measured data from 0 µs to 10 µs. The chamber
time constant given by non-linear curve fitting is also plotted
as triangle marks in Fig. 5 for comparison. The results always
locate at the flat region where the output of linear curve fitting
converges, which shows the reliability of the non-linear curve
fitting.

The chamber time constants obtained by non-linear regres-
sion are shown in Table. I and the coherence bandwidth is

TABLE I. CHAMBER TIME CONSTANT OBTAINED BY NON-LINEAR

CURVE FITTING AND COHERENCE BANDWIDTH AT DIFFERENT

FREQUENCIES

Frequency (GHz) Chamber time constant (µs) coherence bandwidth (MHz)

2 1.86 0.29

4 1.57 0.35

6 1.31 0.42

Fig. 6. Measured PDP (filtered by 1 MHz rectangular window) and non-linear
curve fitting

Fig. 7. Measured PDP (filtered by 1 MHz raised cosine window) and non-
linear curve fitting

calculated as follows [13]:

BW =
1

τ

√
3

π
(11)

The coherence bandwidths are all smaller than 1 MHz,
therefore the 100 MHz rectangular is too wide compared to
the coherent bandwidth for doing inverse Fourier transform. A
1 MHz rectangular window was applied in obtaining the PDP,
and the results are shown in Fig 6.

When the window width is reduced to 1 MHz, the shape
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Fig. 8. Chamber time constant obtained by linear curve fitting
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Fig. 9. Chamber time constant obtained by non-linear curve fitting

of PDP is no longer suitable for linear curve fitting, while the
non-linear curve fit can still do the job. Because the window
function can be freely chosen, a raised cosine window[14] with
1 MHz total bandwidth and 0.25 rolling off factor has been
tried. The results are shown in Fig. 7.

Fig. 6 and Fig. 7 clearly shows that the fitted curve
matches well with the measurement data even though the
width of window function is 1 MHz. Therefore the non-linear
curve fitting could greatly increase the frequency resolution of
chamber time constant.

Then the linear curve fitting and non-linear curve fitting
was applied from 1 GHz to 7 GHz aiming to compare the
robustness of two techniques. The chamber time constant
obtained by the two different techniques was plotted in Fig. 8
and Fig. 9 The curve fitting span of linear curve fitting is
selected to be from 1 µs to 4 µs over which the response of
PDP is most likely to be linear.

The linear curve fitting is unstable. As the figures show,
the chamber time constant obtained by linear curve fitting has

relatively bigger variation compared to that obtained by non-
linear curve fitting. Also, the calculated chamber time constant
changes as the width of window function is narrowed down
from 100 MHz to 1 MHz.

However, the non-linear curve fitting is robuster. Although
the different window functions were applied, the chamber time
constants obtained are still quite close to each other. Especially,
there are only 11 samples included for the calculation of PDP
in a 1 MHz window, but the non-linear curve fitting could help
giving a answer close to that when the 100 MHz window was
applied. Therefore, with the help of non-linear curve fitting,
only a few samples are needed around a fixed frequency point
to get a reliable chamber time constant. This is very useful
under the situations in which the measurement speed really
matters, such as the measurement of absorption cross section
of a human being who can not hold the same pose for a very
long time.

IV. CONCLUSION

A mathematical model of power delay profile in a rever-
beration chamber was firstly developed, which uses a robust
non-linear curve-fitting method to calculate RC time constants.
The non-linear curve-fitting model is controlled by just two
different parameters, and it also takes the effect of the window
function into account. This non-linear curve fitting has many
advantages over linear curve fitting, in particular: 1. It can
greatly increase the frequency resolution of chamber time
constant calculations. 2. Only a few samples close to the
central frequency need to be collected for obtaining these
chamber time constants, so considerable measurement time
can be saved. 3. The non-linear curve fitting takes all the
data of the PDP into account, so it has the more efficient
data usage, while the non-linear part of PDP would needed
to be gated away for linear curve fitting. With the help
of this non-linear curve fitting technique, the chamber time
constant can be got much faster and more accurately, which
accelerates many EMC tests, such as the measurement of
antenna efficiency, the measurement of ACS, etc. Especially
in the measurement of human body ACS, in which the human
subject is not expected to hold the same pose for very long in
the reverberation chamber, only a few frequency samples are
needed to be collected for non-linear curve fitting, therefore
the measurement can be finished quickly while the uncertainty
coming from random body movement can be reduced at the
same time.
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