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Extending Stochastic Resonance for Neuron Models to

General Lévy Noise

David Applebaum

Abstract—A recent paper by Patel and Kosko (2008) demonstrated sto-
chastic resonance (SR) for general feedback continuous and spiking neuron
models using additive Lévy noise constrained to have finite second mo-
ments. In this brief, we drop this constraint and show that their result ex-
tends to general Lévy noise models. We achieve this by showing that “large
jump” discontinuities in the noise can be controlled so as to allow the sto-
chastic model to tend to a deterministic one as the noise dissipates to zero.
SR then follows by a “forbidden intervals” theorem as in Patel and Kosko’s
paper.

Index Terms—Lévy noise, neuron models, stochastic differential equa-
tion (SDE), stochastic resonance (SR).

Stochastic resonance (SR) is a phenomenon wherein small amounts

of random noise can enhance the output of a system rather than de-

grading it (see, e.g., [2]). This has found a wide range of applications

in physics, biology, and medicine (see, e.g., [3] and the extensive bib-

liography in [5]). However, almost all applications up to now have

employed Gaussian noise which has continuous sample paths. On the

other hand, Lévy processes form a rich class of stochastic processes

whose paths may contain random jump discontinuities of arbitrary size

occurring at arbitrary random times and these are now being applied in

many different areas such as financial economics and quantum physics

(see [1] and references therein).

Patel and Kosko [5] have recently published the first paper dealing

with SR where the noise is a general Lévy process, however they re-

stricted to the case where the noise has finite variance. The aim of this
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paper is to demonstrate SR in continuous and spiking neuron models

using arbitrary driving Lévy processes. A Lévy process is essentially a

stochastic process with stationary and independent increments. Exam-

ples are Brownian motion, the Poisson process, and also non-Gaussian

�-stable processes �� � � � �� which have infinite variance (and also

infinite mean if � � �) and self-similar sample paths. In [5], Patel and

Kosko show that Lévy noise can lead to SR in noisy feedback neuron

models where the noise enters additively, but they required the assump-

tion that the Lévy noise has a finite second moment. This excludes

many important examples, such as the �-stable processes mentioned

above, where simulation indicates that SR will also occur. The purpose

of this brief is to show that the finite second moment assumption can

be dropped and so to establish SR for arbitrary driving Lévy processes.

We use the same notation and setup as in [5] so our driving noise

is a Lévy process �� � ���� � �
�
� � � � � � �

�
� � taking values in � that

is defined on a probability space ���� � � � which is equipped with a

filtration ���� � � ��. As in [5], we make the convenient assumption

that each ����� � � � �� is a 1-D Lévy process and that these com-

ponent processes are independent. We employ the Lévy–Ito decom-

position (see, e.g., [1]) to decompose the component process ��� into

continuous and jump parts

����	��	
���
�	

�� ���

�� 
 ���� ����	
�� ���

�� ���� ���� (1)

where for each � � � � ��	� � � 
� � �� ���
� � � � �� is a standard

Brownian motion (Bm) and  � is a Poisson random measure defined

on � � � � ���� which is independent of the Bm and has inten-

sity measure ��������� where �� is a Lévy measure. The compensated

random measure is 
 ����� ���� �  ���� ����� ���������. For each

� � � � � define � �
� �

�� ���
�� ���� ���� and � �

� � ��� � � �
� .

Then, �� �
� � � � �� and �� �

� � � � �� are independent Lévy processes

where the jump sizes of the process � �
� are all bounded by one. It fol-

lows from [1, Th. 2.4.7] that � �
� has finite moments to all orders.

To describe continuous neuron models with additive Lévy noise,

Patel and Kosko [5] introduce the stochastic differential equation

(SDE)

��� � ��������	 ��������� (2)

where�� � ���
� � � � � � �

�
� �, �

� and ��� are globally Lipschitz functions,

and we have the global bound

��
��

	������	� � ��
� � (3)

In order to focus on “pure noise” effects, we take 	� � � as in [5].

There is no loss of generality here as 	� can always be incorporated

into the drift term �. Now consider the noiseless version of (2)

��� � ��������� (4)

A key step on the way to obtaining SR in [5] is Lemma 1 therein

where it is shown that the solution to (2) converges to that of (4) in

probability as the noise dissipates to zero. Specifically, it is shown that

(under the square-integrability assumption) for all � � ��� � �

� ��
����	


�� ���
 � � � � (5)

as 
� � � and �� � � for all � � � � �. The remainder of this brief

is concerned with the extension of (5) to general Lévy noise. Specifi-

cally, we have the following.

Theorem 1: For each � � � � �, let ��� be an arbitrary real-valued

Lévy process [so it has the form (1)] and assume that the ��� ’s are

independent stochastic processes. Then, for all � � ��� � �

� ��
����	


�� ���
 � � � �

as 
� � � and �� � � for all � � � � �.

Proof: We first rewrite (2) as

��� � ��������	 ��������� 	 ���������� (6)

For each � � � � � and � � �, define

������
�

�

��� ��
����
�

 �

�

� �� ���

��� ��
���
� ����� ����

and write ���� � ������� � � � � ������. By (5), we have

� ��
����	


�� ��� � ����
 � � � � (7)

as 
� � � and �� � � for all � � � � �, so in order to establish the

required result, we need only to show that

� ��
����	


����
 � � � � (8)

as �� � � for all � � � � �, where we define �� � ����� where

� � �������  �����. Using the Cauchy–Schwarz inequality for

sums, we have

� ��
����	


����
 � � �� ��
����	


����
� � ��

��
�����

��
����	

	�����	� � ��

�� ���
�����

��
����	

	�����	� � ��

�

�� ���
�����

��
����	

	�����	 � ��
�

and so our goal is reached if we can prove that for all � � � � �� � �
��� � �

� ��
����	

	�����	 � � � � �� ���
�����

�� � �� (9)

Define �� � �������� ��
� , then by (3)

	�����	 � ���
�����

��
��
��

	��� ��
��	
�

���

����� � ��

�

���

�����

where ����� �
�� ���

	�� 	 ���� ����, for � � � � �� � � �. We

use the elementary inequality � � � �� � � �� � �� for random

variables  � � � � to see that

� ��
����	

	�����	 � � ��

�

���

��
����	

����� �
�

��

�
�

���

� ��
����	

����� �
�

���

where the second inequality follows from the fact that for random vari-

ables��� � � � � ��� � �	��	� � ���	���� �

���
� �	�� 	��!��.
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Hence, to establish (9), it is sufficient to prove that for each � � � �

�� � � �

� ���
�����

����� � � � � as 	� � �
 (10)

It is shown in [1, Ch. 2] that �� � ������� � � �� is a compound

Poisson process and that we can write ����� �
� ���

��� ���� where

������ � � � is a sequence of nonnegative independent identically

distributed (i.i.d.) random variables having common law

� ��� �
	���� � 	������
�� � 	��� � 	�����

	�

and ������� � � �� is an independent Poisson process having intensity

	� . It follows that �������� ����� � ���� � since ������� � � �� is

nondecreasing.

The probability law of ���� � is

����� �

�

���

�
��� ��	��

��

��
� ���

�

�

���

�
��� ��

��
	�
�����

(see, e.g., [4, Ch. VI, Sec. 4]) where �� denotes the �th convolution

power and 	���� � 	���� � 	������
�� � 	��� � 	�����.
It is easy to see that for all � � � 	�

������ � as 	� � � and so

by dominated convergence it follows that ������ � as 	� � �. We

obtain (10) when we take � � �����.

SR follows from the result of Theorem 1 by the argument of Theorem

1 in [5]. The same arguments allow us to extend Lemma 2 of [5] to

general Lévy noise and hence obtain SR for spiking neuron models. We

remark that the condition that the�
�
� ’s are independent Lévy processes,

which is built into the model in [5], can be dropped and the results

of this paper then extend easily to the case where �� is an arbitrary
	-valued Lévy process.
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