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Abstract 15 

This study proposes the use of a simple spring model that relates the interfacial stiffness with 16 

the complex reflection coefficient of ultrasound in a rough contact. The spring model cannot 17 

be directly related to the real area of contact as this depends on the amount, shape and 18 

distribution of contacting asperities. However, it is clear that the model provides a non 19 

destructive tool to easily evaluate both longitudinal and shear interfacial stiffnesses and their 20 

ratio. Experimental findings indicate that the interfacial stiffness ratio Kτ/Kσ determined 21 

during loading/unloading cycles is sensitive to the roughness level and load hysteresis. The 22 

results deviate from the theoretical available micromechanical models, indicating that actual 23 

contacting phenomenon is more complex and other variables needed are not accounted for by 24 

the models. 25 
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 30 

Introduction  31 

The problem of mechanical contact of two elastic bodies has been of great interest to the 32 

scientific community. This has been mainly triggered by the need to predict contact area 33 

relevant in engineering to mechanical, electrical and heating conduction analysis. For two 34 

nonconforming surfaces the properties of the interface depends on the random contact of the 35 

surfaces. In a contact between rough surfaces only very few asperities go into contact. 36 

Therefore, high local stresses take place at the individual asperity tips causing an immediate 37 

plastic deformation and forming cold-welded junctions between the metal surfaces. 38 

Additionally, with the application of normal loading-unloading cycles, hysteresis 39 

phenomenon due to elastic and plastic deformation has been reported in the literature (i.e. [1], 40 

[2], [3]). 41 

The development of experimental tools to investigate rough contact has been a slow 42 

ongoing process. Methods based on electrical and thermal conduction, measurement of fluid 43 

flow through the contact and the neutron-graphic method are useful to calculate real contact 44 

area but cannot provide an estimation of interfacial stiffness [4]. Kendall & Tabor [5] have 45 

found different drawbacks with the methods based on electrical and thermal conduction as 46 

well as with optical methods when used in real engineering contacts. When two nominally flat 47 

specimens are pressed together by normal force, the deformation of asperities can be recorded 48 

by means of an electric micrometer or by the stylus of a profilometer. However, in practical 49 

applications, the results need to be refined by eliminating the effect of surface deformation in 50 

the test machine. Krolikowski & Szczepek [4] indicated that using the method based on direct 51 

measurements of compliance, the measurable limit of interfacial stiffness of a rough contact is 52 

about 1 GPa µm-1.  53 
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From the original independent investigations carried out by Kendall & Tabor [5] and 54 

Tattersal [6], it was clear that the reflection coefficient of ultrasound can be related to the 55 

interfacial stiffness of a rough contact by means of a spring model; however, it is not directly 56 

related to the actual contact area as it was hypothesized in their study. Therefore, the results 57 

show serious disadvantages of the method, but it can be a powerful tool when the stiffness is 58 

the main parameter to assess. In fact, in this paper the ratio of tangential to normal stiffness is 59 

evaluated utilizing the spring model of Kendall & Tabor [5]. 60 

Several theoretical approaches have been developed that can be applied to the contact 61 

between two nominally flat surfaces, one smooth undeformable against a rough deformable 62 

with isotropic statistical properties of roughness [7, 8, 9, 10]. Although the models work for 63 

idealized shape of asperities and non-interacting assumption, an estimation of the real area of 64 

contact and nominal pressure can be obtained. 65 

Studies on normal stiffness have been reported more often than on shear interfacial 66 

stiffness. However, the use of both normal and shear stiffness expressed as a ratio can be used 67 

to determine the nature of contact [11].  The shear stiffness can be obtained from a pre-68 

stressed condition in which a normal load to the interface is followed by a small shear force. 69 

This is a special case which requires only the application of a small elastic dynamic shear load 70 

(pre-stressed interface). Ultrasonic shear waves applied in this way deform the interface only 71 

elastically because of the small-scale loading-unloading cycle, centered on the static stress 72 

[3]. Therefore, no additional plastic deformation at the asperities occurs independently of the 73 

state of the deformation of asperities produced by the normal load. Berthoud and Baumberger 74 

[12] reported direct measurements of shear stiffness versus displacement on a pre-stressed 75 

rough interface. The experiments have provided evidence that indicates that a multi-contact 76 

interface subjected to the small shear deformations has an elastic response. Ultrasonic studies 77 

of shear stiffness versus load can be found in several publications [4, 13, 14, 16]. 78 
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The ratio of interfacial stiffness ratios has been anticipated as an important parameter to 79 

characterize an imperfect interface. Nagy [11] presented a comprehensive review to show 80 

how this can potentially be used to distinguish perfect contact from kissing, slip, or partial 81 

contact. For rough surfaces, the possibility of distinguishing welded condition has been of 82 

interest.  Recently, several works on the interfacial stiffness ratio from a rough interface have 83 

been published [12, 15, 16] where loading and unloading cycles on the interface were applied. 84 

The analysis carried out by Krolikowski & Szczepek [16] which combines the contact 85 

model of Greenwood & Williamson [8] with the equation of  Johnson [17] for small 86 

tangential displacement, revealed that the ratio of tangential to longitudinal stiffness is solely 87 

dependent on the Poisson ratio of the contacting rough surfaces. Similarly, by using the 88 

equation of Hisakado & Tsukizoe [18] for small tangential displacements of contacting 89 

asperities, Sherif & Kossa [15] also concluded that the ratio of stiffnesses can be calculated 90 

only from the Poisson ratio of both surfaces in contact. 91 

Recently, Baltazar et al. [14] described a theoretical model, similar to the previously 92 

obtained by Krolikowski & Szczepek [16] and Mindlin [19], but which includes a correction 93 

factor accounting for the angle of misalignment. Predictions of the model are very close to 94 

those made through the Sherif & Kossa approach [15]. Additionally, a slight increase in the 95 

ratio of stiffnesses observed on increasing nominal pressure was attributed to misalignment at 96 

a single asperity contact. The model is again non dependent on the distribution of contact 97 

asperities.  98 

Yoshioka & Sholtz [20] provide a comprehensive model of elastic contact that allows for the 99 

oblique contact in both the normal and shear directions. Nagy [11] worked with the original 100 

approach of the model of Yoshioka & Sholtz [20] for a chi squared distribution of asperities. 101 

It was found that the ratio of tangential to longitudinal stiffness is exclusively dependent on 102 

the Poisson ratio of the contacting materials.  103 
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This work has three objectives: first, to develop a phenomenological understanding of the 104 

correlation between interfacial stiffness ultrasonically determined and the state of deformation 105 

of a rough surface; second, to determine interfacial stiffness ratio Kτ/Kσ for different 106 

roughness levels; and third, to investigate the hysteretic behavior of Kτ/Kσ and its relationship 107 

to the deformation of asperities at the interfaces. 108 

 109 

Micromechanical Description 110 

Krolikowsky and Szczepec [16] provide a mathematical formulation that incorporates the 111 

Hertz-Mindilin theory [19] and the contact model of Greenwood and Williamson [8]. The 112 

method models the complex contact between rough surfaces as a normally distributed set of 113 

elastic spheres contacting against an elastic plane of the same material loaded with a normal 114 

force f and a tangential force s [19, 21, 22]. Both mean contact pressure P, and mean 115 

tangential stress τ, are as follow                                                    116 
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where Ds is the summit density per unit area, R is the radius of curvature of the elastic sphere, 119 

E is Young’s modulus, v is the Poisson’s ratio, σ is the variance of summit height distribution, 120 

x is the normalised height of summits, t is the normalised separation and φ(x) is the 121 

normalised height distribution function of the summits. 122 

Thus, the normal Kσ and tangential Kτ stiffness per unit area for this model are 123 
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Combining Equations (3) and (4) yields the tangential to the normal contact stiffness ratio 126 
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with A=2, which is also identical with that for the elementary contact previously formulated 128 

by Mindlin [19] and more recently by Johnson [7] for two spherical bodies in contact. The 129 

form of equation (5) has been corroborated in several studies which differ basically in the 130 

values of the coefficient A. For instance Sherif & Kossa [15] found a theoretical value 131 

for 2/A π= . For the model of Yoshioka & Sholtz [20], Nagy [11] obtained an approximated 132 

value for 710.A ≈ . In the model presented by Baltazar et al. [14], A has a changing value 133 

expressed as 134 

                                                              
ψ
ξ2

=A ,                                                     (6) 135 

where ξ andψ  are correction factors accounting for the geometrical misalignments in respect 136 

to shear and longitudinal directions, respectively [23]. The factor ψ  takes values of about 1 137 

for angles below 50° assuming non-slip condition at the asperities. The factor ξ  typically was 138 

found to vary between 0.6 and 0.8.   139 

 140 

Ultrasonic Response of a Rough Surface Contact 141 

Figure 1a schematically shows the reflection of a sound wave from a rough surface 142 

interface. At the contact region sound waves would pass through while at an air gap it would 143 

be totally reflected. The proportion of the amplitude of an incident wave that is reflected is 144 
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known as the reflection coefficient, R. Conversely, the amplitude of the incident wave 145 

transmitted trough the contact spots is the transmission coefficient, T (see figure 1). 146 

Thus for two like materials, the reflection coefficient varies from R=0 for complete contact 147 

to R=1 for no contact (i.e. a solid air interface). If the nominal pressure across the interface is 148 

increased, asperity tip deformations cause both the interface to close slightly and the real area 149 

of contact to increase. Kendall and Tabor [5] showed that when the wavelength of the 150 

ultrasonic wave is large compared with the size of the asperity contacts, the reflection is a 151 

function of the interface stiffness, K. As a consequence of the simple quasi-static spring 152 

model, the reflection coefficient can be found as (shown schematically in figures 1b and 1c)  153 
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where z is the acoustic impedance of the material on either side of the interface and ω is the 155 

angular frequency of the ultrasonic wave. This relationship holds for both longitudinal and 156 

shear wave reflections (the longitudinal and shear wave speeds are used, respectively). A 157 

similar expression exists for two dissimilar materials pressed together [24]. This model has 158 

been used extensively to study the reflection and transmission of sound across incomplete 159 

interfaces [2, 4, 11, 13].  160 

Drinkwater et al. [25] demonstrated that the stiffness of a range of contacts of varying 161 

roughness is well represented by equation (7). They studied the reflection as a function of the 162 

frequency of the ultrasonic wave. The reflection coefficient was found to be dependent on 163 

frequency, but the predicted stiffness was shown to be independent of frequency. 164 
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Figure 1.  Scheme showing a representation of the ultrasonic response of rough surface contact, a) 166 
reflection, b) loading and deflection, and c) the spring model representation. 167 

 168 

Experimental Set-up 169 

Figure 2 shows the loading frame and the arrangement of the ultrasonic equipment used in 170 

the tests. Two ultrasonic pulser-receivers were arranged to make it possible for the 171 

longitudinal and shear signals to simultaneously be processed. The specimens were subjected 172 

to loading-unloading cycles of compressive pressure in a hydraulic frame operating in load 173 

control mode. The upper specimen had a disk of piezoelectric material glued to the back face 174 

with a temperature stable contact adhesive. The transducer was of the wrap around electrode 175 

type so both wires could be soldered directly to the top face of the ≈5MHz shear wave 176 

transducer. The lower specimen was interrogated by means of a 5MHz longitudinal wave 177 

planar contact transducer. The upper specimen was loaded against the lower specimen, 178 

through an annulus with a hemispherical cap. The hemispherical end piece allowed the upper 179 

specimen to align against the lower in order to obtain a more distributed and conformed 180 

contact.  181 

The contacting interfaces were made from steel specimens. The contacting face of the bottom 182 

specimens were ground and polished, while those of the upper specimens were grit-blasted 183 

(see Figure 3). All surfaces were measured using a surface profilometer before and after the 184 

loading experiments (Table 1). 185 
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 186 
Figure 2. Schematic diagram showing loading rig, specimens and ultrasonic measuring apparatus. 187 

 188 

 189 

Two ultrasonic pulser-receivers (UPR) were used to generate simultaneously voltage 190 

pulses to actuate the transducers. Both shear and longitudinal transducers had a central 191 

frequency of 5 MHz. The reflected pulses were received by the digital oscilloscope, 192 

amplified, and passed to the PC for signal processing.  193 

Before both specimens are pressed together, a reference signal of ultrasound is taken. This 194 

signal is taken at the point where no contact exists. In these cases the entire incident waves, 195 

shear and longitudinal, at the interface are reflected completely (and virtually none is 196 

transmitted at the metal-air interface). The assumption that the incident wave fully reflects in 197 

an interface of solid-air, is backed by the fact that air poses very low acoustic impedance (400 198 

Ns/m3), as opposed to steel (47x106 Ns/m3). This is the reason why air is considered a pure 199 

reflector or mirror to ultrasound. These signals are therefore equivalent to the incident signals, 200 

and are used as reference pulses 201 
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Figure 3.Different grit blasted upper specimens used in the experiment. 203 
 204 

 205 

Material 

Ra in upper specimens Ra in bottom specimens 

Before 

Loading 

After 

Loading 

Before 

Loading 

After 

Loading 

Grit-blasted steel 1 1.58 1.18 0.03 0.07 

Grit-blasted steel 2 2.42 1.52 0.04 0.16 

Grit-blasted steel 3 3.09 1.82 0.04 0.13 

Table 1. Roughness before and after test (sample length 5 mm, each result is an average of three 206 
profiles). Both specimens are made up of steel. 207 
 208 

The test specimens are then loaded together and subsequent reflected pulses are recorded. 209 

The load is applied gradually by steps until reaching a maximum nominal pressure of 210 

400MPa. The loading steps consist basically of applying the load from zero to the maximum 211 

with a tension-compression machine. In the same way, the unloading process is executed by 212 

decreasing the load from the maximum value to 5MPa. It should be ensured that the contact 213 
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interface not be downloaded completely as this would involve a different set of asperities to 214 

come into contact in the next loading-unloading cycle. 215 

A Fourier transform is performed on both the reflected and reference signals; dividing one 216 

by the other gives the reflection coefficient spectrum. For a rough surface interface this 217 

reflection coefficient depends on the frequency. Equation for the reflection coefficient 218 

(Equation (7)) is then used to obtain the interfacial stiffness which should be independent of 219 

frequency. In practice, there is little statistical variation due to noise in the signal, and a mean 220 

stiffness is determined for all frequencies within the transducer´s bandwidth. More details of 221 

this method for determining interface stiffness ultrasonically can be found in Dwyer-Joyce et 222 

al. [2].  223 

 224 

Results   225 

Figures 4, 5 and 6 show the experimental results of interfacial stiffness versus normal 226 

pressure. Both interfacial stiffnesses, shear and longitudinal, were calculated with equation 227 

(7). Acoustical impedance z, for shear and longitudinal waves were calculated uisng typical 228 

values of speed of sound for steel: 5900 m/s and 3100 m/s, respectively [26]. It can be 229 

observed that the normal stiffness during the loading step of the first cycle in terms of normal 230 

pressure follows an approximate linear relationship [27, 28]. This behaviour has previously 231 

provided a simple calibration route for maps of contact stiffness and other studies [29]. It is 232 

clear that to predict the normal pressure from stiffness measurement in a contacting joint, their 233 

roughness has to be reproduced in laboratory specimens and the predictions would only be 234 

useful for the first loading. 235 

The curve of the unloading process in all cases follows a different path than that of the 236 

loading step, showing a hysteresis phenomenon. This also indicates that most of the asperity 237 

plasticity has been achieved at this stage. It has been previously recognized that the first 238 
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loading on the contact interface always surpasses the elasticity of asperities and therefore 239 

occurs in elasto-plastic conditions [3]. The ultrasound is not strongly affected by the plasticity 240 

of the contact, and it depends basically on the increase of contact area with load. 241 

After the first loading-unloading cycle, and to ensure that remaining plasticity is fully 242 

removed and the contact is occurring in elastic conditions, 10 more complete cycles were 243 

applied. Under these conditions, the normal and shear deformations are caused by the passage 244 

of a very small displacement wave, which causes only elastic deformation. The results also 245 

show that there is a small increase in interfacial stiffness possibly due to plastic deformation 246 

being added at the end of each loading cycle. The reason for this phenomenon is not fully 247 

understood. However, in a recent study, Gonzalez & Dwyer-Joyce [30] found that two things 248 

can be producing such an effect:  stress relaxation and creep which happens when a stress is 249 

sustained for a period of time. 250 
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Figure 4. Normal pressure vs. interfacial stiffness for a steel-steel interface. The upper specimen had a 252 
roughness value Ra=1.58 µm before test. 253 
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Figure 5. Normal pressure vs. interfacial stiffness for a steel-steel interface. The upper specimen had a 255 

roughness value Ra=2.42 µm before test. 256 
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Figure 6. Normal pressure vs. interfacial stiffness for a steel-steel interface. The upper specimen had a 259 

roughness value, Ra=3.09 µm before test. 260 
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To simplify the plots, in figures 4, 5 and 6 only the curves of the loading step of cycle 11 are 261 

shown. It is important to notice that one could use either the loading curve or unloading curve 262 

as the values are basically the same. The values of stiffness are higher for the contact interface 263 

with the least roughness. In the three different samples, the shear stiffness produces similar 264 

curves to those of normal stiffness.  265 

 266 

Analysis and Discussion   267 

Figures 7- 9 show plots of longitudinal stiffness ratio as function of normal pressure. In 268 

addition, the theoretical predictions found in previous literature are compared to the 269 

experimental results (Figure 10).  Data from the 1st and 11th loading-unloading cycles were 270 

used for comparison. This makes it possible to see what happens in an elasto-plastic contact 271 

(first loading-unloading cycle) and in a pure elastic contact (eleventh loading-unloading 272 

cycle). Equation (5) with a Poisson ratio ν=0.3 was used to estimate the theoretical 273 

predictions. Our experimental results show a dependence of Kτ/Kσ ratio on load and rms 274 

roughness. For higher values of roughness, Kτ/Kσ has a larger mean value. Also, it can be seen 275 

that for high values of roughness there is an increment in the variation rate of Kτ/Kσ. Clear 276 

hysteresis is observed for mild and high rms roughness (Figures 7 and 8), and almost none 277 

detected for smooth surface. In the last case, a region of constant load independent ratio is 278 

observed. The results indicate an apparent sensibility to plastic deformation during the first 279 

cycles and almost none existent for additional loading cycles. 280 

In the cases studied, the results deviate from the theoretical values predicted by Mindlin 281 

[19]. It can be seen that only for high pressure (Figures 8 and 9) the values approach 282 

theoretical ones in Eq. (5) with A=2. It is interesting to note that the lower ratio values are 283 

always found for the first loading.   284 
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 The results for smooth surface shows some agreement with theoretical predictions of 285 

Sherif & Kossa [15] and Baltazar et al. [14]; this last is estimated assuming an average value 286 

of the correction factor ξ =0.7. Only for this case, it can be suggested that the stiffness ratio is 287 

solely dependent on Poisson´s ratio, and virtually constant for both elasto-plastic contact and 288 

pure elastic. The reason for the behavior which in principle could indicate a fixed relationship 289 

(i.e. load independent ratio) between normal and shear stiffness at some pressure value needs 290 

further investigation.  Even though some theories agree with experimental results, it is also 291 

observed that the equation in Krolikowski & Szczepek [16] over predicts the experimental 292 

findings of our study ((Kτ/Kσ =0.82). In contrast, the model of Yoshioka & Scholz [20] 293 

predicts values significantly lower than experimental data (Kτ/Kσ ≈0.29) (see Fig. 10).   294 
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Figure 7. Experimental results of interfacial stiffness ratio as function of loading cycles for smooth 296 

sample 1 (Ra=1.58 µm). Points indicate experimental data and the dashed line is the 297 
observed trend. 298 
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 300 
Figure 8. Experimental results of Kτ/Kσ versus normal pressure for rough sample 2 (Ra=2.42 µm). 301 
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Figure 9. Experimental results of Kτ/Kσ versus normal pressure for rough sample 3 (Ra=3.09 µm). 303 
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Figure 10. Theoretical predictions of shear to normal stiffness ratio. 306 

 307 

On the other hand, ultrasonic waves are sensitive to the surface roughness but only for high 308 

frequencies when the wavelength is comparable with the height h of the interface. When this 309 

condition is not reached, QSA model can be used to describe the deformation of the interface 310 

Yalda-Mooshabad et al. [31]. In our case, the wavelength in steel for longitudinal wave and a 311 

frequency of 5MHz is about 1.18 mm. This value is much larger than the rms roughness of 312 

the interface. 313 

From our experimental results, it is possible that an additional mechanism of wave 314 

interaction with the interface can be observed by measuring the stiffness ratio as function of 315 

pressure. In principle, two conditions could be affecting the ultrasonic reflection signature, the 316 

contact at the roughness asperities and the space (voids) left in between the asperities. It is 317 

clear that by bringing the rough surface together, the aspect ratio will change up to a point 318 

where the valleys get flatter. This condition is not accounted by the micromechanical model 319 

since it is built under the assumption of independent asperities deformation. Since the 320 



 18 

observed variation of aspect ratio during loading is controlled by the contact area, it is 321 

possible that the effect of voids is masked by the contact behavior and it is only unveiled 322 

when the ratio Kτ/Kσ versus pressure is estimated.  323 

A review of the effect of non-interacting voids on the ultrasonic signature was given by 324 

Nagy [11]. According to the study, the interfacial stiffness ratio was found to be sensitive to 325 

the aspect ratio /a bξ =  of spheroidal voids, where a is the out-of-plane and b the in-plane 326 

dimension. It was shown that the ratio Kτ/Kσ of two similar solids (v=0.3) in contact varies 327 

monotonically from 0.45 for spherical void ( 1ξ → ) to 0.88 for flat cracks ( 0ξ →  ).  328 

Following a different approach, calculations of interfacial ratio using boundary element 329 

method (BEM) and Independent Scattering Approach (ISA) were estimated by Yalda-330 

Mooshbad et al. [31]. In their calculation for an interface with a fraction area of voids of 2.5% 331 

in a matrix with properties cl =6.0 Km/sec and ct=3.0 Km/sec, the ratio was found to vary 332 

monotonically from 0.36 for spherical void ( 1ξ = ) to 0.76 for flat cracks ( 0.05ξ =  ). 333 

To estimate the mean aspect ratio in our tested surface, an approximation based on the 334 

statistical parameters of the samples (Table 2) was carried out following the analysis of Nayak 335 

[33]. It was found that the determined mean aspect ratio in the fresh surfaces does not change 336 

considerably for samples 2 and 3, with only a decrement of about 25% for the smoothest 337 

sample (Ra=1.58µm). These values of aspect ratio give a Kτ/Kσ of about 0.78 from Nagy [11] 338 

and about 0.76 from Yalda-Mooshbad et al. [31]. The values are higher than our experimental 339 

findings, but it should be noted that the statistical results of samples 2 and 3 show a positive 340 

correlation between experimental Kτ/Kσ and estimated aspect ratio. However, the smooth 341 

sample 1 has a lower than expected value of Kτ/Kσ as one would predict based on its aspect 342 

ratio.  343 

Another relevant parameter for our study is the mean curvature which is shown 344 

experimentally to vary proportional to roughness (Table 2); higher asperities are expected to 345 
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have larger mean curvature [32]. For fresh surfaces, the aspect ratio is a random variable, 346 

which could be correlated with the distribution of asperities and curvatures [33]. If we relate 347 

the values of curvature with the misalignment of contact proposed by Baltazar et al. [14], the 348 

correction factor would be between 0.9-0.8 resulting in a Kτ/Kσ  value of about 0.65 for 349 

samples 2 and 3 and a bit larger for sample 1 with a smooth surface. The result for the smooth 350 

surface is in the opposite direction to the expected direction of correlation between interfacial 351 

ratio and the mean curvature.  352 

353 
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 354 

Sample σrms mo  

(µm2) 

m2 

 

m4 

(µm-2) 

α km  

(Degree) 

dsum 

(µm) 

Aspect 
ratio 

1  

Ra=1.58 µm 

2.04 4.22 0.046 0.011 24.70 24.30 130.50 0.031 

2 

Ra=2.42 µm 

3.10 9.70 0.074 0.015 27.50 30.50 154.10 0.040 

3 

Ra=3.09 µm 

3.90 15.28 0.100 0.018 27.70 32.70 175.00 0.044 

Table 2. Additional experimental statistical parameters for the samples studied. σrms is the 355 
rms roughness, m0, m2, m4 are the spectral moments of the surface, α is a parameter related 356 
with the width of spectrum, km is the mean curvature, and dsum is the mean distance between 357 
summits. 358 

 359 
From the above discussion, there is no clear evidence to indicate if any of the two proposed 360 

parameters: radius of curvature or aspect ratio is solely controlling the observed stiffness ratio 361 

variation during the loading cycles.  362 

 It is also possible that if the stiffness ratio is truly constant at the asperities contact, then 363 

the ratio variations are related to change in the shape of the voids. However, the shape of the 364 

voids is controlled by the contact of asperities. Therefore, any change in the contact area at 365 

the asperities will control the variations of the voids. This empirical analysis could explain the 366 

observed hysteresis, which is expected for large plastic deformation and correlated with the 367 

larger roughness. 368 

The problem is far from being resolved, and the experimental results show that the 369 

micromechanics of shear contact may be more complex than expected, with that said, 370 

mechanics such as slip and/or ellipsoidal contact just to mention a few, could be affecting the 371 

interfacial ratio [34, 35].  372 

 373 
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 374 

Conclusions  375 

An ultrasonic approach has been used to determine the normal and shear stiffness for three 376 

different grit-blasted contacting surfaces. Experimental data of stiffness ratio was found to be 377 

sensitive to both roughness level and plastic deformation. Degree of hysteresis for the 378 

loading/unloading cycles was found to be a function of the roughness level. The assumption 379 

of ultrasonic wave sensitivity to other roughness parameters such as aspect ratio of voids and 380 

radius of curvature did not completely follow our experimental findings.  A non-constant 381 

stiffness ratio suggests that additional parameters other than those that describe the Hertzian 382 

contact are being unveiled by the interfacial stiffness ratio.  383 

 384 
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