
This is a repository copy of A multi-resolution approach for adapting close character
interaction.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/106110/

Version: Accepted Version

Proceedings Paper:
Ho, ESL, Wang, H orcid.org/0000-0002-2281-5679 and Komura, T (2014) A
multi-resolution approach for adapting close character interaction. In: Proceedings. 20th
ACM Symposium on Virtual Reality Software and Technology (VRST 14), 11-13 Nov 2014,
Edinburgh, Scotland. ACM , pp. 97-106. ISBN 978-1-4503-3253-8

https://doi.org/10.1145/2671015.2671020

© 2014 ACM. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
VRST '14 Proceedings of the 20th ACM Symposium on Virtual Reality Software and
Technology, http://doi.acm.org/10.1145/2671015.2671020. Uploaded in accordance with
the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A Multi-resolution Approach for Adapting Close Character Interaction

Edmond S. L. Ho∗

Department of Computer Science

Hong Kong Baptist University

He Wang

School of Informatics

University of Edinburgh

Taku Komura

School of Informatics

University of Edinburgh

Abstract

Synthesizing close interactions such as dancing and fighting be-
tween characters is a challenging problem in computer animation.
While encouraging results are presented in [Ho et al. 2010], the
high computation cost makes the method unsuitable for interactive
motion editing and synthesis. In this paper, we propose an efficient
multiresolution approach in the temporal domain for editing and
adapting close character interactions based on the Interaction Mesh
framework. In particular, we divide the original large spacetime
optimization problem into multiple smaller problems such that the
user can observe the adapted motion while playing-back the move-
ments during run-time. Our approach is highly parallelizable, and
achieves high performance by making use of multi-core architec-
tures. The method can be applied to a wide range of applications
including motion editing systems for animators and motion retar-
geting systems for humanoid robots.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.8 [Computer Graphics]:
Applications—;

Keywords: Character animation, close interaction, spacetime con-
straints

1 Introduction

Close interactions of characters such as dancing and fighting are
widely seen in computer animations, interactive games, movies and
TV commercials. However, automatic synthesis of such motions is
not an easy task as the close contacts between the body parts can
easily result in collisions and interpenetrations. Imagine a situation
where the body parts of the characters are tangled with one another
such as dancing. Collisions and penetrations can easily happen.
Since such kind of artifacts strongly affect the realism of the an-
imation, a huge amount of computation is spent on detecting and
handling the collisions to alleviate this problem. As a result, de-
signing and creating such kind of interactions still require a lot of
manual work by experienced animators.

While recently proposed methods based on the spatial relationships
between the characters and objects in the environment [Ho et al.
2010] have shown a promising direction for solving this problem,
the computational cost required makes it difficult to be applied to
interactive applications. The problem lies in the design of the space-
time optimization in the Interaction Mesh [Ho et al. 2010] motion
adaptation framework. In [Ho et al. 2010], all frames of the motion
are edited at once by solving a spacetime optimization problem.

∗Email: edmond@comp.hkbu.edu.hk

The advantage of such an approach is the smoothness of the pro-
duced motions as we can take into account the influences among
different frames when solving them simultaneously. However, the
drawback of this method is that solving such a large problem will
usually result in slow convergence, especially when the number of
variables and constraints is large. As a result, a huge amount of
computation is required.

In this research, we accelerate the performance of the method pro-
posed in [Ho et al. 2010] by introducing the idea of multiresolution
optimization in the temporal domain. We first produce a multires-
olution structure of the motion by extracting keyframes from the
original motion. A coarser version of the motion is first computed
by solving a smaller scale spacetime optimization by optimizing
the keyframes. Next, starting from the motion computed at the
coarser level, the fine details of the motion between the keyframes
are adjusted by solving another series of smaller scale spacetime
optimization problems. Our multiresolution approach improves the
convergence of the optimization problem and thus speeds up the
motion adaptation process. In addition, the highly parallelizable
nature of our approach enables the motion to be edited on-the-fly
interactively when playing back the animation.

Our approach has many advantages compared to existing motion
editing techniques that can handle close interactions. Using our
method, the user can interactively change the sizes of the characters
and also edit the postures during close interactions, which makes
the method suitable for animators to edit and produce animations.
As we compute the movements by solving linear problems, we can
easily impose constraints such as ZMP and physical constraints. As
a result, our method can be applied to interactive applications such
as motion editing and online control of humanoid robots.

1.1 Contributions

The contributions in this paper are summarized as follows:

• We propose a multiresolution approach which can be applied
to the Interaction Mesh framework to synthesize close inter-
actions between characters efficiently while satisfying linear
constraints.

• The proposed method is highly parallelizable and can be used
on-the-fly when playing back animations. By this, near-
realtime performance can be achieved.

2 Related Work

In this section we review the related work in synthesizing character
animations by spacetime optimization and its extensions.

Spacetime constraints [Witkin and Kass 1988] is a method to syn-
thesize realistic animation by spatiotemporally optimizing the mo-
tion subject to constraints based on body positions, kinematics and
dynamics. It solves the problem of high frequency movements
which can appear when per-frame motion editing methods (e.g. In-
verse Kinematics (IK)) are used. Rose et al. [Rose et al. 1996]
create transitions between human motion segments by spacetime

constraints. Gleicher [Gleicher 1997] applies spacetime optimiza-
tion and motion displacement map [Bruderlin and Williams 1995;
Witkin and Popovic 1995] to optimize the motion to follow the
target trajectories. Using motion displacement map allows a rel-
atively larger interval between keyframes. As a result, the number
of variables to be solved is reduced and the performance can be im-
proved. The approach has also been applied to motion retargeting
[Gleicher 1998], which is to use the captured motions for characters
with identical structure but in different body sizes.

Liu et al.[Liu et al. 2006] simulate realistic interactions of two char-
acters such as one character avoiding another and a parent pulling
the hand of the child by iteratively applying such spacetime opti-
mization to each character. Ho et al. [Ho et al. 2010] propose to
use Interaction Mesh to represent the spatial relationships between
the body segments of the characters. By maintaining the shape of
the Interaction Mesh while editing and retargetting the motions by
spacetime constraints, the context of the close interaction can be
preserved.

Physically plausible motions can also be generated by using an ap-
propriate objective function and constraints in spacetime optimiza-
tion. Popović and Witkin [Popović and Witkin 1999] apply space-
time constraints to modify the stepping pattern in captured motions
as well as generating various kinds of jumping motions. To reduce
the computational cost, the spacetime optimization is performed on
a simplified character and the result is finally retargetted to the orig-
inal character using frame-based IK. However, it is not suitable to
apply such an approach for handling close interactions as the col-
lisions of the body parts resolved by IK can result in jerky move-
ments. Liu and Popović [Liu and Popović 2002] propose a method
to convert a simple animation into a physically valid one by en-
forcing dynamic constraints such as linear and angular momentum
constraints in spacetime optimization.

Although previous approaches about spacetime optimization show
a wide variety of high quality movements can be synthesized by
spacetime constraints, the high computational costs make it difficult
to be applied to interactive or realtime applications. O’Brien et al.
[O’Brien et al. 2011] represents the body by a series of vertices
instead of segments to accelerate the optimization process. We also
use such a representation to improve the performance.

The concept of multiresolution motion editing is explored in previ-
ous works such as [Liu et al. 1994] and [Lee and Shin 1999]. [Liu
et al. 1994] propose to use hierarchical wavelet basis functions to
represent each DOF to reduce the number of discrete variable when
solving spacetime optimization. We share the same interest as in
[Liu et al. 1994] to edit the motion using coarse-to-fine motion edit-
ing technique. Lee and Shin [Lee and Shin 1999] synthesizes new
motions by combining the curves which are representing the joint
angles of the character at different resolutions. Since the constraints
(such as positional constraints) are solved at each frame individu-
ally, handling inter-frame constraints requires additional work. On
the other hand, our method is based on the original spacetime con-
straints. The performance is improved by re-arranging and dividing
the original large scale problem into multiple smaller problems. As
a result, our approach can easily fit into the existing spacetime con-
straints framework.

The work most related to ours is the one by Al-ashqar et al. [Al-
Asqhar et al. 2013]. They accelerate the motion adaptation process
by projecting the configuration to the null space of each constraints
iteratively, whose convergence is much faster [Shi et al. 2007] than
simultaneously imposing all the constraints. Using their approach,
motions with close interactions can be retargeted to different char-
acters at interactive framerate. One issue is that they do not con-
sider physical constraints and therefore the movements do not sat-

isfy physical laws. Also, the iterative approach is rather difficult to
be parallelized.

In summary, there is a wide range of previous work in spacetime
constraints and various techniques are introduced to improve the
performance. However, existing methods except either cannot han-
dle close interactions well, or even they do, their convergences is
either slow (such as [Ho et al. 2010]) or have issues handling phys-
ical constraints (such as [Al-Asqhar et al. 2013]) which can be im-
portant for some applications.

In this paper, we propose a multiresolution approach that is highly
parallelizable to accelerate the optimization process.

3 Overview

The overview of the proposed method is shown in Figure 1. Given
the reference motion, the proposed method retargets the motion
to the characters with new body sizes. Our method is divided
into two stages, the pre-processing and run-time stages. In the
pre-processing stage, the spatial relationships of the characters are
computed (see Section 4.1). Next, the motion is converted into a
multiresolution structure (see Section 5) by adaptively extracting
keyframes (see Section 5.1) from the reference motion. During
run-time, the postures in the keyframes are edited by spacetime
constraints. The postures in the middle frames are first estimated
by interpolating the adapted keyframes and finally edited by ap-
plying spacetime optimization in a short window (see Section 5.2).
Further discussion on applying parallel computing to our method is
presented in Section 5.3.

We will first briefly explain the Interaction Mesh motion adaptation
framework [Ho et al. 2010] and how we use it to synthesize close
interactions in Section 3. The Interaction Mesh framework can be
used as a frame-based motion editing process and is being used
for editing the selected keyframes in our proposed multiresolution
model (see Section 5).

4 Interaction Mesh Motion Adaptation

Framework

Interaction Mesh [Ho et al. 2010] is a volumetric mesh designed
for encoding the spatial relationships between the body parts of the
characters and objects that are closely interacting with each other.
In particular, a motion adaptation framework has been proposed in
[Ho et al. 2010] for retargetting the closely interacting characters
into different body sizes while maintaining the context of the inter-
action. In this section, we will explain the construction of the Inter-
action Mesh from motion data (Section 4.1) and how the motion is
edited by solving a constrained optimization problem (Section 4.2).

4.1 Computing the Interaction Mesh

As in [Ho et al. 2010], an Interaction Mesh is computed from the
reference motion at every frame to extract the spatial relationship
of the characters in the preprocessing stage. Interaction Mesh is a
volumetric mesh composed of vertices and edges. The vertices are
the locations of joints of the characters. The edges are computed
by Delaunay tetrahedralization [Si and Gaertner 2005] of the point
cloud (i.e. the vertices). Here, we apply the Delaunay tetrahedral-
ization to the point cloud that contains the locations of the joints of
the two characters.

Figure 1: The overview of our proposed method.

4.2 Constrained Optimization

In order to preserve the context of the motion, we preserve the ge-
ometric details of the Interaction Mesh while editing the postures.
More specifically, the distortion of the Interaction Mesh is mini-
mized subject to various constraints during the motion adaptation
process. The optimization can be applied per frame to edit each
posture or to the entire motion to synthesize a smooth motion. The
energy functions and constraints used in the proposed method are
presented below.

Notations: Let m be the number of vertices in the Interaction
Mesh, pij(1 ≤ j ≤ m) be the vertices at frame i, Vi be a vec-

tor of size 3m that includes all pij such that Vi = (pi1
⊺

, · · · , pim
⊺

),

and ṗij and V̇i be their derivatives.

4.2.1 Energy Functions

As in [Ho et al. 2010], we use the following energy functions in our
method, namely deformation energy EL(V

′
i), acceleration energy

EA(V
′
i , V

′
i−1) and constraint energy EC(V

′
i). Using the deforma-

tion energy can minimize the distortion of the Interaction Mesh. As
a result, the spatial relationships of the characters can be preserved.
In order to maintain the smoothness and continuity of the motion,
the acceleration energy is minimized.

4.2.2 Constraints

Here we explain the constraints enforced in the spactime optimiza-

tion. In particular, we use the bone-length constraints CB(V̇i), mor-

phing constraints CM (V̇i) and collision constraints CC(V̇i) pro-

posed in [Ho et al. 2010], anti-foot-sliding constraints CF (V̇i) pro-

posed in [Ho et al. 2013] and balancing constraints CCoP (V̇i) pro-
posed in [Ho and Shum 2013]. The details of each constraint are
explained below.

Bone-length, morphing and collision constraints: Bone-length
constraints are used for maintaining the distance between adjacent
joints of characters as the body segments are rigid. The poses of the
characters are gradually morphed to the target sizes using morphing
constraints for motion retargetting. In order to prevent penetrations
between the bounding volumes of the body segments, collision con-
straints are enforced and the colliding body segments will be moved
apart.

Anti foot-sliding constraints: Visual artifacts such as foot-sliding
can be produced if the motion is linearly interpolated. In order to

cope with this, we constrain the foot trajectories as follows:

CF (˙V f
i) = V

f
ref,i − V

f
i (1)

where V f
ref,i is a vector that contains the positions of the feet

joints in the reference motion, and V f
i are the elements of Vi that

represent the position of the feet joints.Adapting motions some-
times requires re-planning of the foot plants to preserve the natu-
ralness of the motions. However, this contact planning problem is
another open problem which is out of the scope of this paper. In ad-
dition, based on our observations, the requirement of big changes
of foot plants is rare when changing the proportions of body parts.
Therefore, we assume that no significant changes are needed for
adapting the motions as in [Ho et al. 2010].

Balancing Constraints: Now we explain how physical constraints
can be enforced in the optimization as in [Ho and Shum 2013].
One of the advantages of using spacetime optimization over frame-
based motion editing approaches is that physical constraints can be
enforced to produce physically feasible motions. In our proposed
method, the balance of the character is maintained by constraining
the Center of Gravity (CoG) to be lying within the supporting sur-
face on the ground. Specifically, the vertical projection of the CoG
on the ground is defined as CoGground and the supporting surface
is evaluated as the area bounded by the planted foot/feet. The Cen-
ter of Pressure CoP is the closest point from the supporting surface
to CoGground. To maintain the balance of the character, CoP is
set as the target location of CoGground:

CCoP (V̇i) = (CoGground,i + JCoGground,iV̇i)− CoPi (2)

where JCoGground,i is the Jacobian of the position derivative of
CoGground with respect to the joint position derivatives, CoPi is
CoP at frame i. We enforced the balancing constraints in one of
the experiments and the details are discussed in Section 6.4.

Soft and hard constraints: In the proposed method, anti foot-
sliding constraints are set as hard constraints, and the bone-length,
collision, balancing and the rest of the position constraints (includ-
ing the morphing constraints) are set as soft constraints. While
maintaining the correct bone-lengths and avoiding penetrations be-
tween body parts are important, bone-length and collision con-
straints are set as soft constraints to stabilize the motion when there
is little open space. The balancing constraint is also defined as soft
constraint because the character may not be able to keep the balance
without re-planning the stepping pattern while satisfying other con-
straints.

4.3 Iterative Morphing

The adapted motion is computed by solving

argminV̇i,λi(1≤i≤n)EL + w∆EA + wEC + λ
⊺

i (Hi
˙V f
i − hi)

(3)

where λi are the Lagrange multipliers, Hi
˙V f
i − hi are the hard

constraints, w∆ is a constant weight (we use 0.2), and w is a vector
of weights for bone-length, collision, balancing and position con-
straints, which are set to 4.0, 5.0, 5.0 and 0.4, respectively. Finally,

the updated motion can be obtained by Vi + V̇i.

The weights for different energy terms can be adjusted according
to the desired effect. For example, in the current setting, the weight
of positional soft constraints are smaller than the bone-length, col-
lision and balancing constraints because we want to retarget body
size precisely and avoid penetration of body parts when adapting
the motions. Since satisfying positional constraints is less impor-
tant in our experiments, we used a smaller weight for the positional
soft constraints to stabilize the motion. On the other hand, if posi-
tional constraints are more important (e.g. in reaching motion), the
weight of the positional soft constraints term can be larger.

5 Multiresolution Motion Adaptation

The main idea of our multiresolution motion adaptation approach is
to reduce the computation of spacetime optimization by first solving
the problem using a sparse number of keyframes, and then fine-
tuning the results by solving a smaller scale problem locally using
a shorter window. Figure 2 illustrates how the method works.

Our multiresolution motion adaptation technique is described in the
rest of this section. We first describe how to compute the keyframes
in Section 5.1. We next describe how to adapt the motion in Section
5.2.

5.1 Adaptive Keyframing

Now we explain how we adaptively sample keyframes from the
reference motion. The quality of the resulting motion is highly
affected by the keyframe selection as the initial estimation of the
in-between motion is interpolated by the keyframes. We compare
two commonly used keyframe selection methods, Curve Simplifi-
cation [Lim and Thalmann 2001] and Frame Decimation [Li et al.
2005]. To compare the two methods, we implement them and ex-
tract keyframes from a highly dynamic motion (judo, see Figure
4(a)) and a less dynamic motion (hugging, see Figure 5(a)). In or-
der to fit the Curve Simplification method into our framework, the
curves are computed based on the 3D joint positions instead of the
joint angles as done in the original framework [Lim and Thalmann
2001]. In addition, all DOF are considered in our comparison in-
stead of a subset of DOF. After extracting the keyframes, we lin-
early interpolate them and compute the reconstruction error by

Reconstructerr =

m∑

i=1

k∑

j=1

(pjrec,i − p
j
ori,i)

2
(4)

where Reconstructerr is the motion reconstruction error of the
characters, m is the total number of frames, k is the total number
of joints, i and j are the indices, and p

j
rec,i and p

j
ori,i are the po-

sition of the j-th joint in Cartesian coordinates at i-th frame in the
reconstructed and original motions, respectively.

The Reconstructerr of the two methods are compared in Figure
3, where CS and FD refer to Curve Simplification and Frame Dec-
imation, respectively. It can be observed Frame Decimation out-
performs Curve Simplification method in terms of motion quality,

especially when the number of keyframes is small. The brute-force
search in Frame Decimation extracts a near-optimal keyframe set
which produced smaller reconstruction error in the experiments.
One disadvantage of using Frame Decimation is that the computa-
tional cost is significantly higher when compared with Curve Sim-
plification. However, the keyframes can be extracted in the pre-
processing stage. Therefore we use Frame Decimation approach in
our proposed framework.

In case that high performance is required for keyframe extrac-
tion, for example, when retargetting live captured motion from the
user/player in interactive games, the Curve Simplification approach
can be used with appropriate settings.

5.2 Motion Adaptation

In this section, we explain the process of adapting motion at run-
time. In the original Interaction Mesh framework [Ho et al. 2010],
the whole motion is edited at once by spacetime optimization. The
large number of variables and constraints lead to slow convergence.
Here we reduce the computational cost by first performing the
spacetime optimization at the coarser level Lv0. In other words,
we are editing the keyframes at Lv0 instead of all the frames of the
motion. Since the number of frames to be solved is reduced, the
number of variables and constraints are also reduced accordingly.
As a result, the computational cost is greatly reduced. The edited
keyframes will then be used for updating the motion in the finer
level.

The first step of the motion adaptation process is to compute coarser
level Lv0 by adaptive keyframing (Section 5.1) from the reference
motion. Then, after solving the spacetime optimization on Lv0 , we
compute the motion of the frames on the finer level (denoted here
by Lv1) by linearly interpolating the in-between frames between
every two consecutive keyframes. As these interpolated postures
may not satisfy the constraints (e.g. bone length constraints), we
use the interpolated postures as the initial guess for the spacetime
optimization in the finer level.

Small window spacetime optimization At Lv1, the keyframe pos-
tures computed in Lv0 will be fixed (i.e. will not be changed during
the later optimization) and the poses between them are adapted by
spacetime optimization. We use the same optimization method as
done in Lv0. Since the number of frames between two consecu-
tive keyframes is small, this spacetime optimization problem can
be solved quickly. The motion between each pair of keyframes is
repeatedly computed to obtain the final animation. The foot trajec-
tories of the original motion are used as the target position of the
anti foot-sliding constraints to avoid foot sliding.

5.3 Parallel Computing

In this section, we explain the use of parallel computing to improve
the performance of the proposed method. We will explain how to
perform parallel computing in two different levels - global and lo-
cal. On the global level, the proposed multiresolution hierarchi-
cal model enables motion editing and play-back in parallel. More
specifically, only a small amount of time is required for the space-
time optimization at the coarser level, and the small window opti-
mization can be done on-the-fly when playing back the animation
in the previous short window. As a result, the animators can inter-
actively edit the character poses and their sizes and observe how
such edits affect the animation sequence.

The spacetime optimization in the short window is highly paral-
lelizable. When preparing the constraints matrices for the optimiza-
tion, there is no dependency between the computations on differ-
ent frames. As a result, we can utilize multiple cores/threads on

Figure 2: An example of a multiresolution hierarchical model. The red and blue rectangles indicate different smaller scale optimizations.

(a) (b)

Figure 3: The reconstruction error obtained from different keyframe extraction approaches on (a) Ohgoshi motion and (b) Hugging motion.

CPU/GPU to compute the constraint matrix for each frame in par-
allel to reduce the time required. We implement our method both on
CPU and GPU; the implementation details are explained in Section
6.

6 Experimental Results

To evaluate the effectiveness of the proposed method, we evaluate
the computed movements in terms of motion quality and compu-
tational cost. In terms of the quality, we first check whether the
proposed method can accurately retarget the reference motions to
the target character sizes by evaluating the bone length error. We
also examine the smoothness of the motion by comparing the move-
ments with those computed by the original Interaction Mesh frame-
work. Finally, we compare the computational cost of our approach
and the original Interaction Mesh framework. The experiments are
done using judo, hugging and fighting motions between two charac-
ters. The original Interaction Mesh approach [Ho et al. 2010] is run
with 10, 20 and 30 iterations in the experiments. Finally, we show
an additional experiment which enforces body balance constraints
to ensure physical correctness of the retargeted motions.

Notations: For simplicity of the explanation, we refer the original
Interaction Mesh spacetime optimization approach as SP , the pro-
posed multiresolution approach with Frame Decimation keyframe
extraction as MR.

6.1 Average Bone Length Error

The average bone length error is computed by

Boneerr =
1

m

m∑

i=1

1

n

n∑

j=1

|lenj
tar,i − len

j
act,i|

len
j
tar,i

(5)

where Boneerr is the average bone length error of the characters,
m is the total number of frames, n is the total number of body

segments, i and j are the indices, and len
j
tar,i and len

j
act,i are the

target and actual bone lengths of the j-th segment at i-th frame,
respectively.

Judo Motion, Ohgoshi Throw: In this experiment, we retarget the
highly dynamic judo motion to characters with new morphologies.
The screenshots of the original and retargeted motions are shown in
Figure 4. The bone lengths and body segments of the thrower and
defender are uniformly scaled up and down by 10%, respectively.
The results are listed in Table 1.

From the results produced by SP , the bone length error rate is high
(4.72%) when the motion is computed by 10 iterations. The bone
length error rate dropped significantly to 0.41% by using 20 itera-
tions and coverage slowly to 0.39% with 30 iterations.

For the proposed method, we extract two sets of keyframes, 11 and
19 keyframes. From Table 1, the results show that the average bone
length error decreases in the order of 65-75% when the number
of iterations at Lv1 is doubled (from 5 to 10). When comparing
MR to SP , the results show that using MR results in lower bone
length error rate compared to SP for a similar amount of com-
putation time. For example, when solving SP with 10 iterations,
Boneerr=4.72% and the time required is 2.55 seconds. Using MR
with 11 keyframes (10 iterations at Lv0 and 5 iterations at Lv1), we
get Boneerr=0.53% when a similar amount of computation (2.46
seconds).

Hugging - 1 In this experiment, we retarget the less dynamic hug-
ging motion to characters with new morphologies. The screenshots
of the original and retargetted motions are shown in Figure 5 (a)
and (b). Again, the bone lengths and body segments of one char-

(a)

(b)

Figure 4: The screenshots of the Ohgoshi motion - (a) Original motion. (b) Retargetted motion.

(a)

(b) Hugging - 1

(c) Hugging - 2

Figure 5: The screenshots of the hugging motion - (a) Original motion. (b) and (c) Retargetted motions.

Table 1: Results of the retargetted Ohgoshi motion

Method
Number of Number of Iterations Bone Length Joint Velocity Optimization Total time
Keyframes Lv0 Lv1 Error (%) Difference at Lv0 (s) (s)

Spacetime
- -

10 4.72 0.00
-

2.55
20 0.41 0.00 4.99
30 0.39 0.00 7.43

Frame Decimation

11
10 5 0.53 0.01 0.54 2.46
15 5 0.28 0.01 0.74 2.65
10 10 0.12 0.02 0.51 4.27

19
10 5 0.27 0.00 0.69 3.47
15 5 0.20 0.00 1.01 3.76
10 10 0.10 0.00 0.71 6.27

acter were uniformly scaled up by 10% (Figure 5 (b) blue) and the
other character were uniformly scaled down by 10% (Figure 5 (b)
red). The results are listed in Table 2.

From the results produced by SP , Boneerr=1.28% when 10 iter-
ations were used. The bone length error rate dropped to 0.76% by
solving 20 iterations and coverage slowly to 0.72% at 30 iterations.
The results are similar to those obtained using SP on the judo mo-
tion explained previously.

When comparing our method MR with SP , again, MR con-
sistently outperforms SP when a similar amount of computa-
tion is spent. For example, when solving SP in 10 iterations,
Boneerr=1.28% and the time required is 5.70 seconds. In MR
with 15 keyframes (15 iterations at Lv0 and 5 iterations at Lv1),
we obtained Boneerr=0.62% when a similar amount of computa-
tion (5.20 seconds) is spent. This pattern also applies to MR with
27 keyframes (10 iterations at Lv0 and 10 iterations at Lv1), in
which Boneerr=0.56% and 11.58 seconds is spent. On the other
hand, Boneerr=0.76% is obtained when spending 11.21 seconds
on solving 20 iterations in SP .

Hugging - 2 In the third experiment, we retarget hugging motion to
characters with another set of morphologies which are having larger
scaling factors than those in the second experiment. The screen-
shots of the retargetted motions are shown in Figure 5 (c). The
bone lengths and body segments of one character was uniformly
scaled up by 20% (Figure 5 (c) red) and the other character were
uniformly scaled down by 20% (Figure 5 (c) blue). The results are
listed in Table 3.

Since the characters are scaled more than the second experiments,
the bone length error is expected to be larger when the same number
of iterations is used when solving the optimization problem. From
the results produced by SP , Boneerr=3.62% when 10 iterations
were used. The bone length error rate dropped to 1.98% by solving
20 iterations and coverage slowly to 1.30% at 30 iterations.

When comparing our method MR with SP , again, MR con-
sistently outperforms SP when a similar amount of computa-
tion is spent. For example, when solving SP in 10 iterations,
Boneerr=3.62% and the time required is 6.57 seconds. In MR
with 15 keyframes (15 iterations at Lv0 and 5 iterations at Lv1),
we obtained Boneerr=0.78% when a similar amount of computa-
tion (5.12 seconds) is spent. Using MR with 27 keyframes (10
iterations at Lv0 and 15 iterations at Lv1) also outperforms SP , in
which Boneerr=0.22% and 13.13 seconds is spent. On the other
hand, Boneerr=1.98% is obtained when spending 12.28 seconds
on solving 20 iterations in SP .

Back Breaking Attack: In this experiment, the bone lengths and
body segments of the attacker and defender are uniformly scaled up
and down by 15%, respectively. The screenshots of the original and
retargeted motions are shown in Figure 6. The results are listed in
Table 4.

From the results produced by SP , the bone length error rate is
3.49% when the motion is computed by 10 iterations. The bone
length error rate dropped significantly to 2.20% by using 20 itera-
tions and coverage to 1.42% with 30 iterations.

For the proposed method, we extract two sets of keyframes, 20 and
30 keyframes. When comparing MR to SP , the results again show
that using MR results in lower bone length error rate compared
to SP for a similar amount of computation time. For example,
when solving SP with 10 iterations, Boneerr=3.49% and the time
required is 6.32 seconds. Using MR with 20 keyframes (15 itera-
tions at Lv0 and 5 iterations at Lv1), we get Boneerr=1.60% when
a similar amount of computation (5.27 seconds).

6.2 Average Joint Velocity Difference

The average joint velocity difference is computed by

Jointvel =
1

m

m∑

i=2

1

k

k∑

j=1

(
p
j
i − p

j
i−1

∆t
−

p
j
ori,i − p

j
ori,i−1

∆t
)2 (6)

where Jointvel is the average joint velocity difference of the char-
acters, m is the total number of frames, k is the total number of
joints, i and j are the indices, ∆t is the interval between two con-

secutive frames, and p
j
i and p

j
i−1 are the position of the j-th joint

in Cartesian coordinates at i-th and i− 1-th frame of the edited
motion, and p

j
ori,i and p

j
ori,i−1 are the position of the j-th joint

in Cartesian coordinates at i-th and i− 1-th frame of the original
motion. The Jointvel computed from the judo, hugging (1 and 2)
and back breaking attack motions are listed in Table 1, 2 and 3, and
4, respectively. The results indicate that the joint velocities differ-
ences are small and the smoothness of the motion in the original
motion is preserved in the adapted motions.

In summary, by evaluating the average bone length error and av-
erage joint velocity difference, we show that our proposed method
outperforms the original Interaction Mesh framework in retarget-
ting motions as our method can synthesize the motion when a sim-
ilar amount of computation is used.

6.3 Computational Cost

In this section, we compare the performance of the proposed
method with SP in terms of computational cost. Table 1 to 4 show
that the computational costs of the motions produced by MR is sig-
nificantly lower than those computed by SP when the Boneerr is
at similar level. For example, when retargetting the judo motion, the
total time required by the MR with 19 keyframes (10 iterations at
Lv0 and 5 iterations at Lv1) is 3.47 seconds, which is only 46.70%
of the time required by the SP with 30 iterations.

In addition, the proposed multiresolution approach can retarget the
motions on-the-fly when playing back the animation. As explained
in Section 5.3, only Lv0 optimization has to be solved before dis-
playing the animation in the initial stage. Using the judo example
again, while the total time required by MR is 3.47 seconds, the Lv0
low-resolution optimization took 0.69 seconds only as shown in Ta-
ble 1. For Lv1 optimization, which is the full-resolution small win-
dow optimization, the average time required for solving one frame
in one iteration is 6.12 ms. Using a standard 30Hz frame rate (i.e.
33.33 ms per frame) for playing back animations and movies, our
proposed method can solve 5 iterations for two characters on aver-
age in the Lv1 optimization on-the-fly.

The experiments are run on a computer with Intel Core-i7 Processor
3.40 GHz and nVidia GeForce GTX 285 graphics card. The system
is implemented on Windows with Visual C++. The constraint ma-
trices are calculated in parallel on 4 threads on CPU using OpenMP
[OpenMP Architecture Review Board 2008] and ViennaCL 1.1.2
[Rupp 2011] is used as the linear solver on GPU.

In summary, experimental results show that our proposed method is
more computationally efficient than the original Interaction Mesh
framework. In addition, the multiresolution approach enables mo-
tion retargetting and playing back the animation in parallel. By this,
we can achieve a near-realtime performance with a small amount
of time required for Lv0 optimization as initialization.

Table 2: Results of the retargetted Hugging - 1 motion

Method
Number of Number of Iterations Bone Length Joint Velocity Optimization Total time
Keyframes Lv0 Lv1 Error (%) Difference at Lv0 (s) (s)

Spacetime - -
10 1.28 0.00

-
5.70

20 0.76 0.00 11.21
30 0.72 0.00 16.85

Frame Decimation

15
10 5 0.81 0.00 0.88 4.74
15 5 0.62 0.00 1.31 5.20
10 10 0.52 0.00 0.89 8.72

27
10 5 1.10 0.00 1.42 6.60
15 5 0.91 0.00 2.09 7.14
10 10 0.56 0.00 1.34 11.58

Table 3: Results of the retargetted Hugging - 2 motion

Method
Number of Number of Iterations Bone Length Joint Velocity Optimization Total time
Keyframes Lv0 Lv1 Error (%) Difference at Lv0 (s) (s)

Spacetime - -
10 3.62 0.00

-
6.57

20 1.98 0.00 12.28
30 1.30 0.00 18.09

Frame Decimation

15
15 5 0.78 0.01 1.63 5.12
10 15 0.33 0.00 1.24 11.75
15 15 0.23 0.00 1.60 12.03

27
15 5 0.55 0.00 2.31 6.18
10 15 0.22 0.00 1.71 13.13
15 15 0.22 0.00 2.33 13.81

(a)

(b)

Figure 6: The screenshots of the back breaking attack motion - (a) Original motion. (b) Retargetted motions.

Table 4: Results of the retargetted Back breaking attack motion

Method
Number of Number of Iterations Bone Length Joint Velocity Optimization Total time
Keyframes Lv0 Lv1 Error (%) Difference at Lv0 (s) (s)

Spacetime - -
10 3.49 0.00

-
6.32

20 2.20 0.00 11.70
30 1.42 0.00 17.24

Frame Decimation

20
10 5 2.31 0.02 1.46 4.78
15 5 1.60 0.01 1.82 5.27
10 15 1.25 0.02 1.50 11.95

30
10 5 2.53 0.00 1.89 5.83
15 5 2.22 0.00 2.35 6.07
10 15 1.51 0.00 1.80 13.34

6.4 Motion Adaptation with Body Balance Constraints

In this experiment, we present an example of retargeting a carrying
object motion while enforcing body balance constraints to ensure
the physical correctness of the motion. Specifically, we added a
soft constraint to guide the Center of Pressure (COP) of the char-
acter to be lying over the support polygon to maintain the balance
while retargeting the motion to a character with larger body sizes
(i.e. 10% larger). The results are shown in Figure 7. The result
generated by our method (Figure 7 (c)) shows the body parts are
coordinated such as the knees) to keep the COP to be lying over the
support polygon. The results highlight the advantage of our pro-
posed method over another real-time motion adaptation approach
[Al-Asqhar et al. 2013] in which physical constraints can be en-
forced in our method to produce physically feasible motions. The
readers are referred to the attached video demo to evaluate the qual-
ity of the retargeted motions.

7 Conclusion and Discussion

In this paper, we propose a multiresolution approach for solving
spacetime optimization problems efficiently. We apply our method
to retarget motions of closely interacting characters based on the
design of the Interaction Mesh framework [Ho et al. 2010]. Ex-
perimental results show that our method consistently outperforms
the original Interaction Mesh framework in terms of motion qual-
ity and computational efficiency. We further show that the highly
parallelizable nature of the multiresolution model enables motion
retargeting on-the-fly when playing back the animations and near-
realtime performance can be achieved.

While the experimental results show the proposed method outper-
forms the motion adaptation framework presented in [Ho et al.
2010], the selection of the parameters such as window size in the
high-resolution (i.e. fine level) optimization can affect the quality
of the resultant motion as well as the speed of the optimization.
When the size of the small window is large, the low-resolution (i.e.
coarse level) optimization step will contain sparse keyframes only.
Since the in-between frames in the small windows will be inter-
polated from the adapted keyframes, sparse keyframes will result
in over-smoothing the motion. As a result, some of the detailed
movements in the motion will be lost. In our proposed method, the
keyframes are extracted automatically using Frame Decimation. In
all of our experiments, every small window contains less than 10
frames and the detailed movements are preserved in the adapted
motions. Another advantage to keep the small windows with fewer
frames is to facilitate the optimization problem to be solved more
easily. With fewer variables and constraints in smaller windows, the
computation cost required is usually lower than large optimization
problems. As a result, higher performance in terms of speed can be
achieved.

Another related issue is the arrangement of the small windows. In
the proposed method, the keyframes will not be edited and used for
bounding the small windows. By minimizing the acceleration en-
ergy across frames in the small window spacetime optimization, we
do not encounter any results with non-smooth motion in all of our
experiments. Although no unsmoothness is observed, we expect
non-smooth motion can be produced when there is a large change
in the acceleration of the joints across the small windows. One pos-
sible solution is to have overlapping with the previous window (e.g.
last few frames in previous windows) when minimizing the acceler-
ation energy while keeping the frames in the previous window and
the border frames non-editable.

One limitation of our proposed method is the assumption in the
smoothness of the movements between keyframes. When solving

the optimization on the small windows at fine level, the in-between
frames will be interpolated from the keyframes which bound the
small window. While smooth motion can be created, some high
frequency movements such as those in the back breaking attack ex-
periment presented in Section 6 can be lost (see the attach video).
One of the possible solutions is to extract enough keyframes to cap-
ture such kind of detailed movements. Another possible solution is
to add the motion details from the original motion when editing the
motion at fine levels similar to [Lee and Shin 1999], which is one
of our future directions.

Acknowledgements

This work was supported in part by Hong Kong Baptist University
Science Faculty Research Grants (FRG1/12-13/055 and FRG2/12-
13/078) and the Hong Kong Research Grant Council (Project No.
GRF210813).

References

AL-ASQHAR, R. A., KOMURA, T., AND CHOI, M. G. 2013. Re-
lationship descriptors for interactive motion adaptation. In Pro-
ceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ACM, New York, NY, USA, SCA ’13,
45–53.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal pro-
cessing. In Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, ACM, New York, NY,
USA, SIGGRAPH ’95, 97–104.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In SI3D ’97: Proceedings of the 1997 symposium on Interactive
3D graphics, ACM Press, New York, NY, USA, 139–ff.

GLEICHER, M. 1998. Retargetting motion to new characters. In
SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 33–42.

HO, E. S. L., AND SHUM, H. P. H. 2013. Motion adaptation for
humanoid robots in constrained environments. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, 1–
6.

HO, E. S., KOMURA, T., AND TAI, C.-L. 2010. Spatial relation-
ship preserving character motion adaptation. ACM Transactions
on Graphics 29, 4, 1–8.

HO, E. S. L., CHAN, J. C. P., KOMURA, T., AND LEUNG, H.
2013. Interactive partner control in close interactions for real-
time applications. ACM Trans. Multimedia Comput. Commun.
Appl. 9, 3 (July), 21:1–21:19.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to in-
teractive motion editing for human-like figures. In SIGGRAPH
’99: Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 39–48.

LI, S., OKUDA, M., AND TAKAHASHI, S. 2005. Embedded key-
frame extraction for cg animation by frame decimation. In Mul-
timedia and Expo, 2005. ICME 2005. IEEE International Con-
ference on, 1404 –1407.

LIM, I. S., AND THALMANN, D. 2001. Key-posture extraction
out of human motion data. In Engineering in Medicine and Biol-
ogy Society, 2001. Proceedings of the 23rd Annual International
Conference of the IEEE, vol. 2, 1167 – 1169 vol.2.

(a) (b) (c)

Figure 7: The screenshots of the carrying object motion - (a) Original motion. (b) Retargetted motions obtained using [Ho et al. 2010]. (c)
Retargetted motions obtained using our method with body balance constraints.

LIU, C. K., AND POPOVIĆ, Z. 2002. Synthesis of complex dy-
namic character motion from simple animations. ACM Trans.
Graph. 21, 3 (July), 408–416.

LIU, Z., GORTLER, S. J., AND COHEN, M. F. 1994. Hierarchical
spacetime control. In Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’94, 35–42.

LIU, C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2006. Com-
position of complex optimal multi-character motions. In SCA
’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Eurographics Association,
Aire-la-Ville, Switzerland, 215–222.

O’BRIEN, C., DINGLIANA, J., AND COLLINS, S. 2011. Space-
time vertex constraints for dynamically-based adaptation of
motion-captured animation. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
ACM, New York, NY, USA, SCA ’11, 277–286.

OPENMP ARCHITECTURE REVIEW BOARD, 2008. OpenMP ap-
plication program interface version 3.0, May.

POPOVIĆ, Z., AND WITKIN, A. 1999. Physically based motion
transformation. In SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 11–20.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN,
M. F. 1996. Efficient generation of motion transitions using
spacetime constraints. In Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, SIGGRAPH ’96, 147–154.

RUPP, K. 2011. ViennaCL 1.1.2 User Manual.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND

GUO, B. 2007. Mesh puppetry: Cascading optimization of mesh
deformation with inverse kinematics. ACM Trans. Graph. 26, 3
(July).

SI, H., AND GAERTNER, K. 2005. Meshing piecewise linear com-
plexes by constrained delaunay tetrahedralizations. In Proc of
the 14th International Meshing Roundtable, 147–163.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In
SIGGRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 159–168.

WITKIN, A., AND POPOVIC, Z. 1995. Motion warping. In Pro-
ceedings of the 22nd annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’95, 105–108.

