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1 Generative Process of STHDP

We first again show the STHDP model in Figure 1.

Fig. 1. STHDP model Fig. 2. Model used for sampling.

The generative process of Figure 1 is explained as follows:

1. Sample a corpus-level time base distribution, e|λ ∼ GEM(λ)
2. Sample a corpus-level word base distribution, v|ω ∼ GEM(ω)
3. For each corpus-level word topic k:

(a) Sample a distribution over words, βk|η ∼ Dirichlet(η)
(b) Sample a word-topic-specific distribution over time topics, γk|e, ζ ∼ DP (ζ, e)

4. For each time topic l:
(a) Sample a distribution over time, αl|Γ ∼ Normal-Inverse-Gamma(Γ )

5. For each document d:
(a) Sample a distribution over topics, πd|v, σ ∼ DP (σ, v)
(b) For each word n:

i. Sample a word topic indicator, zdn
|πd ∼ πd

ii. Sample a word wdn|βzdn
∼ Mult(βzdn

)
iii. Sample a time topic indicator, odn

|zdn
, γ ∼ γzdn

iv. Sample a time word tdn|αodn
∼ Normal(αodn

)
⋆ Corresponding Author, ORCID-ID:orcid.org/0000-0002-2281-5679

⋆⋆ This work is mostly done by the authors when they were with Disney Research Los Angeles.
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2 Gibbs Sampling for STHDP

Based on Figure 2, we only explain the modified Chinese Restaurant Franchise scheme

here, as we fix the word HDP while running Chinese Restaurant Franchise (CRF) on

the time HDP as in [1]. Following the naming convention in CRF, word topics and time

topics are called word dishes and time dishes. Word documents are called restaurants

and the set of time stamps associated with one word topic is called a time restaurant. A

list of auxiliary variables are given in Table 1. Also, we use superscript to exclude data

samples. For instance, z
−ji
j means the set of all table indicators in restaurant j excluding

wji. Bold fonts means the whole set of some quartile, for instance, l means all time dish

indices. We also use dots as summation. m
·k is the number of word tables serving dish

k.

Table 1. Variables in CRF

vw a word in the vocabulary

Vw the size of the vocabulary

wji the ith word in restaurant j

tji the ith time word in restaurant j

nji the number of words in restaurant j at table i

nj· the number of words in restaurant j

zji the table indicator of the ith word in restaurant j

kji the dish indicator of the ith word table in restaurant j

mjk the number of word tables in restaurant j serving dish k

mj· the number of word tables in restaurant j

K the number of word dishes

sji the number of time words in time restaurant j at time

table i

sj· the number of time words in time restaurant j

djl the number of time tables in time restaurant j serving

time dish l

dj· the number of tables in time restaurant j

oji the table indicator of the ith time word in time restaurant

j

lji the time dish indicator of the ith table in time restaurant

j

Sampling Word Tables The full conditional of a table indicator, zji, for a word, wji,

given all other words is:

p(zji = z, wji, tji|z
−ji,w−ji, t−ji, k, o−ji, l) =

p(zji = z|z−ji)

p(wji|tji, zji = z, kjz = k,w−ji, z−ji, k, t−ji, o−ji, l)

p(tji|zji = z, kjz = k, t−ji, o−ji, l)

(1)
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where

p(zji = z|z−ji) ∝

{

njz if z is an existing table

δ otherwise
(2)

p(wji|tji, zji = z,kjz = k,w−ji, z−ji, k, t−ji, o−ji, l)

∝











fkz
(wji) if z exists

m
·k fk(wji) else if k exists

ω fknew
(wji) otherwise

(3)

where f is the conditional density of wji given all other variables. p(tji|zji = z, kjz =
k, t−ji, o−ji, l) is the extra term from the time HDP that needs special treatment. If, for

every word, we do sampling conditioned on its time word in the time HDP , it is very

slow. So we marginalize over all time tables in the time restaurant.

p(tji|zji = z, kjz = k, t−ji, o−ji, l) =

dj·
∑

o=1

p(oji = o|zji = z, kjz = k, t−ji, o−ji)

p(tji|oji = o, ljo = l, l)

(4)

p(oji = o|zji = z, kjz = k,t−ji, o−ji)

∝

{

sji if o exists

ζ otherwise

(5)

p(tji|oji = o, ljoji = l, l) ∝











glo(tji) if o exists

d
·l gl(tji) else if l exists

ε glnew
(tji) otherwise

(6)

where g is the posterior predictive distribution of a Gaussian, a t-Distribution.

Sampling Word Dishes Sampling a word topic for a word table z in restaurant j, with

the associated words wjz and time words tjz, follows:

p(kjz = k,wjz, tjz|w
−jz,

t−jz, z−jz, k−jz, o−jz, l−jz)

∝

{

m
−jz
·k p(wjz|•)p(tjz|•) if k exists

ω p(wjz|•)p(tjz|•) otherwise

(7)

where • means all the other variables the distribution is conditioned on. p(wjz|•) =
fk(wjz). To fully compute p(tjz|•) = p(tjz|kz = k, o−jz, l−jz) is too expensive be-

cause table z might have many words. So we randomly sample a number of them to

compute p̂(tjz|•) as an approximation, which can be computed by Equation 4.
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3 Additional Results

We show some additional patterns in the Forum dataset and TrainStation dataset in

Figure 3 and Figure 4.

Fig. 3. Additional Patterns in Forum dataset
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Fig. 4. Additional Patterns in TrainStationAdditional dataset
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