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Abstract

Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains

such asMethicillin Resistant S. aureus (MRSA). Herewe report an image analysis framework for

automated detection and image segmentation of cells in S. aureus cell clusters, and explicit

identification of their cell division planes.We use a new combination of several existing analytical

tools of image analysis to detect cellular and subcellularmorphological features relevant to cell

division frommillisecond time scale sampled images of live pathogens at a detection precision of

singlemolecules.We demonstrate this approach using a fluorescent reporter GFP fused to the protein

EzrA that localises to amid-cell plane during division and is involved in regulation of cell size and

division. This image analysis framework presents a valuable platform fromwhich to study candidate

new antimicrobials which target the cell divisionmachinery, butmay also havemore general

application in detectingmorphologically complex structures offluorescently labelled proteins present

in clusters of other types of cells.

Introduction

The application of novel biophysics tools is generating

important new insight into processes of infection [1–

5]; in particular, biophysical instrumentation in the

form of bespoke light microscopy hardware, and of

bespoke image analysis software tools to extract mean-

ingful information from the images that are generated

in an often low signal-to-noise ratio regime, is generat-

ing promising new understanding of the biological

mechanisms which underlie the process of antimicro-

bial resistance in a range of different pathogens. An

example of such a pathogen relevant to human disease

is Staphylococcus aureus, a bacterium that reproduces

through binary fission into cellular clusters. S. aureus

is a normal member of human skin microflora [6, 7]

but causes serious infections on reaching underlying

tissues. To study the process of S. aureus cell division,

we combined several existing image analysis tools into

a new framework which, for the first time, was applied

to living S. aureus pathogens imaged at millisecond

time scales to single molecule detection precision

using the bespoke biophysical optical imaging techni-

que of Slimfield microscopy. This analysis framework

enabled us to detect the cell division plane of

individual cells, their boundaries and other subcellular

morphological features.

S. aureus infection of skin and lung may lead to

advanced systemic bacterial infection, or bacteraemia,

a fatal condition if the strain is resistant to antibiotics

[8]. Methicillin resistant S. aureus (MRSA) is resistant

to beta-lactam antibiotics, such as those based on

penicillins and cephalosporins, and most broad spec-

trum fluoroquinolones such as Ciprofloxacin [9, 10].

Antibiotic resistance is an enormous problem now in

clinical treatment centres, especially so for surgical
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procedures involving joint replacement and secondary

infections arising following chemotherapy. MRSA can

be treated currently with the glycopeptide vancomy-

cin, however strains have recently been identified with

reduced susceptibility to vancomycin [11] and even

complete resistance [12], so-called VRSA. Many tradi-

tional antibiotics operate through targeting of cell wall

components in invading microbes. For example, beta-

lactam antibiotics inhibit cell wall synthesis of pepti-

doglycan to disrupt the cell’s ability to withstand high

osmotic cellular pressure. They bind irreversibly to the

active site of penicillin binding proteins, preventing

them from building cross links in the cell wall [13, 14].

Resistance to beta-lactam antibiotics is however pre-

valent, having evolved into strains which have binding

sites with significantly reduced binding affinity to the

antibiotics, or have developed new forms of enzymatic

degradation of the beta-lactammotif [15]. Others such

as the fluoroquinolones operate through targeting

DNA replication. The process of cell divisionmay pre-

sent alternative molecular candidates for targeted

disruption by newly developed antibiotics. However,

cell division processes have been studied primarily in

the model rod-shaped organisms Bacillus subtilis and

Escherichia coli, which have less specific relevance

to biomedically more harmful pathogens such as

S. aureus.

Cell division in S. aureus is driven by a complex

mix of several proteins, many essential, termed the

divisome [16]. The protein FtsZ forms a ring structure

at a future division site at mid-cell, known as the ‘Z

ring’. The exact role of many of the proteins involved

in cell division, and the extent of their essential nature

or not in different organisms, are unknown. The pro-

tein EzrA (denoted so for ‘Extra Z rings A’) is crucial in

S. aureus [17, 18]. In B. subtilis EzrA acts as an inhi-

bitor, preventing the formation of multiple Z rings per

cycle, and EzrA is also recruited to themid-cell early in

the cell division process [19]. In in vitro assays, EzrA is

observed to interact with the C terminus of FtsZ which

prevents it from assembling the Z ring [20, 21]. The

idea that an inhibitor of Z ring formation is recruited

to the divisome is surprising, but in S. aureus EzrA was

found to also regulate cell size [17, 18], preventing cells

from getting so large that the Z ring could not form

correctly. This agrees with the finding that in S. aureus

inhibition of cell division produces cells up to twice as

large as normal [17, 22].

The localisation of EzrA changes through the cell

cycle. In S. aureus, EzrA is known to locate to the mid-

cell and form a ring at the nascent division plane early

in the division process [17, 23], during which period S.

aureus becomes oblately ellipsoidal rather than truly

spherical [24]. EzrA can therefore be used as a useful

marker for the cell division plane in the early stages of

cell division, without observing the cell division event

itself and thus its identification may provide a useful

platform from which to study antimicrobial activity

which affects cell division processes, or its absence in

resistant strains.

Lightmicroscopy has developed from its inception

over 300 years ago into being an invaluable biophysical

tool for studying complex biological processes in liv-

ing cells [25]. Similarly, automated analytical and

computational tools of theoretical biophysics are

proving useful in the interpretation of new forms of

imaging data [26, 27]. In particular, the use of fluores-

cence microscopy, and associated analyses of the

resultant images for studying complex processes, has

added much to our understanding of complex mole-

cular architectures inside living cells. For example, our

previous work in this area includes studying cellular

bioenergetics [28–30], protein transport [33–35],

DNA replication and repair [36, 37], cell movement

and sensing [38–41], chromosome architecture [42–

44] and developing new experimental and analytical

imaging tools to probe general molecular machines in

live cells at a singlemolecule precision [26, 45–53].

Earlier attempts at monitoring cell division pro-

cesses in S. aureus used labour-intensivemanual image

segmentation methods [54], highly prone to user sub-

jectivity. Other attempts have utilised super-resolu-

tion images on fixed (i.e. dead) cells [24], limiting

the study of dynamic biological processes. Although

several standard methods already exist for the rough

segmentation of bacterial cell clusters and the simulta-

neous detection of fluorescence from a labelled intra-

cellular protein [55, 56] these have never been applied

to S. aureus cell clusters over a challenging millisecond

time scale relevant to in vivo molecular mobility.

Our image analysis framework uses fluorescence and

brightfield image data as an input and interrogates

these with automated image segmentation and water-

shedding algorithms to detect individual S. aureus

cells, determine the location of their cell walls, and

identify cell division planes in cells containing fluores-

cently labelled EzrA. Importantly, these techniques

can be applied to imaging data from Slimfield micro-

scopy [4, 36, 37, 43, 49] which enables tracking of sin-

gle-molecule complexes over millisecond time scales

which are comparable to diffusive molecular mobility

inside living cells [27, 57], as well as being compatible

with advanced analytical methods which employ sin-

gle cell copy number quantification through convolu-

tionmodelling [58].

Methods

Cell strains

S. aureus cell strains SH1000 (the parental wild type

strain used for native autofluorescencemeasurements)

and SH1000 EzrA-GFP+ (EryR) were stored in

glycerol frozen stocks at −80 °C. Cell cultures were

grown as detailed previously for these strains [17] in

rich media TSB (Tryptic Soy Broth; 17 g Trypticase

peptone, 3 g Phytone peptone, 5 g sodium chloride,
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2.5 g Dibasic potassium phosphate, 2.5 g glucose, 1 l

deionisedwater, pH7.3) at 37 °C.

Fluorescencemicroscopy

We used a bespoke single-molecule fluorescence

microscope constructed around the chassis of a Nikon

TE2000 inverted microscope using a 100×1.49 NA

oil immersion total internal reflection fluorescence

(TIRF) objective lens (Nikon) and a xyz nano position-

ing stage (Nanodrive, Mad City Labs). Here we used

fluorescence excitation from a 50 mW Obis 488 nm

laser to excite GFP fluorescence. A dual-pass GFP/

mCherry dichroic mirror with 20 nm transmission

windows centred on 488 nm and 561 nm was used

below the objective lens turret. The beam was

expanded to generate Slimfield excitation of 10 μmfull

width at half maximum in the sample plane of

excitation intensity 1.5 W cm−2. Slimfield illumina-

tion operates by underfilling the back aperture of a

high NA objective lens using a collimated laser beam

[49]. Underfilling results in a conflated confocal

volume in the sample plane which can be adjusted by

changing the upstream beam expansion optics to be

marginally larger than a single cell, or cluster of cells,

as required. In doing so the local laser excitation

intensity is high enough to permit millisecond time

scale image sampling of entire single live cells or small

groups of cells with no requirement for slow scanning,

at a detection precision to detect single fluorescent

protein molecules while still producing an emission

signal above the level of camera readout noise

[4, 36, 37, 49, 59]. The Slimfield beam intensity profile

was measured directly in a separate experiment by

raster scanning in the focal plane while imaging a

sample of 100 nm diameter fluorescent beads (Mole-

cular Probes) immobilised to the coverslip surface. A

high speed camera (Photometrix Evolve Delta) was

used to image at 5 ms frame–1 (this is the time between

consecutive frames, of which 0.6 ms is the ‘dead’ time

in the 5 ms window during which the camera is unable

to acquire data) with the magnification set at 80 nm

per pixel. The microscope was controlled using

Micro-Manager software [60].

Sample preparation and imaging

Microscope flow cells, or ‘tunnel slides’, for imaging

were constructed from BK7 glass microscope slides

(Fisher) and plasma-cleaned coverslips (Menzel Gla-

ser) by laying two lines of double-sided tape (Scotch)

approximately 5 mm apart on the slide and dropping a

coverslip onto the tape and tapping down (avoiding

the imaging region), to produce a watertight linear

channel [41]. The tunnel slide was coated in 0.01%

poly-L-lysine to immobilise cells, and inverted for

5 min. This was then flushed through with 200 μl

phosphate buffered saline (PBS). Following this, a

tunnel volume of cells were flushed through and the

slide was left inverted for 5 min to allow cells to attach

to the coverslip. After 5 min any unattached cells were

washed out with 200 μl PBS buffer prior to Slimfield

imaging (figure 1).

Imaging analysis framework—(1) Image

segmentation of cells

Brightfield and fluorescence images were segmented

initially by simple pixel thresholding. Here, we defined

Figure 1. Schematic diagramof themicroscopy illumination for single-moleculemillisecond imaging. Surface-immobilised S. aureus
cells have EzrA-GFP located at themid-cell position in the early stage of division, and can be visualised usingmillisecond Slimfield
microscopy, as in this work.
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the background intensity from the modal (i.e. peak)

value of the pixel intensity histogram as follows. The

density of cells in a tunnel slide was optimised such

that there were typically >80% more background

pixels than foreground pixels (i.e. those associated

with cells) (figures 2(a) and (b)). This ensured a distinct

modal peak in the pixel intensity histogram corresp-

onding to the first fluorescence image in a kinetic

series, which was associated with the local background

value. We then used an automated thresholding

method to find the pixel intensity values which were

greater than the background peak value plus one full

width half maximum (FWHM) of the background

peak itself as a simple and automated initial method to

discriminate the background from the foreground

cell-containing regions, which contained one or more

commonly more (up to ∼10 cells) in a cluster in

fluorescence images (figure 2(c)). In the case of

simple isolated single cells standard morphological

transformations can in principle be used to fill holes

in segmented regions and remove small objects

and single pixels [58], however in general S. aureus

cells appear in clusters, requiring further image

segmentation.

Our simple brightfield images are slightly defo-

cused by a few hundred nm compared to fluorescence

images to provide greater image contrast, resulting in a

dark ring appearance around the perimeter of cells

which results in under segmentation artefacts if

the simple pixel thresholding method is applied

(figure 2(d)). Segmenting the fluorescence image is

advantageous as there is typically a low-level, uniform

autofluorescence in cells due to the presence of

natively fluorescent flavins and nucleotide derivatives

Figure 2.The cell segmentation algorithm (a) brightfieldmicrograph of staph cells, (b) false-colour fluorescencemicrograph of EzrA-
GFP, (c) segmentedGFP image—cell containing regions are segmented, (d) segmented brightfield image providing individual cells
and seeds forwatershedding in (e), (f)watershedded cellmasks used to generate ellipses.
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[41, 43, 58] which gives a more accurate boundary

between the cell image and the background [58]. The

disadvantage of this method is that close-packed cells,

such as the clusters typical of S. aureus, are normally

manifest as often contiguous regions of very similar

pixel intensity since the cells are not separated by clear

regions of background intensity (figure 3(c)). For

elongated objects standard methods to separate over-

lapping cells with cell-background boundaries exist

[61]; however, for cells with only cell–cell boundaries

we found that using the brightfield segmentation out-

puts (figure 3(d)) to define primary seeds in a water-

shedding algorithm allowed the separate cell

boundaries to be determined accurately.

We developed software implementing these

algorithms written in MATLAB (Mathworks) which

automatically determined the segmentation pixel

thresholds of the fluorescence image and brightfield

image to determine images masks corresponding

to the spatial extent of individual cell clusters

(figure 2(c)), and individual cell seeds for water-

shedding (figure 2(d)) respectively. Thewatershedding

algorithm estimates which pixels are associated with

each individual cell in a cell cluster (figure 2(e)). This

raw pixelated watershed segmentation output is then

modelled as a 2D ellipse function, with fitting optim-

isation generating estimates for the minor and major

axes, centroid position and orientation of each seg-

mented cell region (figure 2(f)).

Watershedding algorithms derive their name

from the concept of river catchment basins; the

areas of land from which surface water will drain into

that river. The ridges in the landscape form dividers

(or watersheds) between adjacent catchment basins.

Our primary image segmentation step uses the

autofluorescence signal of the cells to first determine

the outer boundaries of cell clusters, andwe then apply

a watershedding algorithm to find the borders of the

individual cells within each cluster. By inverting the

pixel values of the fluorescence image we generate a

contour map such that the positions of the centres of

cells correspond to valleys and the ridges between the

valleysmark the cell boundaries (figure 3).

The pixel positions of each cell centre determined

from simple brightfield segmentation are, in the case

of S. aureus cell clusters, good estimates for the

minima of the valleys, the seeds, but several alternative

automated methods could in principle also be used to

determine their locations [62]. The watersheds can

now be found by progressively flooding the landscape

until the cell regions defined by the seeds merge

[62, 63]. Each seed pixels’ eight neighbouring pixels

are then sorted from lowest pixel intensity value (i.e.

pixels which are most similar to the seed, or, in the

analogy of the river basin, closest to the bottom of the

valley) to highest. Pixels are considered in turn by

looking at which of their eight neighbours have

already been assigned to a cell. If a pixel’s only labelled

neighbours have all been assigned to the same cell it is

also assigned to that cell, and its unassigned neigh-

bours are added to the queue at their appropriate

heights. If a pixel has two neighbours with different

cell assignments, it is considered to lie on the bound-

ary between them, and is therefore defined as part of

the watershed. This process is repeated until all pixels

in the region have been assigned uniquely to one cell,

and a separate 2D ellipse function fit is then applied

solely to the pixels within each watershed-defined

cellular region.

Figure 3.Watershedding algorithm. (a)Greyscale fluorescence image of EzrA-GFP S. aureus cells. (b) Inverted fluorescence image,
with profile along orange line shown in (c)heightmap of inversefluorescence image; black arrows show cell seeds from the brightfield
segmentation. Black lines show the edges of the cell cluster found fromfluorescence segmentation. Blue linesmark cell boundaries/
watersheds between cells. Each contiguous grey region corresponds to one single cell.
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Imaging analysis framework—(2)Thresholding

inside cells (determining EzrA ring localisation)

Once the pixels corresponding to single cell fore-

ground images have been identified, as above, it is

relatively easy to threshold again inside these segmen-

ted cell images. Here, we used Otsu’s method [64].

Otsu’s method is a robust, standard approach which

aims to separate a general distribution of values of a

parameter into a number of classes through the

process of minimising the intra-class variance. In our

case here the parameter is that of pixel intensity, and

we assume in the simplest hypothesis for there being

just two classes, one which corresponds to putative

EzrA rings and is manifest as a higher mean pixel

intensity due to distinct fluorescently labelled EzrA

rings tightly packed at the cell mid-plane, and a second

class which comprises more diffusive components of

lower mean pixel intensity which corresponds to a

combination of background autofluorescence and

rapidly diffusing EzrA subunits prior to association

with a ring structure. To threshold an image ideally

there would be two well separated peaks on the pixel

intensity distribution. However, in reality, especially

in the case of low signal-to-noise regimes of milli-

second Slimfield microscopy, the valley between the

two peaks is typically not clearly defined, due to

imaging noise and differences in foreground and

background pixel distributions. Otzu’s method per-

forms well under these conditions, and also offers

advantages over other methods such as fitting Gaus-

sian functions [65] or valley sharpening [66] as the

peaks are rarely symmetrical Gaussian shapes, and

valley sharpening only considers a highly localised area

of the distribution, rather than all of the data in an

image. GFP labelled EzrA rings appear as relatively

brighter objects on a darker cell body background, and

so are well suited to Otsu’s method with just a single

threshold.

Imaging analysis framework—(3) Simulating

brightfield andfluorescence images

To validate our approach for segmenting the outer

cellular boundaries and subcellular morphological

features, exemplified by GFP-labelled EzrA rings, we

simulated realistic brightfield and fluorescence images

of S. aureus cells. These included image features of

distinct EzrA-GFP rings, a subcellular diffusive back-

ground of EzrA-GFP, and a background not associated

with GFP which comprised autofluorescence plus

camera readout background. Cell background and

EzrA-GFP ring fluorescence were modelled by adapt-

ing a previously reportedmethod [58] for integrating a

model point spread function over a 0.8 μm diameter

sphere (figure 4(a)) and a randomly orientated, parallel

or perpendicular ring (figure 4(b)) of diffraction

limited width (here set at 0.3 μm) respectively. Here,

we retained the same basic tightly packed pattern and

relative orientations of 7 cells in a cluster throughout.

The spacing between cells in cell clusters was not

observed to vary in our experimental data and so was

not varied in our simulations. These images were

summed (figure 4(c)) and then scaled to realistic pixel

intensity values, measured from mean pixel intensity

inside cells in fluorescence images (supplementary

information), before realistic levels of pixel noise,

trained on experimental fluorescence image data, were

added (figure 4(d)). Brightfield images (figure 4(e))

were simulated by subtracting 0.8 μm diameter rings

and circles from each other to generate bright central

regions surrounded by dark rings, and were added to a

uniform bright background. Images were then seg-

mented using precisely the same algorithms and same

parameter set as for real experimental image data

(figures 4(f)–(h)).

Results

Segmenting cells

Candidate automatically detected cell masks were

accepted for subsequent image analysis if the summed

pixel area was in the range 0.03–3.00 μm2; this is the

equivalent area of a circle whose diameter is in the

range 0.2–2 μm, which tallies with prior structural

observations of the length scale of S. aureus cells during

their complete cell cycle. In our proof-of-concept

study here this resulted in accepting ∼60% of initially

detected candidate foreground objects (here, 34 out of

60 initially detected foreground objects from 20

separatefields of view). Example cell boundaries found

are shown in figure 5. Most cell boundaries are slightly

elliptical (figures 5(a), (b) and (d)) with aspect ratios

(ratio of major and minor axis length) close to 1, but a

minority had extended boundaries detected with

larger aspect ratios closer to 2 (figure 5(c)). These

examples with extended boundaries are consistent

with the appearance of pairs of dividing cells which

have been erroneously segmented together as a

single cell.

The mean cell length we measure to be

1.2±0.3 μm (±s.d.) (figure 6(a)), in good agreement

to within experimental error with estimates [67, 68],

though as noted from super-resolution studies there

can be significant variation of cell length depending on

the specific stage in the cell cycle [24]. The majority of

our data have a major axis which is 30%–50% longer

than the minor access, indicating a mean cell aspect

ratio of 1.4±0.3 (figures 6(b) and (c)). The recent

super-resolution investigations of Monteiro et al [24]

made measurements of the aspect ratio and cell

dimensions using structured illumination microscopy

images of vancomycin-labelled peptidoglycan in

S. aureus. Here they measured similar ranges of aspect

ratio (1.1–1.4), close to within experimental error for

cells in the P2 and P3 phases when the cells were divid-

ing and EzrA was located at the division plane. Our

measured aspect ratio was not divided into division

6
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phases and is at the higher end of the range measured

by Monteiro et al possibly indicating our cells spent

longer in the P2 and P3 division phases in our growth

and imaging conditions.

We used simulations to determine the cell bound-

ary determination error of our image analysis frame-

work, defined as the mean deviation of the cell

boundary from the watershedded boundary. The

deviation for any point on the detected boundary is

defined as the absolute value of the shortest distance

between the simulated and detected boundary.

Figure 6(d) shows the distribution of boundary errors

for 70 simulated cells with different levels of simulated

intensity and random normally distributed pixel

intensity noise (supplementary information). Experi-

mentallymeasured pixel intensity values for cells had a

standard deviation of as much as ∼50% of the mean

cell background pixel intensity, but with a more typi-

cal level of ∼20%. In our simulations we found that

although brightness variation does generate more out-

liers the boundary determination was relatively insen-

sitive to these relatively large fluctuations in pixel

Figure 4. Simulating images (a) uniform cellfluorescence, (b)EzrA ringfluorescence, (c) totalfluorescence, (d)noisyfluorescence, (e)
segmented brightfield output, here intentionallymade to be high contrast to show the distinct cell boundaries, (f) simple segmentation
of noisy simulated fluorescence cell images (greyscale) based on a single pixel intensity threshold value (blue), (g)watershed
segmentation of simulated noisyfluorescence cell images (coloured lined) using only the brightfield images of cells as seeds (greyscale
data), (h) zoom-in of noisy simulatedfluorescence image from a single cell (green)with EzrA ring (purple/white), showing an example
of a perpendicularly oriented (left panel ) and in-plane (right panel) ring, with simulated segmentation (red) and detected
segmentation (yellow) shown. Scale bar 1 μm.

Figure 5. Segmented cells (green), identified putative EzrA-GFP rings highlighted inwhite. Images show the determined cell boundary
(yellow) and the greyscale pixels indicate the pixels associatedwith putative EzrA-GFPdetermined fromour image analysis
framework. (a) and (b): examples of the algorithmdetecting division planes in cells. (c)At putative late stages of division the dividing
cells have not completely separated and the image segmentation algorithmmay categorise these as a single elongated elliptical
foreground object. (d) shows a putative EzrA-GFP ring consistent with an orientation of the edge of the ring projecting towards the
plane of the camera. (e) shows the pixel intensity profile through the dotted line in (d), indicating a peak-to-peak diameter of∼0.8 μm
in this case.
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intensity, culminating in a typical boundary precision

in the range 100–300 nm.

In our simulations, 100% of cells were detected

successfully. However, in real experimental data the

same image analysis framework rejected up to ∼40%

of initially detected candidate foreground objects.

Failure to detect cells may occur in principle when

insufficient fluorescence signal is present, or if there is

somemisalignment between the brightfield and fluor-

escence images, or if the measured cell mask area is

beyond the imposed area acceptance range limit. We

observed examples of all three categories in our data.

Gene expression both for the EzrA protein and for

natively autofluorescent proteins is stochastic in nat-

ure, and so there will inevitably be a minority of cells

which have low intrinsic levels of fluorescence too

close to the level of camera readout noise to permit

robust image segmentation. Longer exposure times to

increase cell signal above background noise might

increase cell detection efficiency of these dim cells at

the expense of time resolution but would not enhance

the software’s ability to distinguish very close cells as

this information comes from segmenting the bright-

field image. Similarly, misalignment between fluores-

cence and brightfield images more commonly occurs

when using differential interference contrast (DIC),

since a Wollaston prism slider is placed just under the

objective lens and can often result inmechanical based

misalignment of the sample (e.g. slight knocks on the

sample stage) in addition to the polarization optics

resulting in a lateral shift of the image on the camera

detector. Although DIC was not used here, we inclu-

ded some accidentally misaligned data intentionally

(as revealed upon close inspection of figure 2 for

example) to demonstrate that our image analysis fra-

mework is in general sufficiently robust to cope with

minormisalignment issues.

The most relevant rejection category we found for

our data was on the basis of the area acceptance range

limit. Here, we set the upper limit to correspond to an

effective cell diameter of 2 μm to therefore exclude the

majority of clusters of >1 cell which our algorithm

had failed to segment into individual cells. The major-

ity of rejected cell masks were of this type. However,

some were rejected by being less than the lower area

limit threshold, equivalent to an effective cell diameter

of 0.2 μm. These included images which were con-

sistent with being cell fragments from dead cells, how-

ever there were also a minority of instances in which

the primary segmentation step would detect the

Figure 6.Top left: distribution of cellmajor axis lengths. Top right: aspect ratio, bottom left scatter plot of cellmajor axis length
againstminor axis length. The dotted line indicates an aspect ratio of exactly 1 (i.e. a circle), showing that themajority of cells are
elongated. Bottom right: distribution ofmean boundary error for different variations in cell brightness, compiled from70 different
simulated cell images ofmixed in-plane and perpendicular orientations using either a uniform cell brightness with 0% fluctuation
(blue), or random cell brightness using a standard deviation value of 20% (green) or 50% (red) of themean cell intensity level.
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outline of the EzrA ring itself as opposed to the outline

of the cell boundary—these were instances of aminor-

ity of cells which had a much lower intrinsic level of

fluorescence for the cell background. These detection

limits do not preclude using our image analysis frame-

work for determination of cell lineages, since the same

60% acceptance level, is not random and will be pro-

pagated over time such that the same 40% of cells may

be missed in each frame if these cells maintain the

properties discussed above which would exclude them

from the analysis. And it should be noted that our aim

here was not to achieve 100% detection efficiency, but

rather to intentionally have a stricter acceptance policy

to increase the confidence for data interpretation of

the accepted segmented cell images.

Identifying EzrA rings

A range of different shaped regions of fluorescently

labelled EzrA can be found by applying pixel thresh-

olding inside the cellular boundary regions (figure 3).

Elliptical fits to these regions produce some thin

extended ellipses but also more circular fits. The

distribution of aspect ratios of these pixel regions and a

scatter plot of major against minor axis length

(figures 7(a) and (b)) show that ∼50% of cells have

extended structures with aspect ratios far in excess of

1, almost as high as 4, consistent with EzrA rings

perpendicularly oriented to the image plane. We

confirmed this by using simulations of perpendicu-

larly oriented and in-plane rings. Unlabelled (wild

type) cells, do not contain any visible rings in

fluorescence image (supplementary figure 1). The line

profile through a putative in-plane ring shows a clear

double peak (figure 5(e)), as would be expected. The

remaining structures aremore circular, either corresp-

onding to in-plane rings or a completely delocalised

diffusive EzrA-GFP. These can be distinguished on the

basis of their estimated areas as a function of major

axis length, which accounts for cell orientation projec-

tion effects onto the camera detector. Figures 7(c)

summarises, from simple geometrical considerations,

how the area, A, varies as a function of major axis

length, 2r, for a fixed diffraction limited ring width, w,

for a continuous circular region as produced by

delocalised diffusive EzrA-GFPmolecules, an in-plane

ring and an ellipse produced by a perpendicularly

oriented EzrA-GFP ring. Most of the accepted cell

foreground objects are consistent with the presence of

a ring, although a few are consistent with continuous

but truncated localised EzrA-GFP structures, indica-

tive more of short protofilaments than rings, and

suggesting that these cells are not actively dividing.

Discussion

Our straightforward image analysis framework detects

cells and characterises their size and shape assuming

an ellipsoidal model for the general 3D shape of

S. aureus cells, manifest as a 2D ellipse on an image

projection. It then detects bright pixels inside the cell

corresponding to EzrA rings, characterises their shape

and determines their orthogonality to the image plane.

Ourmethod is valuable for investigating S. aureus cells,

which do not move apart following the conclusion of

the cell division process. The analysis framework can

be extended to study other fluorescently labelled

proteins in S. aureus, but also in other clustering cells

since it does not require the foreground objects to be

spatially separated by regions of background pixels.

The watershedding method, which here uses bright-

field cell centres as seeds, is robust to imaging data for

which the brightfield image is not precisely aligned

with the fluorescence image. Here, we are not claiming

to have developed any single novel image segmenta-

tion method per se—our image analysis framework

here uses existing, standard methods, quite clearly.

Rather, we use these in combination to create a

framework which has previously never been applied to

challenging data from millisecond images of live cells

which havemorphologically heterogonous subcellular

features, as exemplified by the pathogen S. aureuswith

subcellular EzrA ring structures.

The aspect ratios we find for cells are in agreement

with those found by Monteiro et al [24], indicating

Figure 7. Left panel: distribution of aspect ratios. Centre panel: plot ofmajor axis againstminor axis of EzrA ring, dotted line
corresponds to an aspect ratio of one for corresponding to circles. Right panel: plot of area vsmajor axis length, indicatesfits assuming
three differentmodels for EzrA ringmorphology.
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that super-resolution imaging is not necessarily

required to extract this parameter. Using the auto-

fluorescence of the cell potentially leaves other spec-

trally delimited channels open for protein studies (i.e.

multi-colour fluorescence imaging). We find EzrA

rings are localised to the division plane in agreement

with the expected distributions during cell division.

Other studies have required manual segmentation

[54] or relied on super-resolution images [24] to

achieve similar results. Our simple framework is fully

automated and does not require costly and potentially

damaging super-resolution imaging. However it is still

compatible with super-resolution microscopy images,

but also withmillisecondmicroscopy such as Slimfield

illumination as well as other time-resolved fluores-

cence localisation microscopy tools which enable

tracking of single-molecule complexes [27, 57, 69], for

example to enable quantification of protein copy

number in Erza rings using convolution model-

ling [58].

Conclusion

We have constructed a simple bespoke automated

image analysis framework using a combination of

several standard approaches which enables segmenta-

tion of individual S. aureus live cell images within cell

clusters, and can detect the cell division planes using

fluorescently labelled EzrA protein as a marker, from

millisecond sampled images. The framework can be

used to investigate cell aspect ratios, other labelled

proteins that may be involved in division in S. aureus,

and it may also have wider applicability for studying

other clustering cells since it does not require cells to

be separated by non-cellular background pixels. S.

aureus is an increasing healthcare problem, particu-

larly methicillin resistant and vancomycin resistant

strains. It thus has value towards gaining new insight

into the operating mechanism of cell division to

facilitate the development of future new cell division

targeting antibiotics.
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