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Abstract. In this paper the performance of an Al0.52In0.48P 
63

Ni radioisotope cell is 

reported over the temperature range -20 °C to 140 °C. A 400 ȝm diameter p
+
-i-n

+
 (2 

ȝm i-layer) Al0.52In0.48P mesa photodiode was used as conversion device in a novel 

betavoltaic cell. Dark current measurements on the Al0.52In0.48P detector showed that 

the saturation current increased increasing the temperature, while the ideality factor 

decreased. The effects of the temperature on the key cell parameters were studied in 

detail showing that the open circuit voltage, the maximum output power and the 

internal conversion efficiency decreased when the temperature was increased. At -20 

°C, an open circuit voltage and a maximum output power of 0.52 V and 0.28 pW, 

respectively, were measured.  
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I. INTRODUCTION 

 

Radioisotope microbatteries are potentially attractive options for systems needing 

small amounts (pW to µW) of power over extended periods of time (10 � 100+ years). 

In radioisotope betavoltaic batteries, beta particles are emitted during nuclear decay of 

a radioisotope and absorbed by a semiconductor converter device generating an 

electrical energy that may be useful in emerging technologies such as 

microelectromechanical system technologies (MEMS) [1]. Implantable medical 

devices in biomedical applications [3], in particular, could take advantages in using 

this type of power supply since these batteries could insure a high life-quality in the 

patients requiring implantation, as there is no need of recharge or replacement.  																																																								
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The use of the beta emitter 
63

Ni has received research attention for use in betavoltaics 

because of its ability to produce relatively high output powers with minimal risk for 

the semiconductor conversion device (endpoint energy of 66 keV). Different wide 

bandgap semiconductors, including GaAs, SiC, GaN and diamond, have been 

previously coupled to 
63

Ni radioisotope beta particle sources and investigated as novel 

betavoltaic microbattery prototypes. Wang et al. [4] demonstrated a 
63

Ni-GaAs 

microbattery with 0.075% conversion efficiency at 20 °C; while Butera et al. [5] 

proved a 
63

Ni-GaAs cell with internal conversion efficiencies of 11% and 22% at 20 

°C and at -20 °C, respectively. Chandrashekhar et al. reported a 
63

Ni-SiC microbattery 

with at least 6% efficiency [6], whilst Eiting et al. a 
33

P-SiC microbattery with 4.5% 

efficiency [7] at room temperature. Cheng et al. [8] investigated a high open circuit 

voltage (1.64 V) 
63

Ni-GaN beta-voltaic microbattery with a conversion efficiency of 

0.98% at room temperature; while Bormashov et al. [9] proved a 
63

Ni-diamond beta-

voltaic microbattery with conversion efficiencies as high as 0.6% at room 

temperature.  

 

The choice of a wide bandgap semiconductor as the converter material is desirable 

since they can be used in harsh environment condition with reduced likelihood of 

radiation damage from the integrated radioisotope or from external radiation sources. 

Moreover, they can operate at elevated temperatures without cooling systems and 

wider bandgaps are expected to result in high conversion efficiencies [5].   

 

Al0.52In0.48P is a wide bandgap semiconductor (indirect bandgap of 2.31 eV [2]) which 

has received much attention for use in optoelectronics.  However, it is only recently 

that it has been demonstrated for use in the detection of higher energy radiations e.g. 

for photon counting X-ray spectroscopy [10, 11].  Al0.52In0.48P is nearly lattice 

matched with GaAs and the crystalline quality of the nearly lattice matched 

Al0.52In0.48P can be very high in comparison to III-V nitrides, IV and II-VI compounds 

of a similar bandgap. The doping in Al0.52In0.48P is also easier to control than in some 

II-VI semiconductors.  Consequently, Al0.52In0.48P is a potentially important material 

for radioisotope microbatteries. 
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In this paper an Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell is demonstrated for the 

first time.  The effect of temperature on the key cell parameters were studied and are 

presented over the temperature range -20 °C to 140 °C. 

 

II. DEVICE STRUCTURE 

 

The p
+
-i-n

+
 Al0.52In0.48P structure was grown, using metalorganic vapour phase 

epitaxy (MOVPE), on a commercial (100) n-GaAs:Si substrate with a misorientation 

of 10 degrees towards <111>A to suppress the CuPt-like ordered phase. The p
+
-i-n

+
 

Al0.52In0.48P structure consisted of a 0.2 ȝm Zn-doped p-type Al0.52In0.48P layer, a 2 

ȝm undoped Al0.52In0.48P layer, and 0.1 ȝm Si-doped n-type Al0.52In0.48P layer. The 

doping concentrations of the Al0.52In0.48P p
+
 and n

+
 layers were 5  10

17 
cm

-3 
and 2  

10
18 

cm
-3

, respectively. A GaAs layer, 0.01 ȝm thick, was grown on top of the p
+
-i-n

+
 

Al0.52In0.48P structure to facilitate the top metal contact deposition. An Ohmic top 

contact consisting of 20 nm of Ti and 200 nm of Au was evaporated on the p-side of 

the structure, whilst an Ohmic rear contact consisting of 20 nm of InGe and 200 nm of 

Au was evaporated onto the rear of the substrate. The device layers, their relative 

thicknesses and materials are summarised in Table I. After growth, the wafer was 

patterned and etched using 1:1:1 H3PO4:H2O2:H2O solution followed by 10 s in 

1:8:80 H2SO4: H2O2: H2O solution. A 400 ȝm diameter unpassivated p
+
-i-n

+
 

Al0.52In0.48P mesa photodiode, with top Ohmic contact covered 33% of its surface, 

was used in the developed betavoltaic cell. The 400 ȝm diameter unpassivated p
+
-i-n

+
 

Al0.52In0.48P mesa photodiode was illuminated by a 
63

Ni radioactive source (activity 

185 MBq; electron energies up to 66 keV); the source was positioned as close as 

experimentally possible (3mm) to the top of the device such to minimize the 

attenuations of the electrons in the dry nitrogen environment of the temperature test 

chamber where the cell was placed for the study.  

 

Table I. Layer details of the Al0.52In0.48P photodiode 

Layer Material  Thickness 

(ȝm) 

Dopant Dopant 

Type  

Doping density 

(cm
-3

) 

1 Ti 0.02    

2 Au 0.2    

3 GaAs 0.01 Zn  p+ 1  1019 

4 Al0.52In0.48P 0.2   Zn  p+
5  1017 

5 Al0.52In0.48P 2 undoped   

6 Al0.52In0.48P 0.1  Si  n+
2  1018  
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7 Substrate n+ GaAs     

8  Au 0.2    

9 InGe 0.02    	
The Monte Carlo computer modelling package CASINO (version 3.3) [12, 13] was 

used to simulate the interaction of the beta electrons in the Al0.52In0.48P 
63

Ni 

radioisotope betavoltaic cell; the amount of beta energy absorbed in the Al0.52In0.48P i-

layer was particularly studied. In the simulations, 4000 beta particles, of energies 

between 1 keV and 66 keV, were simulated as emitted from the source and incident 

on the p
+
-side of the Al0.52In0.48P epilayer. The simulations showed that beta particles 

with energies below 22 keV did not reach the Al0.52In0.48P i-layer primarily because of 

the attenuation of the particles� energies in the protective inactive Ni overlayer of the 

radioisotope beta particle source used. Attenuation in the top metal contact (covering 

33% of the diode�s face) and in the GaAs dead layer was a secondary effect, as well 

as the attenuation through the p
+
 layer of the Al0.52In0.48P device. Beta electrons with 

energy ≥ 22 keV deposited part of their energy in the i-layer. Simulations suggested 

that the electrons at 39 keV were the electrons that deposited the highest percentage 

of their energy in the i-layer (17%): beta particles with energies < 39 keV lost most of 

their energy above the i-layer, whilst the beta particles with energies > 39 keV easily 

passed through the 2 ȝm thick i-layer depositing there only a small percentage of their 

energy (e.g. only 8% of the energy of the 66 keV was absorbed in the i-layer). The 

current cell design is, therefore, optimised for absorption of the 39 keV electrons. It 

should be noted that the emission of beta electron with energies of 17 keV is the most 

probable from 
63

Ni the emission probability, by comparison the relative emission 

probability of beta electrons with energies of 39 keV is 0.5 [14]. Future changes in the 

system design, such as the use of a 
63

Ni radioisotope beta source without a protective 

inactive Ni overlayer and a thicker Al0.52In0.48P i-layer and a thinner p
+
-layer, will 

allow the absorption of electrons in a wider range of energies so that a bigger 

percentage of the energy released by the source will be deposited in the i-layer. The 

attenuation of the beta particles in the dry nitrogen gap (3 mm) was also investigated 

with CASINO and found to be negligible compared to the other losses.   

 

III. RESULTS AND DISCUSSION 

 

The Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell was studied in the temperature 

range 140 °C to -20 °C using TAS Micro MT climatic cabinet to achieve and 
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maintain the temperature investigated. Dry nitrogen was constantly flowing inside the 

test chamber to control the humidity of the atmosphere where the cell was tested 

(relative humidity < 5%). A Keithley 6487 picoammeter/voltage source was used to 

study the cell performance. Forward bias measurements in dark conditions and under 

the illumination of the 
63

Ni radioisotope beta source were conducted at biases 

between 0 V and 1 V in 0.01 V increments. The uncertainty associated with the 

current readings was 0.3% of their values plus 400 fA, while the uncertainty 

associated with the applied biases was 0.1% of their values plus 1 mV [15].  

 

Dark current characteristics as a function of forward bias at different temperatures for 

the Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell are shown in Figure 1. At high 

temperatures, the dark currents through the devices increased due to the greater 

thermal energy available. 	

	
Figure 1. Dark current as a function of applied forward bias for the Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell. The temperatures studied were 140 °C 

(filled circles), 120 °C (empty circles), 100 °C (filled squares), 80 °C (empty 

squares), 60 °C (crosses), 40 °C(filled triangles), 20 °C (empty triangles), 0 °C 

(filled rhombuses) and -20 °C (empty rhombuses). 

 

At increased forward bias, a greater electric field is applied across the photodiode�s 

depletion region resulting in higher dark current at each temperature. Equation 1 

shows the relationship between the dark current and the applied bias for a simple p-n 

diode. 

 		I  IͲ exp qV nkT                    (1)
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where I0 is the saturation current, q is the electric charge, n is the ideality factor, k is 

the Boltzmann constant and T is the temperature [16]. At each temperature, the values 

of I0 and n for the Al0.52In0.48P photodiode were experimentally estimated by 

performing a linear least squares fit of the natural logarithm of the measured dark 

current data as a function of applied forward bias: equation (1) was linearised as Ln I 

= A + BV, with A = Ln I0 and B = q(nkT)
-1

, and used linear least square fitting. Figure 

2 shows the logarithm of the measured saturation current (left axis, filled circles) and 

the ideality factor (right axis, crosses) as functions of temperature, respectively. 

 

	
Figure 2. The logarithm of the saturation current (left axis, filled circles) and the 

ideality factor (right axis, crosses) as a function of temperature for the 

Al0.52In0.48P device. 	
In accordance with ref. [17], the magnitude of the natural logarithm of the saturation 

current increased at decreased temperatures. The observed increase was 23.13 ± 0.19 

(corresponding to an increase in saturation current, I0, of 0.013 pA) between 140 °C 

and -20 °C. This was in remarkable agreement with the expected increase of 20.50 

(corresponding to an increase in saturation current, I0, of 0.008 pA). The expected 

increase was calculated using the simple assumption that the temperature dependence 

of the natural logarithm of the saturation current was proportional to Eg/2kT [18]. In 

the same temperature range, a change in ideality factor was also observed. Since the 

ideality factor was > 1.5 at every temperature, it can be concluded that the generation-

recombination mechanism was dominant over the diffusion mechanism. The lower 

value of ideality factor observed at higher temperature (1.561 ± 0.003 at 140 °C vs 

1.682 ± 0.011 at -20 °C) may be attributed to the increased contribution of the 

diffusion current at increased temperature [16]. A similar dependence of ideality 
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factor as a function of temperature has been previously observed in other 

semiconductors, e.g. GaAs [19].  	
Figure 3 shows the illuminated current characteristics as a function of forward bias at 

different temperatures for the Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell. The open 

circuit voltage (VOC) and the short circuit current (ISC) were extrapolated as the 

interception points of the curves with the horizontal and vertical axes, respectively.  

 

 

Figure 3. Current as a function of applied forward bias for the Al0.52In0.48P 
63

Ni 

cell. The temperatures studied were 140 °C (filled circles), 120 °C (empty 

circles), 100 °C (filled squares), 80 °C (empty squares), 60 °C (crosses), 40 °C 

(filled triangles), 20 °C (empty triangles), 0 °C (filled rhombuses) and -20 °C 

(empty rhombuses). 

 

At temperatures above 40 °C, the current through the Al0.52In0.48P device increased 

when the temperature was decreased; a different trend was instead observed at 

temperatures below 40 °C. In the temperature range between 40 °C and -20 °C, the 

measured current characteristics were noisy and overlapped each other indicating that 

saturation effects from beta particle induced conduction became dominant over the 

thermal mechanism (scattering), the significance of which was greater at higher 

temperatures as would be expected. The beta electrons, losing energy through the 

Al0.52In0.48P structure, generated electron-hole pairs along their trajectories that 

decreased the resistivity in that region [16].  A similar mechanism has been 

previously observed in GaAs 
63

Ni cell [5].  
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The open circuit voltage (VOC) and the short circuit current (ISC) as a function of 

temperature for the Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell are shown in Figure 

4 and Figure 5, respectively. 

 

Figure 4. Open circuit voltage as a function of temperature for the Al0.52In0.48P  
63Ni radioisotope beta cell. 	

	
Figure 5. Short circuit current as a function of temperature for the Al0.52In0.48P   
63Ni radioisotope beta cell. 

 

The open circuit voltage (VOC) decreased with increased temperature. The VOC values 

obtained for the Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell were lower than the 

values reported in ref. [17] for an Al0.52In0.48P 
55

Fe radioisotope X-ray photovoltaic 

microbattery where a similar Al0.52In0.48P structure was used. This could be due to the 

higher carrier density in Al0.52In0.48P when it was illuminated with beta electrons 

compared with X-ray photons: the beta electrons creating an increased amount of 

electron-hole pairs along their trajectories decreased the material resistivity, 

consequently lower open circuit voltage values were observed in comparison to ref. 
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[17]. The conductive mechanism and its effect were more evident at low temperatures 

since it was dominant over the thermal mechanism. A similar behaviour for VOC was 

observed in GaAs 
63

Ni cell [5]. The exact mechanism by which the VOC appears to 

saturate at low temperatures is not currently conclusively known, however X-ray 

illuminated measurements with a similar structure did not show a saturation in VOC 

[17], thus it is hypothesised that the beta illumination mechanism used in the present 

paper was responsible for this effect possibly as a consequence of the conductive 

mechanism�s dominance at these low temperatures. The conductive mechanism also 

influenced the short circuit current (ISC) values observed: the short circuit current 

magnitude increased with decreasing temperature from 140 °C to 40° C, it reached a 

saturation value of 2.7 pA between 40 °C and -20 °C. The slight decrease in Isc 

observed for temperatures < 20 °C was unexpected and its mechanism is unclear, 

however, the apparent change recorded is within the experimental uncertainties. 

 

The Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell output power was calculated as P = 

IV. Increasing the applied forward bias, the cell output power increased to a maximum 

(Pm) and then decreased, as shown in Figure 6. At temperatures below 40 °C the 

power characteristics were noisy and overlapped each other as a consequence of the 

current results shown in Figure 3. Figure 7 (left axis, filled circles) shows the 

magnitude of the measured maximum output power as a function of temperature. The 

internal conversion efficiency of the betavoltaic cell was also calculated dividing the 

experimental maximum output power by the maximum power (Pth). Pth

 

was calculated 

using equation 2 

P
th


Aʹ Emi

A
Ni

A
AlInP

QE
i

i


AlInP

ͳǤͳͲͳͻ
iͲ

end point


 

  (2) 

where A is the activity of the 
63

Ni radioactive source (185 MBq), Emi the emission 

probability of an electron of energy i [14], ANi area of the 
63

Ni radioactive source (49 

mm
2
), AAlInP  area of the Al0.52In0.48P  detector (0.13 mm

2
), QEi the percentage of each 

electron energy absorbed in the Al0.52In0.48P mesa device (calculated using CASINO 

software), ȦAlInP the Al0.52In0.48P electron-hole pair creation energy (5.34 eV [20]). In 

equation 2 the activity of the 
63

Ni radioactive source was halved because we assumed 

that half of the electrons were lost since they were emitted up. Pth was found to be 4.3 

pW. 
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Figure 7 (right axis, empty squares) shows the cell internal conversion efficiency as a 

function of temperature. 

 

	
Figure 6. Al0.52In0.48P 

63
Ni radioisotope cell output power as a function of 

applied forward bias at 140 °C (filled circles), 120 °C (empty circles), 100 °C 

(filled squares), 80 °C (empty squares), 60 °C (crosses), 40 °C (filled triangles), 

20 °C (empty triangles), 0 °C (filled rhombuses) and -20 °C (empty rhombuses). 	

	
Figure 7. The experimental maximum power (left axis, filled circles) and the 

internal conversion efficiency (right axis, empty squares) as a function of 

temperature for the Al0.52In0.48P device. 

 

In Figure 7, the magnitude of the maximum output power increased decreasing the 

temperature, reaching a saturation value of 0.28 pW, corresponding to 0.11 ȝW/Ci, at 

temperatures < 40 °C. The behaviour observed can be explained taking in 

consideration the dependence of the maximum output power with respect to the open 

circuit voltage [16]. At each temperature, the maximum output power values were 
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lower than the ones observed using a similar Al0.52In0.48P converter device and an 
55

Fe 

radioisotope X-ray source [17]. The use of the beta electrons decreased the 

Al0.52In0.48P resistivity, as a consequence of conductive mechanism, resulting in an 

underestimation of the maximum output power values. At -20 °C, maximum output 

power of 0.28 pW was observed for the Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell, 

whilst 0.62 pW was extracted from a single cell of the Al0.52In0.48P 
55

Fe radioisotope 

X-ray photovoltaic microbattery [17]. The underestimation of the maximum output 

power resulted in lower cell internal efficiency with respect to ref. [17].  At -20 °C, a 

internal conversion efficiency of 6.6% was achieved for the Al0.52In0.48P 
63

Ni 

radioisotope betavoltaic, while 22% was reported by for the Al0.52In0.48P 
55

Fe 

radioisotope X-ray photovoltaic microbattery [17].  

 

Improvements in the cell system design, such as the use of a radioisotope beta particle 

source without a protective inactive Ni overlayer and the optimization of the 

radioisotope beta particle source to converter device geometry, will improve the next 

generation of Al0.52In0.48P 
63

Ni radioisotope betavoltaic cell. Maximising the number 

of electrons collected by the Al0.52In0.48P converter device, as well as the fraction of 

their energy deposited in the i-layer, will increase the maximum cell output power. 

Currently only 0.13% of the beta particles emitted by the 
63

Ni radioisotope source 

reached the Al0.52In0.48P device. The number of electrons per second emitted in any 

direction by the beta source was estimated knowing the 
63

Ni radioactive source�s 

activity (185 MBq) and emission probabilities [14]; it was found that 5.6 × 10
7
 

electrons per second are emitted by the 
63

Ni radioactive source. Of these 5.6 × 10
7
 

electrons per second, only half are emitted in the direction of the device (we assumed 

that half of the electrons were lost because emitted up). The number of electron per 

second on the device (7.2 × 10
4
 s

-1
) was estimated knowing the number of electrons 

per second emitted by the source towards the device (2.8 × 10
7
 s

-1
) and the geometry 

of the source and detector. The ratio between the area of the device (0.13 mm
2
) and 

the area of the radioactive 
63

Ni source (49 mm
2
) was calculated to be 0.0026.  

 

IV. CONCLUSIONS 

 

In this paper for the first time the performance of an Al0.52In0.48P 
63

Ni radioisotope 

cell are reported. Preliminary dark current measurements showed that the Al0.52In0.48P 
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saturation current increased as the temperature was increased, while the ideality factor 

decreased. Under illumination from the 
63

Ni radioisotope, the open circuit voltage, the 

maximum output power and the internal conversion efficiency of the Al0.52In0.48P 

betavoltaic cell decreased with increased temperatures. A maximum output power of 

0.28 pW (corresponding to 0.11 ȝW/Ci) and an internal conversion efficiency of 6.6% 

were observed, respectively, at -20 °C. A better microbattery system design that 

improves the beta particle collection (currently only 0.13% of the beta particles 

reached the Al0.52In0.48P i-layer) could increase the power extracted from the 

betavoltaic cell. Conductive mechanisms, particularly evident at low temperatures, 

seemed to compromise the cell performance: despite the high energy of the beta 

particles with respect to the X-ray photons, the maximum output power of the 

Al0.52In0.48P 
63

Ni radioisotope cell was lower than Al0.52In0.48P 
55

Fe radioisotope X-ray 

photovoltaic microbattery [17]. 
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