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Abstract 

For patients with lung cancer undergoing curative intent radiotherapy, functional lung imaging can 

be incorporated into treatment planning to modify the dose distribution within non-target volume 

lung by differentiation of lung regions that are functionally defective or viable. This concept of 

functional image-guided lung avoidance treatment planning has been investigated with several 

imaging modalities, primarily SPECT but also hyperpolarised gas MRI, PET and CT-based measures of 

lung biomechanics. Here, we review the application of each of these modalities, review practical 

issues of lung avoidance implementation, including image registration and the role of both 

ventilation and perfusion imaging, and provide guidelines for reporting of future lung avoidance 

planning studies.  
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 Introduction 

Dose-intensification by isotoxic radiotherapy with accelerated regimes has the potential to improve 

current poor thoracic radiotherapy survival rates. However, a significant limiting factor is the risk of 

radiation induced lung injury (RILI) [1ʹ3], with the clinical impact exacerbated by the pulmonary 

comorbidities that are usually present in lung cancer patients [4ʹ6]. Therefore, one proposal to 

minimise RILI risk, and potentially allow dose escalation and thereby improve overall survival, is to 

take into account the extent of pre-existing pulmonary dysfunction when treatment planning by 

deliberately reducing dose to highly functioning regions of lung by allowing an increase in dose to 

less well ventilated and perfused regions. 

 

The initial clinical motivation for using functional images of lung cancer patients undergoing 

radiation therapy was the prediction and detection of RILI [7ʹ9]. Early work alluded to the potential 

value of incorporating functional information into treatment planning [8ʹ10] but was initially limited 

by pulmonary function tests such as spirometry, which lack sensitivity to chronic disease [11,12], and 

planar scintigraphy images. In addition to improved detection of post-treatment RILI, the 

introduction of 3-dimensional (3D) functional imaging with single photon emission computed 

tomography (SPECT) improved assessment of pulmonary comorbidity and provided the localisation 

of healthy and defective tissue to enable lung dose optimisation by modifying beam orientations to 

avoid highly functioning lung [4,13,14].  

 

To implement functional image-guided planning, various options currently exist for ventilation and 

perfusion imaging. While SPECT is still commonly used, alternative techniques such as 4-dimensional 

(4D) positron emission tomography/computed tomography (PET/CT) [15,16] and lung magnetic 

resonance imaging (MRI) have emerged that enable superior analysis of pulmonary physiology. By 

pre-polarising helium-3 or xenon-129 gas, exquisite images of ventilation and perfusion can be 

produced that have been applied to the study of respiratory diseases such as lung cancer, chronic 

obstructive pulmonary disease (COPD) and asthma [17,18]. Despite moves to widen the availability 

of hyperpolarised gas imaging, the method currently remains limited to a relatively small number of 

research groups around the world [19]. However, new forms of gas MRI may be more widely 

applicable [20] and a variety of impressive 
1
H techniques are rapidly developing [21ʹ23]. Although 

lung MRI could have a significant impact in the era of hybrid MRI radiotherapy systems, CT remains 

ubiquitous in radiotherapy centres. Hence, much effort has been made to develop algorithms to 

derive functional lung measures from CT acquired at different inhalation states [11,24,25].  
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The scope of this review is to summarise and discuss the use of SPECT, PET, MRI and CT imaging for 

functional tissue dose reduction strategies in lung cancer radiation therapy planning. 

 

 Functional lung imaging 

2.1. SPECT and PET 

Technetium-99m-labeled macroaggregated albumin (MAA) perfusion SPECT has been the most 

widely investigated imaging modality for providing the functional information required to perform 

functionally-guided lung avoidance treatment planning, with only one study using technetium-99m-

labeled diethylenetriamine pentaacetate (99mTc-DTPA) ventilation [26]. However, SPECT involves 

ionising radiation, provides poorer spatial and temporal resolution [27] than CT, MRI or PET, with 

potential errors in attenuation and scatter correction [28], image registration of the functional data 

to CT [29], and inconsistent patient setup and breathing regimes. Ventilation SPECT can also be 

affected by aerosol deposition in the central airways [27]. 

 

Unlike SPECT, PET is fully quantitative and respiratory correlation is possible [15]. Ventilation 

imaging is performed following inhalation of Galligas (gallium-68 aerosol) and perfusion PET is 

acquired with gallium-68 MAA. Low-dose 4D-CT is also performed. Functional images can be 

reconstructed as either gated or ungated [15]. Using a PET/CT scanner, Siva and colleagues at the 

University of Melbourne have performed impressive work producing 4D functional images, 

registered to 4D-CT, that have been used for lung avoidance treatment planning [15,16]. 

 

2.2. MRI 

Alternative images to emission tomography that provide improved analysis of pulmonary function, 

and without ionising radiation, can be acquired using MRI. Historically, MRI was beset with major 

drawbacks when attempting to image pulmonary features because the multiple microscopic tissue 

interfaces and lack of protons in the lung parenchyma significantly diminish signal-to-noise [22]. One 

approach to bypass such problems is to inhale an inert, non-ionising, hyperpolarised gas that can be 

detected using MR scanners tuned to the relevant frequency [30]. In recent years, both gas and 
1
H 

lung MRI have developed rapidly. 

 

The availability and cost of gas, the expertise required for gas imaging including access to specialist 

equipment, and the need for image registration to planning CT have been perceived to be limitations 

to clinical implementation of MR hyperpolarised gas imaging techniques in radiotherapy [31ʹ33]. 

However, multi-nuclear MRI scanners are now more commonly available and use of lung MR 
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imaging is becoming more practical, although care is required when interpreting the physiological 

meaning of deep inspiration images [11]. Many current research techniques have either started to 

be used clinically or have the potential to enter clinical use [34]. More abundant than helium-3, 

xenon-129 [35,36], by virtue of its solubility, follows the gas exchange pathways in the lungs [37] 

providing a unique tool for direct assesment of lung ventilation/perfusion (V/Q) matching [38] and 

diffusion capacity. Transport of gas has been shown to be feasible [39], and original MR lung imaging 

techniques that do not require pre-polarised gases are emerging [20]. Instrumentation for 

multinuclear single breath-hold imaging [40,41], along with new image acquisition protocols, have 

been developed to improve image registration of gas MRI to CT [42ʹ44]. Combining gas MRI with 

lobar CT segmentation has the potential for quantitative lung analysis as well as benefits for 

functional treatment planning [45].  

 

Greater use of MR in radiotherapy is on the horizon [46ʹ48], from delineation of tumour and organs 

at risk [49,50] and assessment of lung motion [51,52] to MR-only planning [53ʹ56]. Additionally, the 

roll-out of hybrid MR treatment machines such as cobalt systems [57] and MR-linacs [58,59] 

provides further incentive for the advancement of both gas and novel 
1
H MR lung sequences that 

potentially offer valuable functional information [21ʹ23].  

 

Several groups have investigated the issues related to hyperpolarised gas MRI-based lung avoidance 

planning [17,60ʹ64]. 

 

2.3.  

CT currently remains the predominant modality in radiotherapy planning due to its high geometric 

accuracy and as a source of the electron density required for dose calculation. Therefore, efforts to 

derive functional parameters from CT may be worthwhile as the availability of CT is presently more 

widespread than high quality lung MRI or PET/CT. However, in the case of 4D-CT, respiratory 

correlation equipment and training also require a significant initial cost and level of expertise, and 

whole lung radiation dose is high compared with standard planning CT [65]. Low dose breath-hold CT 

may be a feasible alternative [66]. 

 

Since local measures of lung mechanics and intensity change have the potential to provide a 

sensitive test of respiratory status, various pulmonary non-contrast CT image processing techniques 

have also been investigated as an alternative source of functional data for lung avoidance treatment 

planning [24,67]. One estimate of regional ventilation is provided by the specific volume change 
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measured using CT [11]. Breath-hold images or 4D-CT can be used, usually with deformable image 

registration, to generate either Jacobian [68] or Hounsfield Unit (HU) derived ventilation maps 

[24,67,69], although variations have also been investigated [25,67,70]. 

 

Since the emergence of registration-based non-contrast CT surrogates of ventilation, several 

attempts have been made to validate them against more established measures of ventilation and 

moderate correlations against spirometry have been found [71,72]. However, conflicting results 

have been reported in the literature for validation against imaging-based measures of regional 

ventilation. In controlled-breathing animal experiments, CT-based ventilation surrogates have 

demonstrated both a reasonably high level [67,68,73] and relatively low level [74] of correlation with 

xenon CT. Recently, high correlation has been observed in rats against Cryomicrotome imaging [75]. 

In human studies, comparison with other ventilation modalities is also challenging with low or 

moderate spatial overlap and correlations reported [31,71,76ʹ79]. Although some studies do 

suggest more promising correlation results [80ʹ82], analysis of expiration-only scans can outperform 

registration-based metrics and further investigation of the added value of inspiration is required 

[66]. The CT-based methods do not always appear to give robust voxel level functional information, 

which should be one of the advantages of using CT over lower resolution images [78]. Different 

image registration algorithms and parameter settings can significantly alter CT ͚ventilation͛ values 

[83ʹ85] and alternatives to image registration have been explored [79,86]. 4D-CT artefacts [83,87], 

CT noise [88], gravity [89,90], and breathing manoeuvre [91ʹ93] may also have an impact on CT-

based measures, and reproducibility is moderate [92,94].  

 

Given the large variability in methods and potential for artefacts, care must be taken when 

attempting to compare results and further validation of the functional value of CT-based methods is 

essential (Figure 1). Despite this, a large scale study of ventilation defects has been conducted [95] 

and several attempts have been made to modify lung treatment plans based upon local volume 

expansion [96ʹ99] or intensity based metrics [33,100,101].  

 

 Functional image-guided lung avoidance treatment planning   

3.1. Planning studies 

The concept of functional image-guided lung avoidance treatment planning is to apply functional 

planning constraints and/or beam angle optimisation to modify the dose distribution within non-

target volume lung by differentiation of regions that are functionally defective or viable. Functional 

planning methods have developed over time in tandem with improvements to treatment planning 
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systems, from initial SPECT studies that used conventional plans with manually modified beam 

orientations [4,102,103]; to conformal (3D-CRT) planning [5,16,99,104], including a comparison of 

coplanar and non-coplanar fields [104]; and comparison of 3D-CRT and intensity modulated 

radiotherapy (IMRT) [105ʹ107]; and a number of IMRT studies that have used between 3-10 beams 

[5,15,17,26,33,60,96,98,100,101,104ʹ106,108ʹ111]; to the use of helical tomotherapy and 

volumetric modulated arc therapy (VMAT) [61,62,96,112]. Comparison of anatomical and functional 

plans has been conducted by modification of beams numbers and orientations due to functional 

information [5,16,17,26,33,60,98,99,104ʹ107,110,111,97] or with fixed beam numbers and angles 

[15,26,96,98,100,109,113,114]. The most common approach is to threshold segment the functional 

image into low and high regions, although the selection of threshold is challenging [16]. Regional 

functional information is then utilised within commercial treatment planning systems, however 

voxel-wise functional planning may prove a more useful option [111,115].  

 

Application of functional data into treatment planning has enabled new forms of dose and plan 

evaluation parameters to be developed, including a functional form of dose-volume histogram (DVH) 

[4,116ʹ118], functional normal tissue complication probability (NTCP) [117], functional mean lung 

dose [5] and functional equivalent uniform dose, calculated from a dose-function histogram [119]. 

Most commonly used are the functional mean lung dose and functional volumes such as FV20 (the 

ƉĞƌĐĞŶƚĂŐĞ ǀŽůƵŵĞ ŽĨ ĨƵŶĐƚŝŽŶĂů ůƵŶŐ ƚŚĂƚ ƌĞĐĞŝǀĞƐ шϮϬ GǇͿ [104]. Absolute reductions in functional 

V20 range from no significant difference [104,111] and 3-7% for SPECT [107,109,110,113,114]; no 

significant difference [16] and 4% for perfusion PET but no significant difference when using 

ventilation PET [15]; 2-3% for MRI [17,60,62]; and no significant difference [99ʹ101,112] and 5% for 

CT-based methods [33,96,98,97] (Table 1). However, comparison between studies is complicated by 

the diverse methodology employed, including patient characteristics, planning techniques, 

segmentation and definition of functional regions, image registration and other image processing, 

and a lack of consistency in the use and reporting of statistical analysis.   

 

For example, using fixed angles may be a sensible approach to reduce subjectivity when testing the 

potential value of including functional data [113]. However, in some cases the optimisation of beam 

angles can eliminate significant differences between anatomical and functional plans obtained from 

fixed beam-only plans [98]. Interestingly, the largest functional V20 differences of 5-7% have been 

found when using fixed beams [96,98,109,113] in contrast to optimised beam angles which tend to 

produce 2-3% differences [17,60,99,107,97], although both methods have also produced a large 
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number of cases with no significant difference due to additional functional data 

[5,98,100,104,105,111].  

 

3.2. Clinical trials  

SPECT studies have not yet tested the efficacy of including functional data on tumour control or 

overall survival [102] although one randomised trial has recently completed patient recruitment 

(ClinicalTrials.gov NCT01745484). Similarly, despite a long history of published feasibility studies on 

functionally modifying lung radiation treatment plans with MRI or CT data, until recently, no trials 

have attempted to evaluate the clinical impact of treatment with functionally adapted plans. 

However, at least three clinical trial protocols have recently received approval (ClinicalTrials.gov 

NCT02002052, NCT02528942 & NCT02308709). A randomized, double-blind trial using 
3
He 

ventilation MRI functional lung avoidance techniques to assess its impact on pulmonary toxicity and 

quality of life is recruiting in Canada [6]. Two further research teams, in Denver and Sacramento, are 

currently investigating the use of CT measures of ventilation for functionally-guided radiotherapy 

planning and treatment. In a case report of one patient, functional V20 was reduced by 5% [33].   

 

 

 Practical implementation of lung avoidance strategies 

 

4.1. Perfusion  ventilation  

A strong case has been made in the SPECT and PET literature for using perfusion data over 

ventilation for functional optimisation of lung dose distribution. Perfusion defects have been shown 

to occur more frequently than ventilation defects, and both are more common than changes in CT 

[120]. Perfusion is considered a more sensitive metric for assessing lung function and RILI since 

reductions in ventilation will generally also cause perfusion reductions, but the inverse is less 

common [2]. The majority of SPECT-guided treatment planning has used pulmonary perfusion. MRI-

guided planning has so far been conducted with ventilation but MR measures of perfusion are also 

possible [22], while CT-based metrics offer surrogate measures of regional lung ventilation [90]. For 

a complete representation of regional lung function, both perfusion and ventilation data are 

required and thus there may be benefit in analysing both defects together for functional-image 

guided treatment planning [121]. Notably, use of PET/CT has demonstrated that compared to 

anatomical-based plans, perfusion PET resulted in significantly different functionally-guided plans 

but ventilation-guided plans for the same group of lung cancer patients did not [15].  
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4.2. Image acquisition and registration protocols for functional planning 

Accurate image registration is important for integration of functional data into treatment planning 

[17,42] but matching of SPECT to treatment planning CT can be challenging [29,102,109,122,123]. 

Fiducial markers [4,103,104,106,107,114] or the attenuation CT component of SPECT/CT, similar to 

that used for PET/CT [124], can assist functional image registration to planning CT [113]. Further, 

PET/CT has been registered to 4D-CT [125]. Ideally, the same immobilisation technique [4,15,113] 

and a flat bed [15,104,106,111] should be used for both image acquisitions.  

 

Initially, a similar approach was adopted for integration of hyperpolarised gas MRI into lung 

planning, including the use of fiducial markers [17]. Subsequently, imaging protocols [62,63] and 

equipment have been specially modified. For example, registration is significantly improved by using 

an imaging protocol that enables both 
3
He MRI and CT to be acquired with similar breath holds and 

body position by using a flat bed insert, ĂŶ M‘ ĐŽŝů ƚŚĂƚ ĞŶĂďůĞƐ ƚŚĞ ƉĂƚŝĞŶƚƐ͛ ĂƌŵƐ ƚŽ ďĞ ŝŶ 

treatment position and a CT breath hold manoeuvre that mimics the 
3
He breath hold [42]. Further 

improvement to registration accuracy is possible with a dual-frequency coil that enables acquisition 

of 
3
He and 

1
H MR images in a single breath hold [44] (Figure 2). 

 

AůƚŚŽƵŐŚ CT ͚ǀĞŶƚŝůĂƚŝŽŶ͛ ŚĂƐ ƚŚĞ ĂĚǀĂŶƚĂŐĞ ŽǀĞƌ “PECT, PET and MRI in that it can be acquired 

concurrently with treatment planning CT and therefore does not necessary require further image 

matching, the method itself can depend upon accurate 4D-CT image reconstruction and a reliable 

method of deformable image registration between inhalation and exhalation CT. While registration 

of pulmonary CT is a difficult problem and numerous algorithms exist, considerable effort has been 

made to improve and validate non-rigid techniques [85,126ʹ129]. 

 

4.3. Timing of scans and patient setup 

In addition to differences between acquisition methodologies, such as breathing state and patient 

setup, the time interval between planning CT and functional imaging can influence both image 

registration accuracy and the validity of image comparison [72]. For 4D-CT based methods, clearly 

the functional and planning CT are acquired at the same time but it is also possible to acquire SPECT 

[104], PET [15] or gas MRI [17] on the same day as planning CT. Furthermore, the time interval 

between scans is an important consideration when comparing two or more functional modalities.  
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4.4. Potential limitations of normal lung avoidance 

The original concept of lung avoidance planning was born in the era of conventional manual 

planning. The gains brought about through successively more conformal and computationally 

optimised plans [130ʹ132] may diminish returns from further optimisation due to functional data 

and several studies have shown no significant benefit for the majority of patients examined 

[5,98,100,104,105,111]. 

 

An assumption made when functionally weighting the treatment plan to constrain dose to healthy 

lung tissue is the clinical acceptance that higher dose can be targeted through poorly ventilated or 

perfused lung [133]. Although lung function can be reduced irreversibly by radiation therapy 

[4,134,135], it has also been known for many years that the tumour itself can be responsible for 

reduced lung function [9] when bronchial obstruction and large vessel compression create regional 

ventilation and perfusion defects that become tempting targets for functionally-guided dose 

redistribution. Therefore, a potential limitation of normal lung avoidance is that lung volumes that 

may have received a functionally modified, amplified dose may regain some degree of function 

following treatment [4]; an effect noticeable on SPECT [136], PET [135], hyperpolarised gas MRI 

[63,137,138] and CT-ďĂƐĞĚ ͚ǀĞŶƚŝůĂƚŝŽŶ͛ [32,139] and even part way through treatment 

[135,140,141]. Hence, whether defects are transient [142,143], reversible [136] or persistent [134] 

becomes an important issue when assigning functional and non-functional planning constraints.  

 

In addition to the possible limitation due to post-treatment lung function improvement for a 

selection of patients, the biologic effect of reducing high dose volume and increasing low dose 

volume is not clear [105]. In a recent animal model, the dose-limiting toxicity changed from early to 

late dysfunction when the irradiated volume was reduced [144]. As early and late RILI are also due to 

different pathologies in humans, the impact of incorporating functional data to create larger low 

dose volumes and reducing more highly irradiated volume should be examined in future work. 

 

 

4.5. Recommendations for reporting of lung avoidance studies 

The inevitable inconsistency of methods and reporting of results in the literature spread over many 

years makes it difficult to compare studies from the different research groups that have investigated 

functional image-guided lung avoidance treatment planning. To assist with comparison in the future, 

it may be beneficial if at least the following information is included: 
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 Diagnosis (classification of lung cancer) and staging of patients along with tumour location 

and volume. 

 Time interval (median and range) before treatment at which functional imaging was 

conducted, and after the start of treatment if repeated scans are performed.  

 Time interval between different forms of functional imaging for comparative studies.  

 Time between functional imaging and treatment planning CT. 

 Patient setup for image acquisition: use of diagnostic or treatment position patient setup 

and use of flat beds and immobilisation.  

 Image acquisition and reconstruction methods and parameters. 

 Image registration issues: methods and validation related to the image registration of 

functional images to planning CT or to the generation of CT-based ventilation surrogate 

measures, including computational hardware used and processing times. 

 Methods used for calculation of CT ventilation metrics. 

 Method of functional image segmentation/thresholding.  

 Details of any image processing such as filtering, interpolation or normalisation. 

 Treatment prescription and fractionation scheme. 

 Treatment planning system and algorithms. 

 Planning constraints 

 Method of constraining the plan optimization with functional data; manually fixed or 

optimised beam angles. 

 Planning technique used: conformal, IMRT, RapidArc/VMAT etc and the method of 

generating plans to compare anatomical plans with the functional data; either fixed or 

modified beam orientations.  

 Parameters used to quantify and compare plans with and without incorporation of 

functional data: functional volumes, mean lung dose etc. 

 Reporting of absolute rather than relative measures of change. 

 Use of statistical analysis to test the significance of differences. 

 

 Conclusions 

This review highlights each of the imaging techniques that have been used to test the inclusion of 

functional data related to healthy tissue into lung treatment planning. However, given the large 

reduction to normal lung dose offered by optimised conformal planning, more fundamental, at least 

initially, is not the question of which modality to use to assist treatment planning but whether 



11 

 

functional lung related data from any imaging source can have a major impact on healthy lung dose 

distributions and what the short and long term clinical implications of such modifications are. While 

reduced post-treatment function is common, the potential for improved function should also be 

considered within regions of lung that may receive higher dose due to functionally-guided lung dose 

redistribution. Evidence from clinical and simulation studies indicate that there may only be small 

numbers of patients with specific types of functional defects and tumour volumes and positions who 

will benefit from the inclusion of functional data for normal lung dose reduction. Importantly, SPECT 

and PET studies demonstrate that using ventilation only is not sufficient for lung avoidance. Further 

validation tests, planning studies and clinical trials will be required to increase our understanding of 

the potential benefits and long term effects of functional image-guided lung avoidance planning 

strategies.  
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Figure 1 

3He MRI (left) and CT ventilation (right), derived from inspiratory and expiratory breath-hold and 

computed via the intensity metric, for an example NSCLC patient. Arrows indicate spatially 

corresponding ventilation defects. 

 

Figure 2 

Example 3He MRI (left) and treatment planning CT (middle) acquired in the same inflation state. The 

fused image (right) after deformable registration of 3He MRI to CT demonstrates that anatomical 

locations of ventilation defects can be discerned. 

 

Table 1 

Summary of lung avoidance studies using CT, SPECT, PET and MRI. 

 


