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Effect of random edge-vacancy disorder in zigzag graphene nanoribbons
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2York Centre for Complex Systems Analysis, University of York, Heslington, York YO10 5GE, United Kingdom
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The magnetic and coherent transport properties of small-width zigzag graphene nanoribbons (ZGNRs) with

monohydrogen edge passivation are investigated as a function of random edge-vacancy disorder and ribbon

length. Results from noninteracting tight-binding models with (i) nearest and (ii) up to third nearest neighbor

hopping are compared against those obtained from an extended mean-field Hubbard model for edge-defected

ZGNRs (length = 48.02 Å and width = 9.24 Å). Through ensemble averaging, a persistent magnetism and

Hubbard-U (i.e., spin-generated) conductance gap is found irrespective of the extent of random edge-vacancy

disorder. At longer device lengths (up to 144.1 Å) and at high disorder (42.5%), gaps open in the noninteracting

model systems, whereas the gap in the Hubbard-calculated systems becomes spin dependent. In all cases, the

conductance gaps increase as a function of increasing system length, although the gaps in the Hubbard systems

remain smaller due to increased robustness against edge disorder. The continuance of the magnetic state and

gap robustness in the ensemble-averaged Hubbard results indicates a complex interplay between the kinetics,

disorder, system size, and spin interaction. Such findings may serve to reinform previous studies that have used

noninteracting models to investigate disorder in ZGNRs.

DOI: 10.1103/PhysRevB.94.165126

I. INTRODUCTION

The structure and chemical functionalization of the edges
of graphene nanoribbons (GNRs) have a pronounced effect
on their spin, electronic, and transport properties [1–6]. Good
quality edges at the atomic scale and controlled ribbon sizes
are needed for accurate engineering of GNRs, with top-down
fabrication, such as e-beam lithography, being unable to meet
these aims [5,7–9]. Chemical synthesis [10,11] and unzipping
carbon nanotubes [12,13] may produce better quality edges.
However, controlled patterning of graphene into arbitrary
shapes remains within the realm (and limitations) of top-down
approaches [14].

Theoretical investigations of GNRs (including patterned
systems) consider mostly pristine edges, with realistic effects,
such as edge disorder, being less studied. Density functional
theory (DFT) simulations of disordered GNRs have been
especially lacking due to the computational expense associated
with large unit-cell calculations. As an example, Huang
et al. probed the effect of systematic edge vacancies in
small-width ZGNRs showing there to be loss of magnetism
at 33% edge-vacancy concentration [15]. More realistic, yet
computationally demanding, would be DFT applied to GNRs
with random edge-vacancy disorder using ensemble averaging
to determine the resultant properties.

Compared to DFT, model Hamiltonian calculations are
amenable to investigating random disorder due to their com-
putational efficiency and advantages in probing underlying
quantum mechanisms. Previous studies using the nearest
neighbor (simple) tight-binding (STB) model applied to
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GNRs have been quite extensive [16–25], with coherent
transport calculations showing that random edge-vacancy
disorder suppresses the conductance around the Fermi energy
due to disorder-induced localization [16], or more explicitly,
Anderson [26] localization [17–25]. These results have also
been used to explain the conduction gap seen in experimental
results [3–5].

STB calculations of ZGNRs show the ballistic transport of
these systems to be more robust relative to armchair GNRs
(AGNRs) against the effects of random edge-vacancy disorder
[16,18–20]. Mucciolo et al. reported that the disorder-induced
conduction gap in ZGNRs varies inversely as a function of
the ribbon width becoming more pronounced for high edge-
vacancy concentrations [19]. Others have stipulated similar
findings for the onset of disorder-induced gaps in ZGNRs as a
function of length, width, and degree of disorder determined
from STB calculations [20–22,25].

Missing from these tight-binding studies on defected

ZGNRs is the effect of extended hopping and local Coulomb

interaction (the so-called Hubbard-U), with the latter being

essential to generate the magnetic properties and intrinsic band

gap predicted by DFT [6]. In terms of an extended model,

next nearest neighbor hopping reproduces the asymmetry

of the ZGNR band structure, with third nearest neighbor

hopping being required for the formation of band gaps in

AGNRs [27]—an important consideration for ZGNRs with

structural edge defects. A minimal generalized tight-binding

(GTB) model capturing these features has been proposed for

monohydrogen, edge-passivated GNRs and has been shown

to accurately reproduce local spin density approximation DFT

transport results for nontrivial, edge-defected systems [28,29].
In this work, the GTB model is applied to small-width

ZGNRs to study the role of systematic versus random edge-
vacancy defects, and the interplay between the extended
hopping, mean-field Hubbard-U interaction and system size.
In this respect, perturbations to the magnetism and coherent
transport properties are investigated in small-width systems

2469-9950/2016/94(16)/165126(10) 165126-1 Published by the American Physical Society
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that are sensitive to defects to determine the most dominant
gap-opening mechanism (i.e., Hubbard U versus disorder
induced).

II. THEORY

The GTB model is defined as

H =
∑

iσ

ǫiniσ −
∑

ijσ

(tijc
†
iσ cjσ + H.c.) +

∑

i

Uniσni−σ ,

(1)

where c
†
iσ (cjσ ) is the fermion creation (destruction) operator,

which creates (destroys) an electron with spin σ = {↑,↓} at site
i (j ), and niσ = 1 or 0 is the spin-dependent number operator.
H.c. is the Hermitian conjugate. To model the edge-vacancy-
defected ZGNRs, the parameter set in Hancock et al. (2010) is
used with on-site energy ǫi equal to zero, and the Hubbard-U
(the local Coulomb interaction energy between opposite spins)
[30] set to 2.0 eV. The hopping energies tij from this parameter
set are 2.7 eV, 0.20 eV, and 0.18 eV for first, second, and third
nearest neighbor hopping, respectively. These terms describe
the spin kinetics of the system. In addition to the STB and GTB
models, an ETB (extended tight-binding model) is defined
consisting of the extended hopping terms only (up to third
nearest neighbor).

The GTB model is solved within the mean-field approxi-
mation for a half-filled system, where

niσni−σ = 〈niσ 〉ni−σ + niσ 〈ni−σ 〉 − 〈niσ 〉〈ni−σ 〉, (2)

and 〈niσ 〉 is the expectation associated with the local spin
occupancy. Using this approximation, Eq. (1) is decoupled and
linerarized into two spin-dependent Hamiltonians, which are
solved self-consistently. For more specifics about this method,
see Hancock and Smith (2003) [31].

Vacancy-defected ZGNRs are modeled either by systematic
or random removal of edge atoms. When randomly removed,
the edge atoms are equally weighted and then selected using
a pseudorandom number generator [32]. The removal process
then continues until the required edge-vacancy concentration
has been achieved. Examples of random edge-defected ZGNRs
used in this study are shown in Fig. 1. Klein defects, which are
difficult to model due to the experimentally observed vibration
of the C-C bond [33], have been removed by defining the
edge as the first two atomic rows of carbon atoms (Fig. 2). A
20-5-ZGNR (Fig. 1) therefore has 40 carbon atoms per edge,
with the percentage concentration of random edge-vacancy
defects calculated over both edges.

The magnetic properties of the ZGNRs are determined by
calculating the local spin polarization

pi =
〈ni↑〉 − 〈ni↓〉
〈ni↑〉 + 〈ni↓〉

. (3)

Averaged over the entire device,

ptotal =
∑

i pi

N
(4)

is the net average spin polarization per atom, where N is the
total number of atoms.

The coherent transport properties of the ZGNRs are
modeled using the Landauer-Büttiker formalism [34] assum-
ing the device has ideal, semi-infinite ZGNR leads. The

FIG. 1. (a) Ideal 20-5-ZGNR device used in this work that is 20

carbon atoms long (48.02 Å) and 5 carbon atoms wide (9.24 Å).

20-5-ZGNRs with randomly-generated (b) 7.5%, (c) 42.5%, and (d)

90% edge-vacancy concentrations.

spin-dependent conductance Gσ (E) is obtained from the
transmission function Tσ (E) such that

Gσ (E) =
e2

h
Tσ (E), (5)

where E is the energy, and e and h are the electron charge and
Planck’s constant, respectively. Here,

Tσ (E) = Tr
[

ŴLσ (E)GRet
σ (E)ŴRσ (E)GAdv

σ (E)
]

, (6)

where G
Ret/Adv
σ (E) are the retarded/advanced Green’s func-

tions. The left (L) and right (R) lead gamma functions (Ŵ)
are obtained from the difference in the retarded �Ret

L/Rσ (E) and

FIG. 2. Schematic of an edge-vacancy-defected portion of a 20-

5-ZGNR showing (a) a Klein defect (circled), and (b) a notch-defect

extending into the second atomic row after the Klein defect has been

removed.
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FIG. 3. GTB results of the local net spin polarization for the

systematic edge-vacancy-defected ZGNRs studied by Huang et al.

[15]. Blue circles are net spin-up and red circles are net spin-down.

Green circles are net zero spin polarization. The edge-vacancy

concentrations are 0.00, 0.034, 0.068, and 0.136 Å
−1

from left to right

(Huang et al.’s convention) with equivalent percentage edge-vacancy

concentrations also shown.

advanced �Adv
L/Rσ (E) self-energies of the leads, such that

ŴL/Rσ (E) =
[

�Ret
L/Rσ (E) − �Adv

L/Rσ (E)
]

(7)

and

�
Ret/Adv
L/Rσ (E) = V

†
L/Rg

Ret/Adv
L/Rσ (E)VL/R, (8)

where VL/R is the coupling between the ZGNR device and the
L/R lead. The retarded/advanced surface Green’s functions
for the leads g

Ret/Adv
L/Rσ (E) are obtained using the decimation

iteration method [35] and the transmission function [Eq. (6)]
is calculated using the methods described in Ref. [36]. A grid
spacing in E of 0.008 eV is used in these calculations.

III. RESULTS AND DISCUSSION

A. ZGNRs with systematic edge vacancies

The GTB model is first tested by applying it to the
systematically edge-defected ZGNRs previously investigated
by Huang et al. using local spin density approximation
DFT. These systems have length L = 28.3 Å, width W =
11.4 Å, and a defected region defined as the first row of atoms
along the top and bottom edges of the ribbon [15]. Using
Huang et al.’s convention, the edge-vacancy concentrations

per unit cell length are 0.00, 0.034, 0.068, and 0.136 Å
−1

, or
equivalently, 0%, 8.3%, 16.7%, and 33.3%.

The GTB results for the local spin polarization per atom
(pi) as a function of the edge-vacancy concentration are
calculated within the unit-cell approximation (Fig. 3). The
radii of the circles are the local net spin polarizations scaled
by 0.5 + 5*pi to allow for easy visualization. The GTB spin
distributions show the local net spin polarization decreases
with increasing edge-vacancies concentration and that the

system becomes paramagnetic at 33.3% (0.136 Å
−1

) edge-
vacancy concentration, agreeing with Huang et al.’s DFT
prediction [15].

Although a seemingly interesting result, the loss of mag-
netism in the 33.3% systematically edge-defected Huang et al.

system is found to be an artefact of finite size effects and the
specific choice of systematic edge disorder. Probing finite size

FIG. 4. (a) Quantitative values taken from the GTB results (Fig. 3)

of the local magnetic moment as a function of the atomic-edge

position superimposed over Huang et al.’s results. (b) Example of

the structural and magnetic differences between the GTB and Huang

et al. systems. Images from Huang et al. used with permission.

scaling using the GTB model by doubling the unit cell size for
the 33.3% edge-vacancy-defected Huang et al. system reveals
numerous structural configurations where the magnetism is
not quenched. Increasing the unit cell size and, in turn,
increasing the length of the ribbon therefore makes it possible
for magnetism to be maintained in edge-vacancy-defected
monohydrogen-passivated ZGNRs due to regions of extended,
preserved ZGNR edge.

A site comparison of the local spin polarization per edge
atom (magnetic moment) as a function of the percentage
edge-vacancy concentration between Huang et al.’s DFT and
the GTB results shows good agreement [Fig. 4(a)]. Small
differences between the GTB and DFT solutions are attributed
to the ionic relaxation in the DFT calculation, which is not
fully accounted for in the minimal GTB model [Fig. 4(b)].
The largest structural differences are around the defect site
[Fig. 4(b)] consistent with the GTB model being parameterized
against fully-relaxed SIESTA results for ideal GNRs [28].
Given the good agreement shown in Fig. 4(a), and with the
view of maintaining a minimal model approach, we conclude
that the GTB model adequately describes the magnetism in

165126-3



J. P. C. BALDWIN AND Y. HANCOCK PHYSICAL REVIEW B 94, 165126 (2016)

FIG. 5. (a) The local net spin polarization at the lead-device

interface on an edge atom (x) and internal atom (◦) for a 51.3% edge-

vacancy-defected 20-5-ZGNR device as a function of the number of

ideal ZGNR units in the lead region. Convergence against the ideal

system results (horizontal lines) occurs at a nondefected lead length

of eight 5-ZGNRs. (b) Structure of the defected 20-5-ZGNR device

with the required eight 5-ZGNR-unit ideal leads (black background).

edge-defected ZGNRs and move forward to study the effect
of random edge vacancies in small-width systems.

B. Random edge-vacancy-defected ZGNRs

In this section, the effect of random edge-vacancy defects
are studied in 20-5-ZGNRs (Fig. 1) with their properties
calculated using ensemble averaging. The small size of these
systems enables a good range of edge-vacancy concentrations
to be probed while remaining computationally tractable
with respect to the total number of atoms and Hubbard-U
convergence. The reduced width of the systems also means
that they are sensitive to defect-induced transport perturbations
and to changes in size arising from the kinetics and Coulomb
interactions in the model.

1. Convergence tests and ensemble averaging

Before calculating the transport properties of the randomly
defected 20-5-ZGNRs, a convergence test is required to
ensure continuity of the magnetism from the device into the
semi-infinite ideal ZGNR leads. To perform this test, the local
spin polarization on the edge and internal atoms of a 51.3%
heavily-defected 20-5-ZGNR is measured as a function of the
number of ideal ZGNR units in the lead region [Fig. 5(a)].
The result shows that a minimum length of eight 5-ZGNR
units is required before the magnetism at the end of the leads
matches that of an ideal 5-ZGNR (this being the convergence
criterion). This additional lead length [Fig. 5(b)] is then used
in all subsequent transport calculations.

To determine the effect of random edge vacancies on the
calculated properties of the ZGNRs, an ensemble average is
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FIG. 6. Convergence of the maximum standard error associated

with the ensemble-averaged spin-dependent GTB conductance deter-

mined in the range 1.5 eV � E − EF � 1.5 eV for a 7.5% random

edge-vacancy-defected 20-5-ZGNR.

taken:

χ ≈ x̄ =
1

N

N
∑

i=1

xi, (9)

where xi is the measured property for the ith system in a
sample size of N , x̄ is the average value of that property taken
over N , and χ is the ensemble average. Each system in the
ensemble average is equally weighted as the variation in the
total energy per system is small (approximately ±10−4 eV).

The confidence in the sample mean of the measured
property is calculated using the standard error:

SE =
σ

√
N

, (10)

where σ is the standard deviation. To determine a repre-
sentative value of N , a convergence test is performed for
the maximum SE pertaining to the ensemble-averaged spin-
dependent GTB conductance of a 7.5% edge-vacancy-defected
20-5-ZGNR in the range 1.5 eV � E − EF � 1.5 eV (Fig. 6)
(this being a key property investigated in this work). A 7.5%
defected system is selected as this leads to a maximum
number of N possible system configurations. The results
for the convergence test show that a minimum of N = 50
configurations is adequate to ensure sufficient maximum
statistical accuracy of ±0.06 e2/h while still allowing for
the GTB calculations to remain computationally tractable.

2. Ensemble-averaged magnetic properties

The antiferromagnetic, lowest-energy state in monohydro-
gen edge-passivated ZGNRs (Z1-edge) is attributed to Leib’s
theorem based on the Hubbard model applied to a bipartite
lattice [37]. More recently, Clar’s aromaticity rule [38,39]
has provided a simple means of predicting and explaining
magnetism in GNRs such that nonaromatic edges with <1/3
aromaticity are magnetic [40,41]. In this respect, an ideal
Z1-edge, which is 100% nonaromatic can have aromaticity
introduced by adding vacancy-formed, monohydrogen passi-
vated armchair edge structure.

165126-4
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FIG. 7. GTB prediction for the ensemble-averaged net spin

polarization per atom in 20-5-ZGNRs showing persistent magnetism

throughout the edge-vacancy concentration range. Error bars corre-

spond to the standard errors associated with these measurements. A

parabolic fit to these data is included to guide the eye.

Against the ideal Z1 result, the edge-vacancy-defected 20-
5-ZGNRs have a parabolic variation in the ensemble-averaged
net spin polarization per atom as a function of the increasing
percentage of random edge-vacancy defects (Fig. 7). At each
edge-vacancy concentration, the ensemble-averaged result
remains antiferromagnetic in contrast to the systematic edge-
defected 12-6-ZGNR, which became paramagnetic at 33.3%
edge-defect concentration (cf. Fig. 3). With respect to Clar’s
aromaticity rule, the persistent magnetism in the 20-5-ZGNR
can be explained by a finite probability of systems in the
ensemble population having nonaromatic magnetic edges.
This understanding also explains how doubling the unit cell
length for the 33.3% edge-vacancy-defected Huang et al.

system reveals several configurations where magnetism is
preserved due to local regions of nondefected ZGNR edge
(see also the previous discussion in Sec. A).

The possibility of persistent magnetism in random edge-
vacancy-defected GNRs provides support for the use of
ensemble averaging and an interacting spin-dependent model,
such as the GTB, in preference to noninteracting STB and
ETB models. This brings to bear an important consideration
as to how the local Coulomb interaction (i.e., Hubbard term),
in conjunction with other mechanisms, such as disorder-
induced localization, determines the coherent transport and
gap-forming properties of these systems.

3. Ensemble-averaged transport

To answer this question, we investigate the key gap-
formation processes arising from the extended hopping and
mean-field Hubbard-U in random edge-vacancy-defected 20-
5-ZGNRs by comparing the ensemble-averaged STB, ETB,
and GTB coherent transport results as a function of the edge-
vacancy concentration. For detailed transport comparisons,
representative edge-vacancy concentrations of 7.5%, 42.5%,
and 90% (low to high) are chosen (see Fig. 1).

Irrespective of the model used and degree of edge-vacancy
concentration, edge-vacancy defects reduce the overall charge-
carrier conduction compared to the ideal (nondefected) results
in agreement with other STB studies [16,19,21,23] (Fig. 8).
At low (7.5%) edge-vacancy concentration, both the STB
and ETB noninteracting systems remain metallic about the
Fermi energy (EF ) with the ETB result exhibiting a greater
conductance due to increased kinetics caused by the extended
hopping [Fig. 8(a)]. In comparison, the GTB result shows the
width of the Hubbard-U gap remains relatively impervious to
disorder despite the overall reduced conductance caused by
the defect-induced removal of conduction channels [inset of
Fig. 8(a)]. Both observations can be explained by the robust-
ness of the edge states against disorder in the noninteracting
and interacting systems.

At increased edge-vacancy concentration (42.5%), a sig-
nificant reduction in the overall conductance occurs for the
defected systems bringing the STB, ETB, and GTB results
into closer alignment [Fig. 8(b)]. Closer inspection of the
gap region (inset) shows that the width of the GTB gap
remains intact despite an even greater reduction in the overall
conductance. Due to larger notched regions and pronounced
structural asymmetry across the ribbon edges, the GTB result
has also become spin dependent. In comparison, the STB
conductance is significantly reduced in the gap region with
large gaps induced due to a substantial loss of conduction
channels. In the ETB result, which has increased kinetics, there
is still notable conduction in the gap region with indication
of conduction dips, again due to the removal of numerous
conductance channels. In both the STB and ETB cases, the
conduction at EF persists against the measured local maximum
SE uncertainty of ±0.008 e2/h.

With a further increase in the edge-vacancy concentration
to 90%, the ensemble-averaged STB, ETB, and GTB con-
ductance results appear to recover [Fig. 8(c)]. This recovery
is particularly apparent in the gap region for the STB and
ETB results and is associated with these systems becoming
more similar to a smaller-width 20-3-ZGNR device with 10%
added edge-atom concentration [cf. Fig. 1(d)]. In this respect,
the structural protrusions that have caused significant loss of
conductance, hence increased charge-carrier localization, have
been progressively removed as the edge-vacancy concentration
increases above 50%.

A quantitative comparison of the degree of conductance in
these systems is made by plotting the integrated conductance
calculated via Simpson’s rule over the range −0.5 eV <

E − EF < 0.5 eV as a function of increasing edge-vacancy
concentration [Fig. 9(a)]. The results show similar trends
in the integrated conductance across all three models with
the greatest measured differences occurring at 0–20% and
70–100% edge-vacancy concentrations. Within these ranges,
the STB results tend toward the GTB results, whereas the ETB
shows, in general, greater conductance due to increased kinetic
degrees of freedom. Between 32.5% and 51.3% edge-vacancy
concentrations, all three models closely coincide as each
system becomes similarly affected by the loss of conduction
channels and the increase in notched edge structure.

A detailed study of the conduction measured at EF as a
function of the edge-vacancy concentration shows persistence
of the metallic state in the STB and ETB systems [Fig. 9(b)].

165126-5
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FIG. 8. STB, ETB, and GTB results for the ensemble-averaged

conductance (G) as a function of the energy E, relative to the Fermi

energy EF , in an ideal 20-5-ZGNR, and with (a) 7.5%, (b) 42.5%, and

(c) 90% random edge-vacancy concentrations. The insets are zoomed-

in views of the conductance about EF . A maximum uncertainty of

±0.06 e2/h occurs in the SE of these results. However, in the 42.5%

noninteracting solutions, a ±0.008 e2/h local SE uncertainty occurs

at EF , thus maintaining finite conductance at this point.

0 20 40 60 80 100

% Edge-vacancy Concentration

0

0.5

1

1.5

G
[e

2
/h

]

STB
ETB
GTB - Spin-Down

GTB - Spin-Up 

0 20 40 60 80 100

% Edge-vacancy Concentration

0

0.5

1

1.5

2

∫G
[e

2
/h

]

STB
ETB
GTB - Spin-Down

GTB - Spin-Up 

(a)

(b)

FIG. 9. (a) The integrated STB, ETB, and GTB ensemble-

averaged conductance (
∫

G) measured over the energy range

−0.5 eV < E − EF < 0.5 eV, and (b) comparison of the ensemble-

averaged conductance measured at EF for the STB-, ETB-, and GTB-

calculated 20-5-ZGNRs, as a function of increasing edge-vacancy

concentration. The conductance at EF in the noninteracting models

does not go to zero despite accounting for the ± SE uncertainties of

these measurements.

In the GTB system, the conductance at EF remains zero due to
the intrinsic conduction gap. Although the results for all three
models very closely agree between 42.5% and 51.3% edge-
vacancy concentrations, the values for the conductance do not
extend below the criterion for equivalent zero conductance
(i.e., less than 0.01 ∗ e2/h for single spin [5,20,21]), even
when taking into account the maximum uncertainty in the
standard error of these measurements (±0.008 e2/h in this
vacancy concentration range). Thus, at no point as a function
of the edge-vacancy concentration are the STB and ETB results
zero conducting at EF .

We conclude that noninteracting models, such as the
widely-applied STB model and the ETB model, are not able to
describe the conduction properties of these systems due to the
GTB predictions of (i) finite magnetism, (ii) spin-dependent
transport, and (iii) an intrinsic conduction gap. The Hubbard-U
remains the chief mechanism for conduction gap formation
irrespective of the edge-vacancy concentration due to the
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resilience of the STB edge-state and increased kinetics in
the ETB systems. The stability of the GTB conductance gap
and system magnetization, even for highly edge-disordered
devices (for example, at 42.5% edge-vacancy concentration),
means that the Coulomb interactions in these systems cannot
be ignored. To investigate these effects further, the localization
properties for the edge-vacancy-defected 20-5-ZGNR will be
studied using the STB, ETB, and GTB models, and subsequent
to this, the localization properties will also be determined as a
function of the device length.

4. Localization studies

At a given energy E, the charge-carrier localization length
ζ is related to the conductance due to disorder G′ and the
conductance of the ideal system G via

G′(L) = G(L)e
−L
ζ , (11)

where L is the length of the device [42–45]. Therefore, at
constant L, the localization length is

ζ = (−ln[G/G′]/L)−1, (12)

for a single point measurement (see Ref. [16] for the use of
this equation in the study of GNRs). For systems studied as a
function of L, the localization length ζ is determined from the
inverse of the slope of the −ln[G(L)/G′(L)] versus L curve.
In both cases, charge-carrier localization is said to occur when
ζ is smaller than the device length L. As a first approximation,
we will calculate the localization length for the single-width
20-5-ZGNR, and then move to a more accurate determination
of the localization regime using Eq. (11) as a function of
increasing device length.

The exponential decay of the conductance as a function of
device length [Eq. (11)] has been established in GNRs using
the STB model [16,19,21,23]. In these studies, ZGNRs were
found to be significantly more robust compared to AGNRs
against random edge-vacancy perturbations [16]. The fact that
the localization length is inversely dependent on ribbon width
[16,19,21,23] coupled with the insensitivity of ZGNRs to
edge perturbation at large widths [16,21] provides additional
supporting evidence for the choice of ultra-thin ZGNRs in this
work.

Using Eq. 12, the ensemble-averaged localization length
ζ is calculated for the 20-5-ZGNR at 7.5% and 42.5%
edge-vacancy concentrations (Fig. 10). The results show a
significant increase in charge-carrier localization as indicated
by the reduced localization length in the device at increasing
edge-vacancy concentration (7.5% to 42.5%) independent of
the model used. The increase in charge-carrier localization
coincides with the decrease in overall conductance in Fig. 9.
Note that the 90% random edge-vacancy concentrated system
was not included here due to the increase in structurally
ideal edge in this system leading to a similar effect on the
conductance as the 7.5% result [Fig. 10(a)].

These first approximation results for the 20-5-ZGNR device
(L = 48.02 Å) show it to be within the localization regime at
all energies at 42.5% edge-vacancy concentration, independent
of the model used [Fig. 10(b)]. At 7.5% edge-vacancy
concentration, only the STB result is within the localization
regime at all energies investigated [Fig. 10(a)]. The onset
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GTB - Spin-Up - 42.5%
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Å
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(a)

(b)

FIG. 10. Effect of increasing the edge-vacancy concentration on

the ensemble-averaged localization length (ζ ) calculated for a 20-5-

ZGNR with (a) 7.5% and (b) 42.5% edge-vacancy concentrations. The

Hubbard-U gap for an ideal GTB system is indicated by the vertical

dashed lines. In (a), a horizontal dotted line has been included to

signify the device length of 48.02 Å. The maximum SE uncertainty

associated with the localization lengths in the ensemble average is

±3 Å.

of charge-carrier localization as a function of increasing
edge-vacancy disorder is in agreement with other STB model
studies (e.g., Refs. [10,19,21,22]). The fact that there is charge-
carrier localization implies that, at longer device lengths, a
conductance gap may also form as discussed in the following
section.

5. Variable device length and charge-carrier localization

The 42.5% edge-vacancy concentrated system is chosen
for detailed localization studies as previous sensitivity tests
showed the 20-5-ZGNR to be within the localization regime,
independent of the type of model investigated [Fig. 10(b)].
To begin this investigation, the noninteracting STB and ETB
results are compared to determine whether the conductance
at the Fermi energy drops below the 0.01 ∗ e2/h conduction-
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2
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42.5% - STB
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FIG. 11. Effect of the system length (Å) on the ensemble-

averaged conductance (G) measured at EF for random edge-

disordered 5-ZGNRs at 42.5% edge-vacancy concentration. Green

symbols represent the STB results and black symbols represent the

ETB results. According to the zero conductance criterion [5,20], a

value of the conductance below the green line (0.01*e2/h threshold)

is equivalent to zero, thus indicating a conductance gap. Error

bars correspond to the SE uncertainties associated with these

measurements.

gap criterion (for single spin), thus indicating the onset of a
conductance gap as a function of increasing system length.

The ensemble-averaged conductance versus device length
for the 5-ZGNR STB and ETB systems show that the ETB
conductance remains larger than the STB results at all device
lengths (Fig. 11). After fitting Eq. (11) to these results,
localization lengths of 47 Å and 49 Å are determined for
the STB and ETB systems, respectively, having maximum
uncertainties of ±3 Å. The fitting shows that the conductance at
EF drops below the 0.01*e2/h threshold at 110 Å for the STB
system and 123 Å for the ETB system, indicating the lengths
at which a conduction gap forms. These observations are in
agreement with previous trends, namely that the STB exhibits
greater charge-carrier localization effects than the ETB model
due to reduced kinetics.

In addition to these results, the criteria used by Cresti
and Roche [21,22] is applied to determine the onset of the
localization regime as a function of the system length for the
42.5% edge-vacancy-defected 5-ZGNRs. According to these
criteria, the diffusion regime is well established when

SET

〈T 〉
< 1, (13)

whereas the localization regime is well defined at

SET

〈T 〉
> 1 (14)

and

SEln(T )

〈ln(T )〉
< 1, (15)

measured at EF . Here, 〈G〉 = (e2/h)〈T 〉 links the ensemble
average of G with the ensemble average of the transmis-
sion T . The numerators in Eqs. (13)–(15) are the standard

FIG. 12. Criteria used by Cresti and Roche (light green [Eq. (13)]

and black [Eq. (14)]) as a function of increasing device length,

measured in Å, for random edge-vacancy disordered 5-ZGNRs with

42.5% edge-vacancy concentration. Circles correspond to the STB

model and diamonds correspond to the ETB model. The horizontal

line is where these criteria are established. Straight lines joining the

data points are a guide to the eye only.

errors associated with the ensemble-averaged quantities in
the denominators of these functions. Plotting these functions
with respect to the device length shows that the 5-ZGNR
with 42.5% edge-vacancy concentration is well within the
localization regime for device lengths greater than 48.02 Å
for the 20-5-ZGNR, although this system is at the starting
point for these criteria (Fig. 12).

To compare the gap properties of the STB, ETB, and
GTB systems, the ensemble-averaged conductance gap is
plotted as a function of the system length (Fig. 13). The error
bars have been obtained by determining the gaps from the
ensemble-averaged conductance results, plus and minus the

40 50 60 70 80 90 100 110 120 130 140
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FIG. 13. Effect of device length on the ensemble-average con-

ductance gap �G for random edge-disordered STB, ETB and GTB

5-ZGNRs at 42.5% edge-vacancy concentration. The 0.01 ∗ e2/h

conductance threshold [5,20] is assumed for determining zero

conductance and in defining the formation of a conductance gap.
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FIG. 14. Effect of the standard error (SE) uncertainty on the

coherent transport results. For the L = 96.1 Å case shown in (a),

the edge state appears above the 0.01*e2/h threshold criterion in

the ensemble-averaged result (main graph) and in the G − SE result

(top-right inset) leading to zero gaps, whereas a finite gap occurs in

the G + SE solution (top-left inset). In the L = 120 Å case shown in

(b), the gap for G − SE (top-inset right) is similar to the ensemble-

averaged gap results (main graph), whereas the G + SE case (top-

inset left) exhibits a larger gap.

associated SE (i.e., from the G + SE and G − SE solutions),
with the gaps defined using the 0.01*e2/h threshold criterion.
The asymmetry in the gap uncertainties can be explained by
example using the L = 96.1 Å and L = 120 Å STB results
(Fig. 14). For the L = 96.1 Å STB system [Fig. 14(a)], the
edge state appears above the 0.01*e2/h threshold criterion in
the ensemble-averaged result for G (main figure) and in the
G − SE (top-right inset) results leading to zero conductance
gaps, whereas a finite conductance gap occurs in the G + SE

solutions (top-left inset). In the L = 120 Å case [Fig. 14(b)],
the conductance gap in the G − SE results (top-right inset) is
similar in magnitude to the ensemble-averaged gap results
(main figure), whereas the G + SE case (top-left inset)
exhibits a larger gap. The results at smaller system lengths
(Fig. 13) show no uncertainties due to the stability of the edge
states against disorder.

According to Fig. 13, the noninteracting STB and ETB
models initially have a nonzero conductance gap, which
opens for the 50-5-ZGNR (L = 120.1 Å) with values of
1.29 eV and 1.13 eV for the ensemble-averaged STB and
ETB results, respectively. For the 60-5-ZGNR (L = 144.1 Å),
the ensemble-averaged conduction gaps show further increase
to 1.78 eV for the STB model and 1.68 eV for the ETB model.
Compared to the zero-gap result for the noninteracting models,
the GTB system has an intrinsic conductance gap of 0.328 eV
for the shorter 20- and 30-5-ZGNRs, increasing to 0.412 eV
for the spin-down and 0.368 eV for the spin-up channels in
the 40-5-ZGNR (L = 96.1 Å), thus showing a breaking of
the spin symmetry in the ensemble-averaged solutions. The
GTB gap in the ensemble-averaged result further increases
showing greater spin splitting for the longer 50-5-ZGNR (1.08
eV for spin-down and 0.756 eV for spin-up) and 60-5-ZGNR
(1.36 eV for spin-down and 1.20 eV for spin-up).

The noninteracting STB and ETB systems require longer
device lengths (>L = 96.1 Å) for edge-vacancy perturbations
to appear in the ensemble-averaged results (i.e., via the
opening conduction gap) due to the edge states being more
robust compared to those in the GTB interacting system. At
these longer device lengths (50-5-ZGNR and 60-5-ZGNR),
the noninteracting gaps become larger than the GTB gaps,
which can be explained by the STB and ETB systems being
more sensitive to the effects of edge-vacancy disorder. This
difference can be explained by the Hubbard-U in the GTB
model introducing nontrivial competition between the kinetics,
scattering (i.e., disorder-induced localization), and magnetic
localization.

The culmination of these results indicates that disorder-
induced localization is not the only gap-opening mechanism
for edge-vacancy-defected ZGNRs that have persistent mag-
netic properties. Taking into account the uncertainties, key
differences between the interacting and noninteracting systems
remain, namely that the GTB shows spin-dependent gap
properties not captured in the noninteracting models and that
there are differences in the size of the gaps in these systems.
The persistence of the magnetic state explained by Clar’s rule
in the ensemble-averaged results, coupled with the onset of
spin-symmetry breaking due to random edge-vacancy defect
perturbations, means that an interacting minimal model is
ultimately required to describe these systems. An exception
to this expectation may perhaps be in the limit of very high
width and short length edge-vacancy-defected ZGNRs, and,
in this respect, further work is required.

IV. CONCLUSION

The stability of the Hubbard-U conduction gap in the
ensemble-averaged GTB results for random edge-vacancy-
defected 20-5-ZGNRs, even at high edge-vacancy concen-
trations, supports the use of the GTB model over simpler,
noninteracting, model Hamiltonians in determining the prop-
erties of these systems. The effect of randomness and ensemble
averaging was found to stabilize the spin polarization in these
systems, resulting in persistent magnetism and spin-dependent
properties. Such effects can be missed if systematic edge-
vacancy studies are performed.
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The effects of increasing device length were probed
in 5-ZGNRs, with localization lengths determined as
47 Å and 49 Å (±3Å) for the STB and ETB models,
respectively. Disorder-induced localization requires longer
device lengths (>96.1 Å for the 40-5-ZGNR) to achieve
the opening of a conduction gap in the ensemble-averaged
noninteracting STB and ETB systems. The onset of the
noninteracting conductance gap was investigated, with the
ensemble-averaged STB and ETB gap results following the
same increasing trend as the GTB model for device lengths
�120 Å. Importantly, the ensemble-averaged GTB results had
smaller conduction gaps and spin-dependent gap properties
not captured by the noninteracting models. The culmination
of these investigations leads to the conclusion that due to
the nontrivial interplay between the Hubbard-U , kinetics and
disorder, that an interacting model with ensemble averaging is
required. These findings may be of interest when considering

previous and future studies that use noninteracting models to
calculate the properties of disordered ZGNRs.
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