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1 Institut für Informatik, Goethe-Universität, Frankfurt, Germany.
iadler@informatik.uni-frankfurt.de
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Abstract We show that for every forest T the linear rank-width of T is
equal to the path-width of T , and we show that the linear clique-width of
T equals the path-width of T plus two, provided that T contains a path
of length three. It follows that both linear rank-width and linear clique-
width of forests can be computed in linear time. Using our characterization
of linear rank-width of forests, we determine the set of minimal excluded
acyclic vertex-minors for the class of graphs of linear rank-width at most k.

1 Introduction

Rank-width [29] is a graph parameter introduced by Oum and Seymour with the
goal of efficient approximation of the clique-width [9] of a graph. Linear rank-width
can be seen as the linearized variant of rank-width, similar to path-width, which
can be seen as the linearized variant of tree-width. While path-width is a well-
studied notion, much less is yet known about linear rank-width. Indeed, any graph
of k-bounded path-width has k-bounded linear rank-width, but conversely the dif-
ference is unbounded. For example, the class of all complete (bipartite) graphs has
linear rank-width at most 1, but unbounded path-width. Linear clique-width, a lin-
earized version of clique-width, was introduced independently by several authors
when studying the computational complexity of clique-width (see for instance the
works by Gurski et al. [11,13,14,15,16], and the paper [27] by Lozin and Rauten-
bach). The computation of the linear clique-width of some graph classes have been
investigated by Heggernes et al. [17,18,19]. Linear rank-width is equivalent to linear
clique-width in the sense that any graph class has bounded linear clique-width if
and only if it has bounded linear rank-width.

Computing linear rank-width is NP-complete in general. In fact, it is proved
in [11] that computing linear clique-width is NP-complete and one can easily reduce
the computation of linear clique-width to the computation of linear rank-width.
Moreover, very little is known about efficient computation of linear rank-width on
restricted graph classes. The only known results are for special types of graphs, such
as for complete (bipartite) graphs, and linear clique-width is known to be polynomial
time computable on thickend paths [19] and k-path powers [17]. Even for the very
natural class of forests efficient computability was open. In contrast, many classes
are known that allow efficient computation of path-width [3,4,5,10,12,24,28,31].

In this paper, we provide the first non-trivial graph class on which linear rank-
width can be computed in polynomial (even linear) time. We prove

Theorem 1 Linear rank-width and linear clique-width of forests can be computed
in linear time.

⋆ Supported by the German Research Council, Project GalA, AD 411/1-1.
⋆⋆ Supported by the French Agency for Research under the DORSO project.



We obtain Theorem 1 as a corollary of the following theorems.

Theorem 2 The linear rank-width of any forest equals its path-width.

Theorem 3 Let T be a forest. If T contains a path of length 3, then lcw(T ) =
pw(T ) + 2. Otherwise, lcw(T ) = pw(T ) + 1.

While it was known that the class of all trees has unbounded linear rank-width
(see [12] for a combinatorial proof) and unbounded path-width, Theorem 2 is some-
what surprising, because it actually equates the two structurally very different pa-
rameters.

It is known that the linear clique-width of any graph is bounded by its path-
width plus 2 [11]. Since linear rank-width is bounded by linear clique-width, the
same bound carries over to linear rank-width. We show that the linear rank-width
of any graph is bounded by its path-width. This is not hard to prove, but it seems
it was not written down yet. For forests we show that the converse holds, too.
Our proof uses the characterization of path-width by the cops and invisible robber
game [23]. Given an ordering of the vertices of a forest T witnessing the linear rank-
width of T , we construct a winning strategy for the cops. Here it is not sufficient for
the cops to search the vertices according to the given ordering, but a more involved
strategy yields the result. Indeed, our proof method is constructive in the sense that
it shows how to transform the given ordering into a winning strategy for the cops
(and a path decomposition).

It is known that the (linear) rank-width does not increase when taking vertex-
minors, and, given k, the set of minimal excluded vertex-minors for the class of
graphs of rank-width at most k is known to be computable [20]. However, until now,
explicit sets of minimal excluded vertex-minors are only known for circle graphs [7],
distance-hereditary graphs [20], and for graphs of linear rank-width at most one [1].
For graphs of linear rank-width at most k, some minimal excluded vertex-minors
were established in [22]. Using Theorem 2, we determine the set of minimal excluded
acyclic vertex-minors for linear rank-width k. It turns out that they coincide with
the minimal excluded minors for graphs of path-width at most k that are acyclic [32].

Summary. Section 2 introduces the terminology and the notions of linear rank-
width, path-width and the cops and invisible robber game. In Section 3 we prove
that linear rank-width and path-width coincide on forests (Theorem 2), and in
Section 4 we prove Theorem 3 characterizing the linear clique-width of forests. In
Section 5 we give the set of minimal excluded acyclic vertex-minors for the class of
graphs of linear rank-width k, and we conclude with Section 6.

2 Preliminaries

For a set A we denote the power set of A by 2A. We let A \ B := {x ∈ A | x /∈ B}
denote the difference of two sets A and B. For a subset X of a ground set A let
X := A \ X. For two sets A and B let A∆B := (A \ B) ∪ (B \ A) denote the
symmetric difference of A and B. For an integer n > 0 we let [n] := {1, . . . , n}.

In this paper, graphs are finite, simple and undirected, unless stated otherwise.
Let G be a graph. We denote the vertex set of G by V (G) and the edge set by
E(G). We regard edges as two-element subsets of V (G). For a vertex v ∈ V (G) we
let NG(v) := {u ∈ V (G) | u 6= v, {v, u} ∈ E(G)} denote the set of neighbors of v (in
G). The degree of v (in G) is degG(v) := |NG(v)|. A partition of V (G) into two sets
X and Y with X ∪̇Y = V (G) is called a cut in G. We denote it by (X,Y ). A tree is
a connected, acyclic graph. A leaf of a tree is a vertex of degree one. A path is a tree
where every vertex has degree at most two. The length of a path is the number of



its edges. The distance between two vertices u, v ∈ V (G) is the length of a shortest
path from u to v. A rooted tree is a tree with a distinguished vertex r, called the
root. The height of a rooted tree is the maximal length of a path from the root to a
leaf (counted in terms of edges). Let T be a rooted tree with root r. Let v ∈ V (T ).
The tree T v is the subtree of T induced by those vertices u ∈ V (T ) such that the
path from r to u contains v. For a rooted tree T it is sometimes convenient to orient
the edges of T in the direction away from the root, thus obtaining an oriented tree.

Path-width. A path decomposition of a graph G is a pair (P,B), where P is a
path and B = (Bt)t∈V (P ) is a family of subsets Bt ⊆ V (G), satisfying

1. For every v ∈ V (G) there exists a t ∈ V (P ) such that v ∈ Bt.
2. For every e ∈ E(G) there exists a t ∈ V (P ) such that e ⊆ Bt.
3. For every v ∈ V (G) the set {t ∈ V (P ) | v ∈ Bt} is connected in P .

The width of a path decomposition (P,B) is defined as w(P,B) := max{|Bt| |
t ∈ V (P )} − 1. The path-width of G is defined as

pw(G) := min{w(P,B) | (P,B) is a path decomposition of G}.

Paths have path-width ≤ 1. Indeed, the graphs of path-width ≤ 1 are precisely
the disjoint unions of caterpillars, i.e. of the graphs that contain a path P such that
every vertex has distance at most one to some vertex of P . There is no finite upper
bound on the path-width of trees. Indeed, the rooted binary tree Th of height h
satisfies pw(Th) = ⌈h/2⌉ [30].

A path decomposition (P,B) ofG is small if any two distinct vertices t, t′ ∈ V (P )
satisfy Bt 6⊆ Bt′ . The following lemma is not hard to prove.

Lemma 4 Any graph G has a small path decomposition of width pw(G). ⊓⊔

Linear rank-width. For sets R and C an (R,C)-matrix is a matrix where the
rows are indexed by elements in R and columns indexed by elements in C. (Since
we are only interested in the rank of matrices, it suffices to consider matrices up to
permutations of rows and columns.) For an (R,C)-matrix M , if X ⊆ R and Y ⊆ C,
we let M [X,Y ] be the submatrix of M where the rows and the columns are indexed
by X and Y respectively. If M is an (R,C)-matrix and when the context is clear
we will identify the row indexed by x ∈ R with x (similarly for the column indexed
by y ∈ C); hence we will say for instance that a subset X of R is a basis for the
rows of M if the rows indexed by X form a basis for the rows of M and similarly
for other linear algebra terminologies involving rows (or columns).

Let AG be the adjacency (V (G), V (G))-matrix of G. For a graph G, let v1, . . . , vn
be a linear ordering of V (G). Every index i ∈ [n] induces a cut (Xi, Xi), where
Xi = {v1, . . . , vi}. The cutrank of the ordering v1, . . . , vn is defined as

cutrkG(v1, . . . , vn) := max{rk(AG[Xi, Xi]) | i ∈ [n]}.

The linear rank-width of G is defined as

lrw(G) := min{cutrkG(v1, . . . , vn) | v1, . . . , vn is a linear ordering of V (G)}.

Disjoint unions of caterpillars have linear rank-width ≤ 1. Ganian [12] gives an
alternative characterization of the graphs of linear rank-width ≤ 1 as thread graphs.
In addition, he proves that there is no finite upper bound on the linear rank-width
of trees.



The cops and invisible robber game We now introduce the cops and invisible
robber game characterizing path-width. LetG be a graph and let k ≥ 0 be an integer.
The cops and invisible robber game on G (with game parameter k) is played by two
players, the cop player and the robber player, on the graph G. The cop player
controls k cops and the robber player controls the robber. Both the cops and the
robber move on the vertices of G. Some of the cops move to at most k vertices and
the robber stands on a vertex r not occupied by the cops. At all times, the robber
is invisible to the cops. Initially, no cops occupy vertices and the robber chooses
a vertex to start playing. In each move, some of the cops fly in helicopters to at
most k new vertices. During the flight, the robber sees which position the cops are
approaching and before they land she quickly tries to escape by running arbitrarily
fast along paths of G to a vertex r′, not being allowed to run through a vertex
occupied by a cop. Hence, if X ⊆ V (G) is the cops’ position, the robber stands on
r ∈ V (G) \ X, and after the flight, the cops occupy the set Y ⊆ V (G), then the
robber can run to any vertex r′ within the connected component of G \ (X ∩ Y )
containing r. The cops win if they land a cop via helicopter on the vertex occupied
by the robber. The robber wins if she can always elude capture. A play is a sequence
of cop positions X0, X1, X2, . . . with X0 := ∅ and |Xi| ≤ k for all i. At each step
of a play, we can describe the set of cleared vertices as follows. At the position X0,
the set of cleared vertices is A0 := ∅. After the cops’ move to Xi (for i > 0), the set
of cleared vertices is

Ai := (Ai−1 ∪Xi) \ {r ∈ V (G) | there is a path from V (G) \Ai−1

to r in G \ (Xi−1 ∩Xi)}.

Winning strategies are defined in the usual way. The invisible cop-width of G,
icw(G), is the minimum number of cops having a winning strategy on G.

A winning strategy for the cops ismonotone, if for any playX1, X2, X3, . . . played
according to the strategy, the sets A0, Ai, A2, . . . form a non-decreasing sequence
(with respect to ⊆). The monotone invisible cop-width of G, monicw(G), is the
minimum number of cops having a monotone winning strategy on G.

Theorem 5 ([2,26]) Any graph G satisfies pw(G) + 1 = icw(G) = monicw(G).
⊓⊔

3 Linear Rank-Width and Path-Width

In this section we prove that on forests, linear rank-width and path-width coincide.
Due to space constraints some proofs are omitted.

Lemma 6 Any graph G satisfies lrw(G) ≤ pw(G).

Definition 7 Let G be a graph and let (X,Y ) be a cut in G. A vertex x ∈ X is a
standard vertex (of the cut) if x has exactly one neighbor in Y .

Fact 8 Let T be a tree and let (X,Y ) be a cut in T .

1. Any two distinct rows of AT [X,Y ] have at most one common non-zero position.
2. Let B ⊆ X be a basis of the rows of M . A vertex x ∈ X \B cannot be generated

by less than |NT (x) ∩ Y | elements of B.

Lemma 9 (Spanning dependent vertices) Let T be a tree and let (X,Y ) be a
cut in T . Let B ⊆ X be a basis of the row space of AT [X,Y ]. For x ∈ X \ B
with NT (x) ∩ Y 6= ∅ let B′ ⊆ B be the (unique) minimal subset of B spanning x.



We let T ′, called B-basic tree of x, be the bipartite subgraph of T with vertex set
V (T ′) = X ′ ∪̇Y ′, where X ′ := B′ ∪{x} and Y ′ := NT (B

′ ∪{x})∩Y , and with edge
set E(T ′) := {{u, v} ∈ E(T ) | u ∈ X ′, v ∈ Y ′}. Then

1. T ′ is a tree.
2. The leaves of T ′ are standard vertices in X.
3. The vertices in Y ′ have degree two in T ′.
4. Choose x to be the root of T ′ and orient the edges of T ′ away from the root.

Let b : B′ → Y ′ where for every z ∈ B′ we let b(z) be the predecessor of z in T ′

oriented. Then b is a bijection, and hence |Y ′| = |B′|.

x

y

z

Figure 1. The tree T
′ in the proof of Lemma 9. Black vertices are in X

′, white vertices
in Y

′.

Lemma 10 (Clearing dependent vertices) Under the conditions of Lemma 9,
suppose that in the (k + 1)-cops and robber game on T the cops have cleared all
vertices in X \{x} and the game is in a position where at most k cops are occupying
vertices. Furthermore, assume that exactly |B′| cops are occupying vertices of T ′,
and in addition, for each vertex b ∈ B′, either b is occupied by a cop, or NT (b)∩Y is
occupied by cops. Then there is a sequence of moves of |B′|+1 cops, involving only
the cops on vertices of T ′ plus one additional cop, that ends in a position, where

1. the vertices in X ∪ V (T ′) \ {x} are cleared,
2. all vertices in NT (x) ∩ Y are occupied,
3. exactly |B′| cops occupy vertices of T ′, and
4. the set NT (B

′) ∩ Y is occupied by cops.

Theorem 11 Any forest T satisfies pw(T ) ≤ lrw(T ).

Proof. We may assume that T is a tree. Let v1, . . . , vn be a linear ordering of V (T )
witnessing k := lrw(T ). For i ∈ [n] let Xi := {v1, . . . , vi} and Yi := {vi+1, . . . , vn},
and let Mi be AT [Xi, Yi].

We describe a strategy for k+1 cops in the invisible robber and cops game. The
strategy follows the linear ordering of V (T ). For each new vertex vi that has to be
cleared, we describe a transition – a finite sequence of cop moves to make sure that
vi is cleared. After the ith transition, the following invariants hold.

1. Every vertex in Xi is cleared.
2. There is a basis Bi ⊆ Xi of the rows of Mi such that each b ∈ Bi satisfies:

b is occupied by a cop or NT (b)∩ Yi is occupied by cops, and no vertex
in the set Xi \Bi is occupied by a cop.



3. The cops occupy exactly |Bi| vertices.

The first ≤ k transitions simply consist in placing cops on the vertices v1, . . . , vℓ,
with ℓ ≤ k, successively, where ℓ is the greatest index i ≤ k such that the rank of
Mi is equal to i. Obviously, after each such transition the invariants hold.

Suppose we have completed the ith transition, and we want to make the (i+1)st
transition. Moving from Mi to Mi+1, the following cases can occur.

(a) In Mi+1, the new vertex vi+1 is in the span of Bi.
(b) In Mi+1, the new vertex vi+1 is linearly independent of Bi.

Observe that Bi can span the rows of Mi+1, but may be linearly dependent
in Mi+1. If it is linearly dependent in Mi+1, then the size of a maximum linearly
independent subset of Bi is |Bi| − 1, because deleting a column can only decrease
the rank by one.

Claim 1: If the size of a maximum linearly independent subset of Bi in Mi+1 is
|Bi| − 1, then there exists a vertex vN ∈ NT (vi+1) ∩ Bi such that Bi \ {vN} is a
maximum linearly independent subset of Bi in Mi+1.

Proof of the Claim: If Bi is linearly dependent in Mi+1 and linearly independent
in Mi, there exists a row of Mi corresponding to a vertex u ∈ Bi that is generated
by Bi \ {u} and that has a 1 at the column corresponding to vi+1, and hence
u ∈ NT (vi+1). ⊣

We will complete the (i+ 1)st transition in such a way that the new basis Bi+1

of the row space of Mi+1 contains a basis of the rows of Mi+1 corresponding to Bi,
together with the vertex vi+1, if vi+1 is linearly independent of Bi in Mi+1. For
this, let vN ∈ NT (vi+1) ∩ Bi be as in Claim 1. If vi+1 is in the span of Bi, we let
Bi+1 := Bi \ vN . Otherwise, we let Bi+1 := (Bi \ vN ) ∪ {vi+1}. Obviously, Bi+1 is
a basis of Mi+1.

For each v spanned by Bi+1 let Tv denote the Bi+1-basic tree of v. The following
follows from the fact that T is a tree and the vertex vN is adjacent to vi+1.

Claim 2: let vN ∈ NT (vi+1) ∩Bi be as in Claim 1.

(i) The Bi+1-basic tree of vN does not contain vi+1.
(ii) V (Tvi+1

) ∩ V (TvN
) = ∅ and there is no edge other than {vN , vi+1} between a

vertex of Tvi+1
and a vertex of TvN

. ⊣

We identify two cases, depending on whether a cop occupies vi+1.

Case 1. After the ith transition, vi+1 is not occupied by a cop.
Then by the inductive invariant (1), the set NT (vi+1) ∩ Xi+1 = NT (vi+1) ∩ Xi is
occupied by cops, and hence NT (vi+1) ∩Xi ⊆ Bi by the inductive invariant (2).

Case 1.1 Vertex vi+1 is in the span of Bi in Mi+1.
If vi+1 has no neighbors in Yi+1, then we use the (k + 1)st cop to step on vi+1

and remove the cop again. Otherwise, let T ′ be the Bi+1-basic tree of vi+1, and let
B′ ⊆ Bi+1 be the minimal subset of Bi+1 spanning vi+1. Since T has no cycles,
V (T ′)∩

(

NT (vi+1)∩Xi+1

)

= ∅. Hence we can use Lemma 10 to move to NT (vi+1)∩
Yi+1 with at most |B′|+ 1 ≤ k+ 1 cops, ending in a position where at most k cops
are on V (T ). Since NT (vi+1) ∩Xi+1 is occupied by cops, we can use the (k + 1)st
cop to step on vi+1 and then lift the (k+ 1)st cop up again, thus clearing vi+1. We
have then cleared Xi+1.

It remains to check conditions (2) and (3). By the inductive hypothesis invariant,
(2) is already satisfied, and if Bi is linearly independent in Mi+1, condition (3) is
also satisfied. So assume Bi is linearly dependent in Mi+1. If vN does not have



a neighbor in Yi+1 we can remove safely the cop from vN . Otherwise, if it has a
neighbor in Yi+1, we can use Lemma 10 to move to NT (vN ) ∩ Yi+1, and we then
lift up the cop from vN . By Claim 2, we can do it safely. In this way, we end the
transition with a position of |Bi+1| cops on V (T ). This follows from Lemma 10(3)
and Claim 2. Hence all three invariants are satisfied.

Case 1.2. Vertex vi+1 is not in the span of Bi in Mi+1.
If vN has no neighbors in Yi+1, we place the (k+1)st cop on vi+1 (vi+1 is not already
occupied by a cop) and we then remove the cops from vN . After these moves, at
most k cops are occupying vertices.

Now, if vN has a neighbor in Yi+1, take the Bi+1-basic tree TvN
of vN and use

Lemma 10 to move cops in V (TvN
) \ {vN} to NT (vN ) ∩ Yi+1. Claim 2 guarantees

the safety of these moves. After these moves, at most k cops are occupying vertices.
If vi+1 was occupied by a cop, then remove the cop that is still occupying the vertex
vN . If vi+1 was not occupied by a cop, then we place the (k+ 1)st cop on vi+1 and
remove the cop that occupy the vertex vN . After these moves, vi+1 is cleared and
since we did not recontaminateXi,Xi+1 is cleared. Moreover, exactly |Bi+1| vertices
of T are occupied by cops (Lemma 10(3) and Claim 2), and since the other cops
are not moved, invariant (2) is satisfied. The three invariants are hence satisfied.

Case 2. After the ith transition, vi+1 is occupied by a cop.
By the inductive invariant (1), each vertex b ∈ NT (vi+1) ∩Xi+1 = NT (vi+1) ∩Xi

is cleared, hence either b is occupied by a cop, or NT (b)∩ Yi+1 is occupied by cops.

Case 2.1. Vertex vi+1 is in the span of Bi in Mi+1.
For every b ∈ {vN , vi+1} such that V (Tb)∩ Yi+1 contains an unoccupied vertex, we
use Lemma 10 to move cops in V (Tb)\{b} to V (Tb)∩Yi+1. This is possible, because
the Bi+1-basic trees involved are pairwise disjoint and pairwise connected via vi+1

only (Claim 2). After that, we remove the cops occupying vertices in {vN , vi+1}.
Since by induction, the cop moves are monotone, we can conclude that the three
inductive invariants are satisfied.

Case 2.2. Vertex vi+1 is not in the span of Bi in Mi+1.
If V (TvN

) ∩ Yi+1 contains an unoccupied vertex, we use Lemma 10 to move cops
in V (TvN

) \ {vN} to V (TvN
) ∩ Yi+1. After that, we remove the cop occupying the

vertex vN . Since by induction, the cop moves are monotone, we can conclude that
the three inductive invariants are satisfied. ⊓⊔

Note that the analogous statement of Theorem 11 fails for C3, the cycle of length
three. While lrw(C3) = 1, we have pw(C3) = 2.

Theorem 2 now follows from Lemma 6 and Theorem 11. Theorem 2 combined
with [10] gives the following as a corollary.

Theorem 12 There is a linear time algorithm that computes the linear rank-width
of any forest, and an ordering of its vertex set V witnessing its linear rank-width
can be computed in time O(|V | · log |V |).

Example 13 Let T be the graph shown in Figure 2. The ordering b, a, c, d, e is a
witness for lrw(T ) ≤ 1. The strategy for two cops according to the proof of Theo-
rem 11 is as follows: the first cop moves to b and then the second cop moves to a
and remains there. Now the first cop moves to c, d, e in this ordering.

Example 14 The tree T in Figure 3 satisfies lrw(T ) = 2. The given ordering
(attached to the vertices) witnesses lrw(T ) ≤ 2. The strategy for three cops accord-
ing to Theorem 11 is {1}, {1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 5, 6}, {4, 6, 7}, {4, 8}, {8, 9},
{8, 9, 10}, {8, 10, 11}, {8, 10, 12}, {8, 12, 14}, {8, 13, 14}, {8, 14, 15}, {8, 16}, {8, 16, 17},
{8, 17, 18}, {8, 17, 19}, {8, 19, 20}, {19, 20, 21}, {21, 22}.
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Figure 2. The tree of Example 13.
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Figure 3. The tree of Example 14.

4 Linear Clique-Width

In this section we prove Theorem 3, characterizing the linear clique-width of forests
in terms of their path-width. It follows that the linear clique-width of forests is
linear time computable. In [11] it is proved that the linear clique-width of a graph is
at most its path-width plus 2. We prove that for forests containing a path of length
three, this upper bound is also a lower bound.

Let us recall the definition of linear clique-width [11,15,27]. Let k be a positive
integer. A k-labeled graph is a pair (G, γ) where G is a graph and γ : V (G) → [k] is a
mapping; we will also denote it by (V (G), E(G), γ). The k-labeled graph consisting
of a single vertex labeled by i ∈ [k] is denoted by (i, γi). The set LIN-CWk of
k-labeled graphs is defined inductively with the following operations.

1. For each i ∈ [k], (i, γi) is in LIN-CWk.
2. If i, j ∈ [k] and (G, γ) is in LIN-CWk, then (ρi→j(G), γ) is in LIN-CWk and

denotes the k-labeled graph (V (G), E(G), γ′) with

γ′(x) :=

{

γ(x) if γ(x) 6= i,

j otherwise.

3. If i, j ∈ [k], i 6= j, and (G, γ) is in LIN-CWk, then (ηi,j(G), γ) is in LIN-CWk

and denotes the k-labeled graph (V (G), E′, γ) with

E′ := E(G) ∪ {{x, y} | γ(x) = i and γ(y) = j} .

4. If i ∈ [k] and (G, γ) is in LIN-CWk, then (G⊕ i, γ′) is in LIN-CWk and denotes
the graph (V (G) ∪ {z}, E(G), γ′) where z /∈ V (G) and

γ′(x) :=

{

γ(x) if x ∈ V (G),

i otherwise.



An expression built with the operations i, ρi→j , ηi,j and ⊕ according to the
definition of LIN-CWk is called a linear k-expression. The linear clique-width of
a graph G, denoted by lcw(G), is the minimum k such that G is isomorphic to a
graph in LIN-CWk (after forgetting the labels). It is worth noticing that if H is an
induced subgraph of G, then lcw(H) ≤ lcw(G). Moreover, any linear k-expression
t defining a graph G defines a linear ordering of V (G) witnessing the ordering in
which the vertices of G appears in t.

Lemma 15 ([8,11]) Any graph G satisfies lcw(G) ≤ pw(G) + 2. ⊓⊔

The proofs of Lemmas 17 and 18 are omitted due to space constraints. For the
proof of Lemma 18 we use the following lemma, proved in [10, Theorem 3.1].

Lemma 16 Let T be a tree and let k ≥ 1 be an integer. Then pw(T ) ≤ k if and
only if for all v ∈ V (T ) at most two of the trees in T \ v have path-width k and all
others have path-width less than k. ⊓⊔

Lemma 17 Let T be a tree obtained from three trees T1, T2 and T3 by adding a
new vertex r adjacent to exactly one vertex in each of the three trees. If lcw(Ti) = k
for each i ∈ {1, 2, 3}, then lcw(T ) ≥ k + 1.

Lemma 18 Any forest T containing a path of length three satisfies lcw(T ) ≥
pw(T ) + 2.

Proof of Theorem 3. We can assume without loss of generality that T is a tree.
The first statement follows from Lemmas 15 and 18. For the second statement, if
T does not contain a path of length three, then it is a star. Since stars with at
least one edge have linear clique-width 2 and path-width 1, we can conclude that
lcw(T ) = pw(T ) + 1. ⊓⊔

5 Minimal Excluded Acyclic Vertex-Minors

As an application, in this section we identify the minimal excluded acyclic vertex-
minors for linear rank-width k. For this result we use both Lemma 16 and the fact
that linear rank-width and path-width coincide on trees.

For a graph G and a vertex x of G, the local complementation at x of G consists
in replacing the subgraph induced on the neighbors of x by its complement. The
resulting graph is denoted by G ∗ x. If H can be obtained from G by a sequence of
local complementations, then G and H are called locally equivalent. A graph H is
called a vertex-minor of a graph G if H is isomorphic to a graph obtained from G by
applying a sequence of local complementations and deletions of vertices. The graph
H is a proper vertex-minor of G if H is a vertex-minor of G and |V (H)| < |V (G)|.
A graph G is a minimal excluded vertex-minor for the class of graphs of linear rank-
width k, if lrw(G) > k and lrw(H) ≤ k for all proper vertex-minors H of G. It is
known that for fixed k, the set of minimal excluded vertex-minors for the class of
graphs of linear rank-width at most k is finite [21]. For k = 1, the set of minimal
excluded vertex-minors consists of three graphs [1]. For k ≥ 2, a double-exponential
lower bound on the number of minimal excluded vertex-minors is known [22] . See
also [6,20] for more information on vertex-minors.

We say that a graph G is a minimal excluded acyclic vertex-minor for the class
of graphs of linear rank-width k, if G is acyclic and every proper acyclic vertex-
minor of G has linear rank-width less than k. Note that a minimal excluded acyclic
vertex-minor may not be a minimal excluded vertex minor. For example, let R3 be



the the tree obtained from the star with three leaves by subdividing each edge once
(cf. Figure 4). Then R3 is a minimal excluded acyclic vertex-minor for the class
of graphs of linear rank-width at most 1, but it contains the net graph (i. e. the
graph obtained from a triangle by adding three pendant vertices, one to each of the
vertices of the triangle) shown in Figure 4 as a proper vertex minor, which in turn
is a minimal excluded vertex-minor for the class of graphs of linear rank-width at
most one [1].

Figure 4. The subdivided 3-star R3, and the net graph.

We now determine the set of pairwise not locally equivalent minimal excluded
acyclic vertex-minors for linear rank-width k. Due to minimality, the minimal ex-
cluded (acyclic) vertex-minors for linear rank-width k are necessarily connected.
Let H1 := {R3}. For k ≥ 2, let Hk be the set of (pairwise non isomorphic) trees
obtained by taking a new vertex r and three trees in Hk−1, and by linking this new
vertex to one vertex in each of these three trees. Notice that two trees in Hk have
the same size.

Lemma 19 Let k ≥ 1 be an integer. Every tree of linear rank-width k+1 contains
a tree in Hk as a vertex-minor.

Theorem 20 For each k ≥ 1, the set Hk is the set of minimal excluded acyclic
vertex-minors for linear rank-width k.

Proof. One can prove by induction, by using Theorem 2 and Lemma 16, that each
tree in Hk has linear rank-width k+1 and is minimal with respect to this property.
Moreover, by Lemma 19 any tree of linear rank-width k + 1 contains as a vertex-
minor a tree in Hk. So it is enough to prove that two trees in Hk are not locally
equivalent. Bouchet has proved in [6] that two trees are locally equivalent if and
only if they are isomorphic. Hence, since no two trees in Hk are isomorphic, we are
done. ⊓⊔

6 Conclusion

We proved that linear rank-width and path-width coincide on forests, and we de-
termined the linear clique-width of forests in terms of their path-width. Our proof
method for the first result completely differs from our proof method for the second
result. We believe that the second method can be adapted in order to obtain a
shorter but non-constructive proof for the first result.

We obtained a linear time algorithm that computes the linear rank-width and
the linear clique-width of any forest. Natural questions are: Is there a linear time
algorithm that computes the linear rank-width (or linear clique-width) of distance-
hereditary graphs or of series-parallel graphs? And, more generally, is there a poly-
nomial time algorithm that computes the linear rank-width (or linear clique-width)
of graphs of bounded rank-width?



We used the fact that linear rank-width and path-width coincide in forests to
determine the set of minimal excluded acyclic vertex-minors for linear rank-width k.
One can probably use the same technique to compute the set of minimal excluded
acyclic induced subgraphs for linear rank-width and linear clique-width k. The com-
plete set of minimal excluded vertex-minors for linear rank-width k is unknown and
a next step could be to determine the set of distance-hereditary excluded vertex-
minors for linear rank-width k (we know from [22] that the number is at least doubly
exponential in k). In [20] it is proved that the size of the excluded vertex-minors for
rank-width k is bounded by (6k+1 − 1)/5, and similar results exist for tree-width
and path-width [25]. Can we get a similar result for linear rank-width?

Clique-width and linear clique-width are not monotone with respect to the
vertex-minor inclusion and are only known to be monotone with respect to the in-
duced subgraph inclusion. Characterizing linear clique-width with respect to the in-
duced subgraph inclusion seems to be a hard task and few results have been obtained
[13,19]. Can we at least characterize the linear clique-width of co-graphs (which have
clique-width at most 2) or in general of distance-hereditary graphs (which have
clique-width at most 3) in order to identify the set of distance-hereditary excluded
induced subgraphs for linear clique-width k?
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