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Abstract The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in

numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating

typically under low light conditions. Building on an atomic-level structural model of a low-light-

adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation

between more than a hundred protein complexes in the vesicle. The steady-state ATP production

rate as a function of incident light intensity is determined after identifying quinol turnover at the

cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of

about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1%

of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy

conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is

calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the

low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover

for the benefit of protection against over-illumination.

DOI: 10.7554/eLife.09541.001

Introduction
Energy for most life on Earth is provided by sunlight harvested by photosynthetic organisms, which

have evolved a wide variety of mechanisms for utilizing light energy to drive cellular processes (Blan-

kenship, 2014). These organisms absorb sunlight and subsequently utilize the Förster mechanism

(Sener et al., 2011) and quantum coherence (Strümpfer et al., 2012; Panitchayangkoon et al.,

2010; Scholes, 2010) for efficient excitation energy transfer, followed by conversion of light energy

into chemical energy (Feniouk and Junge, 2009). The light harvesting system of purple bacteria

(Hu et al., 2002; Cartron et al., 2014) is claimed to be the earliest of the current photosynthetic lin-

eages (Xiong et al., 2000) and exhibits, at the supra-molecular level as well as at the level of individ-

ual proteins, less complexity than the thylakoid membranes of the more ubiquitous cyanobacteria

and plants (Kirchhoff et al., 2002).

In the purple bacterium Rhodobacter (Rba.) sphaeroides the basic photosynthetic unit is the chro-

matophore (Cogdell et al., 2006; Strümpfer et al., 2011; Cartron et al., 2014), a 50–70 nm diame-

ter vesicle, as shown in Figure 1, formed through invagination of the intracytoplasmic membrane

(Tucker et al., 2010; Gubellini et al., 2007) and comprising over a hundred protein complexes

(Jackson et al., 2012; Woronowicz and Niederman, 2010; Woronowicz et al., 2013). The proteins

that constitute the chromatophore are primarily the light harvesting (LH) complexes, photosynthetic

reaction centers (RCs), cytbc1 complexes, and ATP synthases, which cooperate to harvest light
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energy for photophosphorylation. The architecture of the chromatophore, reported in (Şener et al.,

2007, 2010; Cartron et al., 2014), has been determined by combining atomic force microscopy

(AFM) (Bahatyrova et al., 2004; Olsen et al., 2008), cryo-electron microscopy (cryo-EM)

(Qian et al., 2005; Cartron et al., 2014), crystallography (Koepke et al., 1996; McDermott et al.,

1995; Papiz et al., 2003; Jamieson et al., 2002), optical spectroscopy (Hunter et al., 1985;

Sener et al., 2010), mass spectroscopy (Cartron et al., 2014), and proteomics (Jackson et al.,

2012; Woronowicz and Niederman, 2010; Woronowicz et al., 2013) data. The composition of the

chromatophore depends on growth conditions such as light intensity (Adams and Hunter, 2012;

Woronowicz et al., 2011b, 2011a) and can also be influenced by mutations (Siebert et al., 2004;

Hsin et al., 2010b).

The chromatophore displays organizational principles for the integration of multiple processes

(Sener et al., 2010). Evolutionary competition at the organism level has driven photosynthetic sub-

systems toward optimal and robust function (Noy et al., 2006; Noy, 2008; Scholes et al., 2011)

that can guide the design of artificial light harvesting devices such as biohybrid antennas

(Harris et al., 2013) and nanopatterned light harvesting (LH) complex arrays (Reynolds et al., 2007;

Vasilev et al., 2014; Patole et al., 2015). The development and improvement of such artificial, bio-

logical, or biohybrid light harvesting systems may alleviate mankind’s future energy demand

(Blankenship et al., 2011).

The functional principles displayed by the chromatophore and prevalent also in other photosyn-

thetic systems include efficient excitonic coupling between components (Hu et al., 1997,

1998; van Grondelle and Novoderezhkin, 2006b; Olaya-Castro et al., 2008; Sener et al., 2011),

the utilization of quantum coherence (Ishizaki and Fleming, 2009a; Strümpfer et al., 2012), photo-

protection by carotenoids (Damjanović et al., 1999), accommodation of thermal fluctuations, stud-

ied through experimental (Visscher et al., 1989; van Grondelle et al., 1994; Pullerits et al., 1994;

Gobets et al., 2001; Janusonis et al., 2008; Freiberg et al., 2009) as well as theoretical

(Damjanović et al., 2002; Şener and Schulten, 2002; Ishizaki and Fleming, 2009b; van Grondelle

eLife digest Photosynthesis, or the conversion of light energy into chemical energy, is a process

that powers almost all life on Earth. Plants and certain bacteria share similar processes to perform

photosynthesis, though the purple bacterium Rhodobacter sphaeroides uses a photosynthetic

system that is much less complex than that in plants. Light harvesting inside the bacterium takes

place in up to hundreds of compartments called chromatophores. Each chromatophore in turn

contains hundreds of cooperating proteins that together absorb the energy of sunlight and convert

and store it in molecules of ATP, the universal energy currency of all cells.

The chromatophore of primitive purple bacteria provides a model for more complex

photosynthetic systems in plants. Though researchers had characterized its individual components

over the years, less was known about the overall architecture of the chromatophore and how its

many components work together to harvest light energy efficiently and robustly. This knowledge

would provide insight into the evolutionary pressures that shaped the chromatophore and its ability

to work efficiently at different light intensities.

Sener et al. now present a highly detailed structural model of the chromatophore of purple

bacteria based on the findings of earlier studies. The model features the position of every atom of

the constituent proteins and is used to examine how energy is transferred and converted. Sener

et al. describe the sequence of energy conversion steps and calculate the overall energy conversion

efficiency, namely how much of the light energy arriving at the microorganism is stored as ATP.

These calculations show that the chromatophore is optimized to produce chemical energy at low

light levels typical of purple bacterial habitats, and dissipate excess energy to avoid being damaged

under brighter light. The chromatophore’s architecture also displays robustness against

perturbations of its components. In the future, the approach used by Sener et al. to describe light

harvesting in this bacterial compartment can be applied to more complex systems, such as those in

plants.
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and Novoderezhkin, 2006b; Strümpfer and Schulten, 2011, 2012a) methods. The chromatophore

exhibits also the features of modularity, repair, and assembly of components (Hsin et al., 2010a),

high quantum yield of organelle-scale pigment networks (Şener et al., 2007, 2010; Cartron et al.,

2014), isolation of the electron transfer chains (Şener and Schulten, 2008), co-accommodation of

competing functions such as efficient energy transfer and diffusion in the quinone/quinol pool

(Lavergne et al., 2009; Sener et al., 2010), as well as adaptation to changing external conditions

(Adams and Hunter, 2012; Woronowicz et al., 2011a; Niederman, 2013; Woronowicz et al.,

2013).

Energy conversion in the chromatophore proceeds in three stages as discussed below: (i) light

harvesting and charge separation, converting quinone into quinol at a RC; (ii) diffusion of quinone/

quinol in the chromatophore membrane and cytochrome c2 diffusion inside the chromatophore vesi-

cle, resulting, at cytbc1, in the generation of a proton gradient as well as a transmembrane electro-

chemical gradient across the chromatophore membrane (henceforth referred to collectively as

proton gradient); (iii) utilization of the proton gradient, culminating in ADP binding and ATP release

at ATP synthase. The quinone/quinol as well as the generated proton-motive force function as

energy buffers between light harvesting and ATP synthesis stages. The proton gradient along with

the redox states of the quinone/quinol pool are influenced by the enzymes succinate dehydroge-

nase, NADH dehydrogenase, cytochrome c oxidase, and ubiquinol oxidase (Bowyer et al., 1985;

Klamt et al., 2008). A summary for the energy conversion processes in the chromatophore can be

found in (Klamt et al., 2008; Sener et al., 2014).

A B

Figure 1. Atomic structural model of a low-light-adapted chromatophore vesicle from Rba. sphaeroides. The model is based on AFM, EM,

crystallography, mass spectroscopy, proteomics, and optical spectroscopy data (Cartron et al., 2014). The inner diameter of the vesicle is 50 nm. The

model considered in this study is a variant of the one reported in (Cartron et al., 2014) , which features 63 LH2 complexes (green), 11 dimeric and 2

monomeric RC-LH1-PufX complexes (LH1:red; RC:blue; PufX:lime), 4 cytbc1 (magenta), and 2 ATP synthases (orange), as well as 2469 BChls and 1542

carotenoids. Proteins are shown in surface representation. (A) Proteins and BChls of the chromatophore. Some of the light harvesting proteins are

rendered transparent to reveal their BChl pigments. BChls are represented by their porphyrin rings only. See Video 1 presenting the vesicle. (B) Close-

up of chromatophore showing its lipid membrane (transparent) along with its proteins colored as in (A). The membrane of 16,000 lipids contains the

quinone/quinol pool of about 900 molecules. Energy conversion in the chromatophore proceeds in three stages: (I) light harvesting and electron

transfer reducing the quinone pool; (II) quinone/quinol diffusion and exchange of quinols for quinones at cytbc1 (thereby generating a proton gradient

across the vesicle membrane) as well as diffusive motion of cytochrome c2 inside the chromatophore shuttling single electrons from cytbc1 to RC; (III)

utilization of the proton gradient for ATP synthesis.

DOI: 10.7554/eLife.09541.003

Sener et al. eLife 2016;5:e09541. DOI: 10.7554/eLife.09541 3 of 30

Research article Biophysics and Structural Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.09541.003
http://dx.doi.org/10.7554/eLife.09541


In addition to ATP synthesis, the chromato-

phore utilizes the generated proton motive force

also for NADH production via NADH dehydroge-

nase (Klamt et al., 2008) and, thereby, for con-

trol of the quinone/quinol pool redox state.

Other channels for proton gradient depletion are

flagellar motility (Kojadinovic et al., 2013) and

proton leak across the vesicle membrane. In the

present study, we focus on the overall energy

conversion characteristics of the molecular com-

ponents identified in the current structural model

(Cartron et al., 2014), namely LH2, RC-LH1,

cytbc1, and ATP synthase, where NADH dehydro-

genase plays an indirect role.

Efficient energy conversion requires some

degree of robustness with respect to supramolec-

ular organization, since no two chromatophores

are likely to be identical. Though chromatophore

vesicles share structural motifs

(Bahatyrova et al., 2004; Cartron et al., 2014)

that vary gradually with growth conditions, inevi-

table irregularities in the distribution of their con-

stituent proteins and their quinone/quinol pools

render chromatophores heterogeneous, requiring

energy conversion processes to be insensitive to

structural inhomogeneity. Robustness in photo-

synthetic systems had been demonstrated com-

putationally for the excitation transfer step of

light harvesting at the single protein level with

respect to loss or rearrangement of pigments

(Şener et al., 2002) as well as against fluctuations of pigment site-energies (Damjanovic et al.,

2002) and at the vesicle level against deformations of the pigment network (Sener et al., 2010).

Efficiency of energy conversion in a photosynthetic system is not straightforward to define, since

it involves multiple interrelated subprocesses spanning both quantum mechanical and classical

domains over timescales ranging from picoseconds to milliseconds (Blankenship, 2014;

van Amerongen et al., 2000). A simple measure of conversion efficiency at the light harvesting

stage is provided by the quantum yield, q, defined as the probability, upon the absorption of a pho-

ton by any pigment of the chromatophore, of charge separation at any RC ready for excitation-

induced electron transfer to quinone. The quantum yield is solely a function of pigment network

geometry, is independent of incident light intensity, and is found to be close to unity

(Strümpfer et al., 2012; Sener et al., 2011) for initial chlorophyll light absorption; in case of carot-

enoid light absorption the quantum yield can be lower due to so-called covalent electronic excitation

as argued in (Ritz et al., 2000b). Since excitation transfer does not constitute a rate-limiting step of

photosynthetic energy conversion, the quantum yield is not a major limiting factor for the overall effi-

ciency of the chromatophore. A comprehensive measure of chromatophore efficiency that also per-

mits a limited comparison with photovoltaic systems is the conversion efficiency of captured solar

energy to the chemical energy of the final photoproduct, namely ATP.

Earlier studies of photosynthetic membrane systems include percolation theory-based models of

quinone diffusion in Rhodospirillum (Rsp.) photometricum membranes (Scheuring et al., 2006), plas-

toquinone diffusion in thylakoid membranes (Kirchhoff et al., 2002), models of dissipative photo-

protective behavior in Rsp. photometricum membranes (Caycedo-Soler et al., 2010), and

stoichiometry-based rate kinetics (Geyer et al., 2007, 2010). In fact, long before any structural infor-

mation of the light harvesting apparatus of purple bacteria was available, Vredenberg and Duysens

(Vredenberg and Duysens, 1963) postulated that the total fluorescence yield can be expressed in

terms of the ratio of closed and open RCs, after which random-walk models of excitation transfer

were developed using a master equation formalism (Den Hollander et al., 1983). Prior to the

Video 1. Chromatophore structural model. A movie

that shows a detailed structural model for the low-light

adapted chromatophore vesicle as displayed in

Figure 1 (Cartron et al., 2014). Presented is a rotating

view of the vesicle comprising LH2 complexes (green),

dimeric RC-LH1-PufX complexes (red-blue-lime green),

dimeric cytbc1 complexes (magenta), and ATP

synthases (orange). For half of the model, proteins are

shown in solid surface representation, and for the other

half, proteins are shown as transparent surfaces with

bacteriochlorophylls (BChls), represented by their

porphyrin rings, shown as solid surfaces.

DOI: 10.7554/eLife.09541.004
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availability of AFM imaging data (Bahatyrova et al., 2004), the supramolecular organization of chro-

matophores was suggested to feature RCs partially surrounded by LH-complexes facilitating efficient

shuttling of quinones (Joliot et al., 1990, 1996; Jungas et al., 1999).

The aim of the present study is to determine, based on a supramolecular structural model

(Cartron et al., 2014), for the chromatophore of Rba. sphaeroides the ATP production rate as a

function of illumination and vesicle stoichiometry along with the corresponding energy conversion

efficiency. A low-light adapted chromatophore vesicle model is considered (Cartron et al., 2014),

since low-light illumination, namely <~ 10% of full sunlight, is typical for the habitat of purple bacteria

(Woronowicz and Niederman, 2010; Blankenship, 2014). The quantum yield of excitation transfer

for the pigment network geometry shown in Figure 1 is determined in terms of an effective Hamilto-

nian formulation. The processes subsequent to charge separation and the corresponding rate kinet-

ics of ATP production are described in terms of chromatophore vesicle stoichiometry, instead of at

atomic detail, by identifying rate-limiting steps. The organizational optimization of the chromato-

phore is considered in terms of the dependence of energy conversion on vesicle composition and

illumination conditions.

Results
Based on the theoretical framework discussed in the Materials and methods section below, one can

quantify how well the chromatophore performs in converting light energy into ATP synthesis and

compare its performance characteristics, such as energy conversion efficiency, to the characteristics

of other biological and artificial energy conversion systems. In particular, we examine below ATP

turnover of the chromatophore as a function of light intensity and vesicle composition. The reader is

urged to read the Materials and methods (Section 4) before proceeding further with the present

section.

ATP turnover rate as a function of illumination
Previous studies showed that the quantum yield of excitation transfer, q, computed through Equa-

tion 8 below and discussed in greater detail in Supplementary Materials, is very high, namely, 85–

94%, varying gradually with LH2:RC stoichiometry (Şener et al., 2007, 2010, 2011). For the vesicle

presented in Figure 1 the quantum yield, q, has a value of 0.91, consistent with earlier studies

(Şener et al., 2007, 2010; Cartron et al., 2014). Such high value for the quantum yield, close to the

ideal limit of 1, is achieved because loss due to internal conversion and fluorescence arises much

more slowly (rates about (1 ns)�1) than excitation transfer or charge separation at RC (rates about

(10 ps)�1). Clearly, the quantum yield does not constitute a limiting factor for the overall energy con-

version efficiency in the chromatophore.

At very low light intensity, nearly all electronic excitation delivered to RCs contribute to the gen-

eration of a proton gradient across the membrane and to eventual ATP synthesis. With increasing

light intensity, the cycling time of quinones at the RC, tRCðIÞ as given by Equation 19, increases;

fewer RCs are found in a state available to receive photoexcitation, described by the probability,

pRCðIÞ, given by Equation 13, and resulting in a corresponding loss of electronic excitation. The

time-scale with which the quinone/quinol pool redox state adapts to a change in light conditions is

reported to be about 0.5 s (Woronowicz et al., 2011a).

The ATP turnover rate, kATP, calculated according to Equation (20), and the energy conversion

efficiency, hATP, calculated according to Equation (21), for a low-light adapted chromatophore vesi-

cle (Figure 1) under steady-state illumination are presented in Figure 2. At light intensities equiva-

lent to 1% and 3% of full sunlight, the vesicle is found to produce ATP molecules at a rate of 82 s�1

and 118 s�1, respectively. At the high-light limit, the ATP synthesis rate approaches 158 molecules

s�1. These rates are consistent with experimental observations for continuous light-induced photo-

phosphorylation, reported to be in the range of 0.017 molecules per BChl per second

(Saphon et al., 1975) and 0.05 ATP molecules per BChl per second (Clark et al., 1983), correspond-

ing to ~43 ATP molecules s�1 and ~130 ATP molecules s�1, respectively, for the vesicle shown in Fig-

ure 1. We note that the Clark estimate was reported for Rhodopseudomonas capsulata. The

corresponding energy conversion efficiency, hATP, at the stated low-light intensities of 1% and 3% of

full sunlight, calculated in the present study, are 12% and 7%, respectively. Notably, an upper-limit

of 30% was estimated in (Hellingwerf et al., 1993) for the conversion efficiency of photosynthesis in
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Rba. sphaeroides. In comparison, the efficiency value, hATP, computed for the recently established

model (Cartron et al., 2014) of the chromatophore (Figure 2) ranges between 0%–17%.

The lower efficiency values, hATP, for the chromatophore at higher light intensities (Figure 2B)

does not indicate a failing, since the chromatophore does actually produce slightly more ATP in

high-light than in low-light illumination (Figure 2A), but rather reflects the optimization of purple

bacteria for a low-light intensity habitat.

The saturation of ATP synthesis with increasing light intensity seen in Figure 2 arises because qui-

nol turnover capacity at the cytbc1 complex becomes rate limiting at higher light intensities. The rate

limiting property of cytbc1 complexes was suggested by earlier studies (Lavergne et al., 2009;

Geyer et al., 2010) and is discussed below in connection with Equation (14) in Materials and meth-

ods. The maximal electron processing capacity of all cytbc1 complexes is estimated (see
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Figure 2. ATP production rate and energy conversion efficiency. (A) Steady-state ATP production rate, kATP,

calculated according to Equation (20), and (B) energy conversion efficiency, hATP, calculated according to

Equation (21), of a chromatophore vesicle as a function of incident light intensity F. Solid curves correspond to

the vesicle shown in Figure 1; dashed curves represent a similar vesicle with only a single cytbc1. The vertical lines

denote the light intensities corresponding to (I) 3% of full sunlight (30 W/m2), a typical growth condition for purple

bacteria, and (II) full sunlight (1 kW/m2), respectively. Thus, for light intensities typical for the habitat of purple

bacteria (1–5% of full sunlight; shaded area) the energy conversion efficiency hATP of a chromatophore vesicle is

between 0.12–0.04.
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Equation (14) in Materials and methods) to be 2� nBtB
�1 ¼ 320 ~ s�1, where nB ¼ 4 is the number of

cytbc1 dimers and tB = 25 ms is the quinol turnover time at cytbc1 (Crofts, 2004) and the prefactor 2

accounts for every quinol transferring two electrons. The electron processing capacity at cytbc1
becomes equal to the total RC electron turnover rate, Iq, at a light intensity of 9 W/m2, i.e., at

approximately 1% of full sunlight. As illumination exceeds this low-light value, RC electron turnover

is limited by the electron processing capacity of cytbc1, leading to a gradual saturation of proton gra-

dient formation and ATP turnover, as seen in Figure 2A, thereby reducing the efficiency of ATP syn-

thesis (Figure 2B).

Rate limitation of ATP synthesis by the cytbc1 turnover capacity can be related also to the avail-

ability of quinones at the RC. In the absence of bound quinone, excitations delivered to a RC are

wasted, except if the excitation escapes from the RC and reaches another RC ready for quinone

reduction, especially within the same RC-LH1 dimer. However, with increasing illumination the likeli-

hood of nearby RCs having quinones available also diminishes, excitation energy is lost, and energy

conversion efficiency is reduced. The probability of a RC being ready for quinone reduction, pRCðIÞ,
is given by Equation (13) in the Materials and methods section. With increasing illumination, pRCðIÞ
decreases, thereby reducing the overall conversion efficiency, hATP. At 1% of full sunlight, pRCðIÞ
assumess the value of 0.73, which, according to Equation (13), drops to 0.23 at 5% of full sunlight.

Remarkably, the role of closed and open RCs in determining the overall efficiency of the photosyn-

thesic apparatus had been already pointed out long before any structural details were known

(Vredenberg and Duysens, 1963).

The rate limiting effect of cytbc1 can be further illustrated considering the efficiency of chromato-

phores with fewer cytbc1 complexes compared to the ones shown in Figure 1. As indicated by the

dotted lines in Figure 2A,B, describing ATP synthesis in a chromatophore with a single cytbc1 dimer,

a lower number of cytbc1 dimers results in a reduction of the ATP production rate, kATP, and, accord-

ingly, in a lower conversion efficiency, hATP.

A comparison with plant light harvesting efficiencies is not straightforward: efficiency for biomass

production is significantly lower than the aforementioned thermodynamic efficiency; in fact, only as

little as 1% of total incident solar energy is stored by crop plants as biomass (Blankenship et al.,

2011).

One might wonder how the chromatophore compares to engineered photovoltaic devices. At

peak solar intensity photovoltaic-driven electrolysis is reported to have an energy conversion effi-

ciency of 5–15% (Blankenship et al., 2011). However, comparison of efficiency alone overlooks

issues such as stability and reclaimability of the energy stored in the final products. More refined

measures of efficiency need to include total integrated cost of components, life expectancy, repair

and maintenance.

Optimality of vesicle composition for ATP production
Evolutionary pressure toward greater fitness at the organism level results in the composition and

architecture of photosynthetic systems to display adaptation toward optimal function (Xiong et al.,

2000; Şener and Schulten, 2008; Blankenship, 2014). Such adaptation has been reported for the

individual protein level; it is not as well understood at the system integration level. For instance, pig-

ment networks of individual light harvesting proteins were reported to display optimality and robust-

ness in their quantum yield with respect to the spatial organization of pigments and the site energy

distribution (Şener et al., 2002; Noy et al., 2006; Damjanovic et al., 2002); a similar robustness

was reported with respect to size-scaling deformations of an entire vesicle (Sener et al., 2010). Prior

studies did not take into account optimization of the complete energy conversion process, including

ATP synthesis, the effects of vesicle composition influenced by growth conditions such as light inten-

sity (Niederman, 2013; Woronowicz et al., 2013), the regulation of the redox state of the quinone/

quinol pool (Klamt et al., 2008), or the effects of cell-scale concentration and connectivity of chro-

matophores also influenced by light intensity at growth (Tucker et al., 2010).

In the following, the effect of vesicle composition on the ATP turnover rate is examined in order

to determine the degree of optimality of the vesicle composition for ATP production. The vesicle

shown in Figure 1 is used as a reference point for comparison with chromatophores of alternate

composition, As composition variables, the number of dimeric cytbc1 complexes, nB, and the number

of dimeric RC-LH1-PufX complexes, nL, are considered for a two-parameter ðnB; nLÞ family of vesicles

with the same surface area as the reference vesicle (Figure 1). The dependence of the steady-state
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ATP turnover rate, kATPðnB; nL; IÞ, on nB and nL is determined according to Equations 17,19,20,

where nL ¼ 2� nRC. In order to avoid massive computation, vesicles are not constructed explicitly.

Instead, the corresponding quantum yield q is estimated by a linear interpolation on the LH2:RC stoi-

chiometry based on earlier reported values (Şener et al., 2007, 2010, 2011) as described in Materi-

als and methods (Equation 10). Since q varies very little with vesicle composition, the dependence

of kATP on composition is dominated primarily by the explicit nB and nRC dependence in

Equations 19,20.

The rate kATPðnB; nL; IÞ is shown in Figure 3 for light intensities equal to 1% and 3% of full sun-

light. The respective ATP synthesis rates for the reference vesicle in Figure 1 under these two illumi-

nation conditions are 82 and 118 ATP molecules/s, respectively, (marked by circles in Figure 3)

which corresponds to 79% and 50% of the maximum possible rate (marked by crosses in Figure 3)

among all possible ðnB; nLÞ values at that illumination. Clearly, steady state ATP synthesis is not opti-

mized by the vesicle composition shown in Figure 1. The turnover rate, kATP, would be improved by

an nB : nL ratio that is greater than the native value of 1 : 3 (Crofts, 2004; Cartron et al., 2014), as

suggested also by a comparison of the turnover times at cytbc1 and RC (tB=tL ’ 8).

A reason for the aforementioned suboptimal ðnB; nLÞ values in native low-light adapted vesicles

might be protection against light-induced damage that can arise at high illumination via destruction

of the vesicle membrane through overacidification. Though typical illumination levels in habitats of

purple bacteria are low, occasional surges in light intensity are inevitable. During sustained (>1 s)

high illumination intervals, a proton turnover unhindered by a low (nB ¼ 4) cytbc1 stoichiometry can

exceed the turnover capacity of the ATP synthases, resulting in overacidification of the vesicle inte-

rior, harming the integrity of the chromatophore membrane and its proteins. The observed nB value

of 4, apparently suboptimal for most light intensities (Figure 3), ensures that during sustained over-

illumination proton turnover is limited by cytbc1 to a rate below the synthesis capacity of ATP syn-

thase (Lavergne et al., 2009; Geyer et al., 2010), thus preventing overacidification.

The ðnB; nLÞ value also has an effect on the size of the quinone/quinol pool relevant for intermit-

tent energy storage under fluctuating light conditions, since the number of quinones in the system

correlates with the number of RCs (Comayras et al., 2005; Woronowicz et al., 2011a;

Cartron et al., 2014). Energy conversion through the quinone/quinol pool also involves electron

exchange processes from outside the chromatophore as furnished, for example, through the

enzymes NADH dehydrogenase and succinate dehydrogenase (Klamt et al., 2008).

The turnover capacities of cytbc1 and ATP synthase are compared in Materials and methods in

relation to the rate limitation of energy conversion by the cytbc1. A single ATP synthase is sufficient

to take advantage of proton turnover of an entire chromatophore (Etzold et al., 1997). Additional

ATP synthases reported in chromatophore vesicles (Cartron et al., 2014) appear to provide neces-

sary redundancy, since an isolated chromatophore without ATP synthase is non-functional. In this

regard, it is of interest that vesicles have been found to occasionally fuse through formation of mem-

brane tubes (Tucker et al., 2010) permitting passage of protons between neighboring chromato-

phore vesicles, thereby sharing their proton gradients with the ATP synthases of multiple vesicles,

reducing the need for back-up ATP synthases and even permitting less than one ATP synthase per

vesicle.

Robustness requirements for protecting the vesicle against damage under environmental strain

apparently supersede optimality constraints for steady state conditions. A photosynthetic vesicle

adapted for steady-state illumination at higher light intensities than considered in this study would

require a larger number of cytbc1 to maximize ATP production, along with more than the 1–2 ATP

synthases observed per vesicle (Cartron et al., 2014).

Discussion
The combined structural and functional model of a low-light adapted chromatophore

(Cartron et al., 2014) permits a quantitative description of ATP synthesis at different light intensi-

ties. The energy conversion efficiency, hATP, is determined to be ~12%–4% at the low-light condi-

tions typical for purple bacterial habitats (1%–5% of full sunlight), dropping rapidly to <~ 0:1%

beyond full sunlight conditions. Moderate levels of illumination saturate the bacterial light harvesting

apparatus lowering its efficiency, whereas plants and photovoltaic devices function efficiently at high
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Figure 3. Effect of vesicle composition on steady-state ATP production at different light intensities. Vesicle composition is given in terms of the number

of cytbc1 dimers (nB) and of RC-LH1-PufX dimers (nL) for vesicles featuring identical surface area; LH2 composition of the vesicle is determined by

Figure 3 continued on next page

Sener et al. eLife 2016;5:e09541. DOI: 10.7554/eLife.09541 9 of 30

Research article Biophysics and Structural Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.09541


light intensities. The efficiency curve determined in the present study for the purple bacterial chro-

matophore (Figure 2B) indicates specialization for low-light intensities.

The primary rate-limiting component among the energy conversion steps in the chromatophore

appears to be quinol turnover at cytbc1, as discussed in Section 4.2. The rate limitation at cytbc1, as

compared with the ATP synthase turnover capacity, prevents the generation of an overly strong pro-

ton gradient at sustained high-light conditions, thereby protecting the chromatophore against over-

acidification of its interior and assuring vesicle integrity. As the light intensity I increases,

photoexcitations are more likely to be dissipated as the probability for a RC to have a quinone or

semiquinone ready to accept an electron, pRCðIÞ, decreases.
The chromatophore composition appears to be suboptimal for ATP production under steady-

state illumination. The chromatophore is apparently a highly specialized device that performs its

energy conversion function robustly for low average light intensity, while featuring protective meas-

ures that dissipate energy at higher light intensity. Robustness against damage, such as overacidifi-

cation of the membrane due to sustained overillumination, appears to supersede optimality under

idealized conditions, such as steady state illumination.

The present study focuses on steady state energy harvesting in the chromatophore without

explicitly modeling the spatial dynamics of the charge carriers (quinone/quinol and cytochrome c2),

the redox states of the proteins (RC and cytbc1), proton leakage through the membrane, or the cou-

pling of NADH dehydrogenase to the proton-motive force. A more complete description of chro-

matophore function requires placement of NADH dehydrogenase, along with possibly succinate

dehydrogenase, cytochrome c oxidase, and ubiquinol oxidase in the chromatophore membrane, the

presence of which would also affect the energy conversion efficiency determined in this study. The

added enzymes need to be described along with their reactions with redox partners located in the

cell’s cytoplasm. In particular, a non-steady state formulation is necessary to account for spatial het-

erogeneity and light intensity dependence of the redox states of the proteins and the charge carriers

in the chromatophore.

The present study differs from earlier studies in functional modeling of the chromatophore

(Geyer et al., 2007, 2010) in several respects: first, it is based on an explicit atomic-detail structural

model; second, instead of employing many (over 30) adjustable parameters, few experimentally

determined rate constants are employed to describe the rate determining steps; third, a steady-

state description is chosen such that energy conversion steps that are not rate-limiting can be left

out of the kinetic model. Nonetheless, earlier and present studies give similar results for the overall

ATP synthesis rate at saturation, since this rate is determined largely by the total turnover capacity

of cytbc1 complexes as a rate-limiting component.

A key role in chromatophore energy conversion involves proton translocation, generating and

using proton motive force. The present treatment does not resolve individual translocation steps,

but rather assumes that the individual steps taking place at the overall RC, cytbc1, and ATP synthase

proton reactions can be treated as a single reaction event. Primary conclusions reached presently

would not be affected by a more detailed description, i.e., the model is robust with respect to the

neglect of explicit modeling of individual proton translocation steps and proton motive force

conversion.

Integrative models of organelle function such as the one presented here provide a bridge

between experimental methods that do not resolve temporal and spatial detail needed for

Figure 3 continued

considering the vesicle shown in Figure 1 as a reference point and adjusting the number of LH2 complexes to compensate for the changes in the

number of cytbc1 and RC-LH1-PufX dimers to cover the vesicle surface. ATP production rate, kATP, is shown for (A) 1% of full sunlight (10 W/m2) and (B)

3% of full sunlight (30 W/m2), determined according to Equation (20). The two RC-LH1-PufX monomers of the vesicle in Figure 1 were counted as a

single dimer for the purposes of this plot. The reference vesicle (Figure 1) is represented by a circle, corresponding to an ATP production rate of 82 s�1

(118 s�1), i.e. 79% (51%) of the maximum possible rate among all stoichiometries, for 1% (3%) of full sun light. The optimal vesicle composition for each

illumination is represented by a cross; the corresponding LH2 count for optimal composition is 93 (74) at 1% (3%) of full sunlight as compared with 63

for the reference vesicle (circle). The ATP production rate is marginally greater for vesicles that contain more cytbc1 and LH2 complexes at the expense

of fewer RC-LH1-PufX complexes as compared with the reference vesicle. This increase in ATP production rate results from cytbc1 being the rate-

limiting component in the energy conversion process.

DOI: 10.7554/eLife.09541.006
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establishing physical mechanisms and microscopic simulations that span the multiple length and

time scales relevant for the function of living cells.

Materials and methods
In the following, structural organization and energy conversion in the chromatophore are described

in terms of a kinetic model. It is highly recommended that the text below is read before Sections 2

and 3. First, the supramolecular organization of a low light-adapted chromatophore vesicle is intro-

duced. Next, the energy conversion processes are characterized: excitation transfer, diffusion of qui-

nones/quinol and of cytochrome c2, and ATP synthesis. The description is based on steady state

kinetics. Inhomogeneities of the quinone/quinol and cytochrome c2 pools and of the membrane pro-

ton gradient are not modeled; instead, the three attributes are assumed to function as homoge-

neous buffers of energy storage. The framework outlined is used to define three different measures

of efficiency for the chromatophore: (i) quantum yield, q, (ii) quinol conversion (Q ! QH2) probability,

hQ, i.e., the probability that an absorbed photon is successfully utilized for quinol formation at a RC,

and (iii) energy conversion efficiency, hATP, i.e., the ratio of the energy stored in the conversion

ADP!ATP to incident solar energy absorbed.

Supramolecular organization of a chromatophore vesicle adapted to
low-light illumination
As already stated, the structural model of the chromatophore considered in the present study is

a variation of the model reported in (Cartron et al., 2014). The primary components of chromato-

phore vesicles in purple bacteria, as depicted in Figure 1, are, in order of energy utililization

(Cogdell et al., 2006,Cartron et al., 2014): (i) light harvesting complex 2 (LH2) (Koepke et al.,

1996; Papiz et al., 2003); (ii) light harvesting complex 1 (LH1 [Qian et al., 2008; Sener et al.,

2009]); (iii) RC (Jamieson et al., 2002; Strümpfer and Schulten, 2012a); (iv) cytbc1(Crofts, 2004;

Crofts et al., 2006); and (v) ATP synthase (Feniouk and Junge, 2009; Hakobyan et al., 2012). RC-

LH1 complexes typically form dimeric RC-LH1-PufX complexes facilitated by the polypeptide PufX

(Qian et al., 2013; Sener et al., 2009), although monomeric complexes are also found in mem-

branes from photosynthetically grown cells at a ratio of approximately 10% (Olsen et al., 2008). The

chromatophore in Figure 1 exhibits for the LH2:RC complexes a stoichiometry of 2.6:1 and corre-

sponds to a low-light-adapted vesicle as described in (Sener et al., 2010; Cartron et al., 2014). In a

typical vesicle, about a hundred protein complexes, LH2 and RC-LH1-PufX, form an efficient light

harvesting network (Şener et al., 2007, 2010) supplying electronic excitation energy for the conver-

sion of quinones to quinols. The quinols produced at the RC are converted back to quinones by

cytbc1 to generate a proton gradient across the chromatophore vesicle membrane, which, in turn, is

consumed by the ATP synthase for the synthesis of ATP from ADP and phosphate. The electrons

from quinol-to-quinone conversion are shuttled back to the RC by cytochrome c2 acting inside the

vesicle. These energy conversion processes are illustrated in Figure 4. We note that the experimen-

tal data (Saphon et al., 1975; Clark et al., 1983) used to test the present energy conversion model

based on (Cartron et al., 2014) were not obtained with chromatophores in vivo, but for a suspen-

sion of chromatophores in a pH-buffer; the energy conversion processes as coupled to the entire

bacterium are inevitably more complex than portrayed here.

Atomic level structural models of chromatophores have been presented earlier (Şener et al.,

2007, 2010; Hsin et al., 2010b; Sener et al., 2011; Chandler et al., 2014) for Rba. sphaeroides

and Rsp. photometricum and their mutants. The supramolecular organization of the vesicles in Rba.

sphaeroides was determined primarily by AFM and EM images of intact membrane domains

(Bahatyrova et al., 2004; Frese et al., 2004; Scheuring et al., 2007; Olsen et al., 2008;

Qian et al., 2008; Scheuring and Sturgis, 2009), whereas the stoichiometry of light harvesting pro-

teins was determined by optical spectroscopy (Sener et al., 2010) and mass spectrometry

(Cartron et al., 2014). Vesicle models were subsequently constructed by mapping planar membrane

patches viewed through AFM imaging back onto the parent spherical domains (Şener et al., 2007),

adjusting for the observed packing density (Olsen et al., 2008) and the spatial arrangement patterns

(Hsin et al., 2009; Qian et al., 2008) of the constituting proteins.

The chromatophore model shown in Figure 1 comprises, in addition to the aforementioned con-

stituent proteins, 16,000 lipids and 900 quinones, corresponding to a system containing 100 million

Sener et al. eLife 2016;5:e09541. DOI: 10.7554/eLife.09541 11 of 30

Research article Biophysics and Structural Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.09541


atoms, including solvent. This system has been equilibrated through a 100 ns MD simulation to test

the viability of the model employed. However, molecular dynamics simulations of the chromato-

phore describing energy conversion processes are not considered in the current study, because the

large system size combined with timescales of energy conversion reaching milliseconds render a

straightforward simulation prohibitive. Instead, the current study aims to describe key rate limiting

components of energy conversion processes, such as quinone diffusion and turnover at cytbc1 as dis-

cussed below, to guide future simulation efforts. The atomic detail model is used below for the com-

putation of the quantum yield, but rate kinetics subsequent to charge separation is described in

terms vesicle stoichiometry only, with key rate constants taken from experimental studies.

Early chromatophore models prior to (Cartron et al., 2014) account only for LH proteins, whereas

in proteomics studies, hundreds of different types of non-LH peptides are actually identified, includ-

ing ATP synthase, cytbc1, membrane assembly factors, as well as proteins of unknown function

(Jackson et al., 2012; Woronowicz and Niederman, 2010). Most of these components are notably

unresolved in AFM images. Assignment of cytbc1 was recently achieved through EM and AFM stud-

ies using gold nanoparticle labeling, revealing separated regions containing one or more cytbc1, sug-

gested to be located within lipid- and quinone-enriched membrane domains (Cartron et al., 2014).

It is plausible that cytbc1 induces different curvature profiles in membrane domains compared to the

LH-rich constant-curvature regions predominant in AFM images. Such a curvature-induced separa-

tion of protein domains is also supported by experimental (Frese et al., 2004; Sturgis and Nieder-

man, 1996) and computational (Frese et al., 2008; Chandler et al., 2009; Hsin et al., 2009,

2010a) studies that established the role of LH2 and RC-LH1-PufX domains in determining membrane

shape. Induced curvature profiles are known to exert a segregating force between different types of

proteins in the membrane (Frese et al., 2008). Mass spectrometry showed that the RC:cytbc1
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stoichiometry is 3:1 (Cartron et al., 2014), consistent with earlier observations (Crofts, 2004;

Crofts et al., 2006), corresponding to approximately 4 cytbc1 dimeric complexes per vesicle.

Chromatophore vesicles typically contain 1–2 ATP synthases (Feniouk et al., 2002;

Cartron et al., 2014). Proteomics studies suggest preferential co-location of ATP synthase with LH2

subunits (Woronowicz and Niederman, 2010). Consequently, ATP synthase locations were assigned

to LH2-rich regions of the membrane (Cartron et al., 2014).

The low-light adapted vesicle studied here contains 63 LH2 complexes, 11 dimeric and 2 mono-

meric RC-LH1-PufX complexes, 4 dimeric cytbc1 complexes, and 2 ATP synthases, in a spherical vesi-

cle of 50 nm inner diameter based on a variation of the model reported in (Cartron et al., 2014)

and shown in Figure 1 (see also Video 1).

Transmembrane proteins beyond those of the light harvesting-cytbc1-ATP synthase model shown

in Figure 4, namely NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase, and

ubiquinol oxidase, are associated with controlling the redox state of the quinone/quinol pool in the

chromatophore (Klamt et al., 2008). These proteins, presented schematically in Figure 5, indirectly

couple the chromatophore proton gradient to metabolic reactions in the cytoplasmic part of the

bacterial cell. Indeed, the chromatophore structure shown in Figure 1 may accommodate, by

removal of LH2 complexes near cytbc1 complexes (the latter referred to as complex III in the respira-

some of mitochondria [Dudkina et al., 2011]), the placement of adjacent NADH dehydrogenase

complexes (referred to as complex I) in an arrangement similar to that in respirasomes as reported in

(Dudkina et al., 2011). First simulations, employing the complex I structure reported in

(Baradaran et al., 2013), have demonstrated that the chromatophore can adapt to the necessary

local shape change.

Description of energy conversion in the chromatophore
The overall aim of the present study is to determine the ATP synthesis rate as a function of chro-

matophore vesicle illumination and composition establishing, thereby, the energy conversion effi-

ciency. The three stages of energy conversion in the chromatophore introduced above are

summarized in Figure 4. These stages span time scales ranging from femto- and picoseconds
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(transfer of excitations) to milliseconds (diffusion of quinols, quinones, and cytochrome c2; ATP syn-

thesis), involving both classical and quantum dynamics.

The absorbed light power I is given in units of photons absorbed per second for the entire vesi-

cle, i.e., it holds approximately, I ¼ F stotal where F is the flux of useable photons and stotal is the

total absorption cross-section of the chromatophore determined via the functional absorption cross-

section reported in (Woronowicz et al., 2011a).

Key quantities describing energy conversion are the quinone-to-quinol formation rate kQ!QH2
ðIÞ,

the quinol-to-quinone use rate kQH2!QðIÞ and the ATP synthesis rate, kATPðIÞ, all functions of the

absorbed light power I. For stationary illumination, assumed here, the chromatophore kinetics

becomes stationary and, as a result, the rates kQ!QH2
ðIÞ, kQH2!QðIÞ, and kATPðIÞ must be identical,

kQ!QH2
Ið Þ ¼ kQH2!Q Ið Þ ¼ kATPðIÞ: (1)

We note here that every net quinol!quinone conversion event at cytbc1, due to the so-called

Q-cycle (Crofts, 2004), results in the release of four protons into the vesicle interior (two at cytbc1
and two at RC, for each quinol passage), which coincidentally happens to be, in the present system,

the same number of protons as the ones that have to move back over the membrane to produce

one ATP molecule at ATP synthase (based on the assuption of a 12-subunit c-ring of the ATP syn-

thase). Under steady state conditions, the rate, kATP(I), is then equal to kQH2!QðIÞ and kQ!QH2
ðIÞ.

The quinone/quinol pool in the lipid phase of the vesicle and the proton gradient across the vesi-

cle membrane act as temporary energy buffers between light harvesting and ATP synthesis

(Feniouk and Junge, 2009; Clark et al., 1983). Under the steady-state conditions assumed here,

quinone-quinol pool and redox states of RC/cytbc1 are assumed to feature spatially homogeneous

distributions. As a result, individual diffusive processes of quinone/quinol, cytochrome c2, and pro-

tons do not need to be modeled, and the aforementioned energy buffers are determined solely by

incident light intensity and quinol!quinone turnover capacity of cytbc1, the latter constituting the

rate limiting conversion process as discussed below. Typical proton diffusion timescales are on the

order of microseconds (Agmon, 1995), i.e., not rate limiting compared to turnover at cytbc1 and,

therefore, do not affect significantly overall conversion rates.

In going beyond steady-state conditions, a simulation of quinone mobility in a lamellar chromato-

phore membrane has recently been achieved for a 20 million atom, 150 ns simulation

(Chandler et al., 2014); however, the time scale covered is not long enough to observe long-range

positional relaxation of the quinone/quinol pool. This non-stationary behavior needs to be addressed

by a coarser description like the ones employed for cell-scale modeling (Roberts et al., 2013).

In purple bacteria there are proton gradient consumption channels other than ATP synthesis.

These channels include: flagellar motility (Kojadinovic et al., 2013); NADH/NADPH synthesis

(Klamt et al., 2008; Blankenship, 2014) involving respiratory protein complexes in the chromato-

phore vesicle; leakage across the membrane. These channels are not included in the chromatophore

kinetics described below, though the influence of NADH dehydrogenase is implicitly accounted for

as explained below.

Stage I: Light absorption, excitation energy transfer, and quinol
formation
The first stage of energy conversion in the chromatophore begins with light absorption by caroten-

oid and BChl pigments in the light harvesting complexes LH1 and LH2 leading to electronic excita-

tion of individual pigments. Carotenoids transfer excitation within less than a picosecond to a nearby

BChl (Damjanović et al., 1999; Berera et al., 2009) and also play a role in quenching triplet states

of BChls through reverse excitation transfer (Ritz et al., 2000a). The electronic excitations of BChls

embedded in LH1 and LH2 are reviewed in (Hu et al., 1998, 2002; Cogdell et al., 2006;

van Grondelle and Novoderezhkin, 2006b; Kosztin and Schulten, 2014). These excitations form

so-called exciton states, excitations shared among LH1 or LH2 BChls (Ma et al., 1997;

Bradforth et al., 1995) coherently (Strümpfer et al., 2012; Ishizaki and Fleming, 2009b;

Rebentrost et al., 2009). Electronic excitation is transferred efficiently in the form of excitons

between light harvesting complexes (Hu et al., 1997; Ritz et al., 1998; Janusonis et al., 2008;

Ishizaki and Fleming, 2009b).
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Exciton-based excitation transfer in the chromatophore proceeds within 10–100 ps

(Sener et al., 2011), first among the LH2s, then from LH2 to LH1, and finally from LH1 to the four

BChls of the RC (Visscher et al., 1989; Beekman et al., 1994; Strümpfer and Schulten, 2012a;

Sener et al., 2009). In the RC, the excitation quickly settles onto the so-called special pair BChls

(Small, 1995; Damjanović et al., 2000), where it induces the transfer of an electron

(Pawlowicz et al., 2008; Jordanides et al., 2004). This transfer proceeds stepwise to reach a qui-

none molecule, Q, attracted into the RC from the quinone/quinol pool of about 900 molecules

(Cartron et al., 2014). The quinol and quinone molecules of the pool are inter-converted at RC

and cytbc1 (Crofts, 2004) (see Figure 4). The electron transferred in the RC is joined on the qui-

none by a proton, turning Q into semi-quinone, QH. Repeating the reaction turns QH into quinol,

QH2. In converting Q to QH2 two electron charges move from near the inside of the chromato-

phore (where the special pair BChls are located and the electron potential is low) to near the cyto-

plasmic exterior of the chromatophore (where the quinone is bound and the electron potential is

high), i.e., to the cytoplasmic side; the protons are attracted from the exterior of the chromato-

phore vesicle. Freshly formed quinol is released by the RC into the lipid phase of the chromato-

phore rejoining the quinone/quinol pool.

The efficiency of the 10–100 ps light harvesting step is measured by the so-called quantum yield,

q, namely the probability that light absorption leads to electron transfer in a RC with a Q or QH

bound to receive the electron. The quantum yield can be calculated as reported in (Sener et al.,

2011, 2010). Electronic excitation energy absorbed directly or indirectly (through carotenoids) by a

BChl is rapidly shared between BChls within individual LH1 and LH2 light harvesting complexes

(Cory et al., 1998), forming, within about a ps, thermally equilibrated exciton states as established

experimentally (Visser et al., 1996; Jimenez et al., 1997; Valkunas et al., 2007) as well as compu-

tationally (Strümpfer and Schulten, 2009; Strümpfer et al., 2012).

The exciton states of the BChls of each complex are determined as eigenstates of the effective

Hamiltonian HI , accounting for the Qy excitations and their coupling inside LH1, LH2 and RC as

described in (Strümpfer et al., 2012),

HI ¼
X

NI

i¼1

EI
i j iihi j þ

X

N1

i>j>0

V I
ij j iihj j þ j jihi jð Þ: (2)

Here, the index I is employed to label one of the pigment-protein complexes, namely one of 63

LH2s, 24 LH1s, and 24 RC complexes for the vesicle shown in Figure 1, with NI BChls; jii corre-

sponds to the Qy excitation of BChl i with excited state energy EI
i ; V

I
ij accounts for the respective Qy-

Qy coupling among BChls i and j. Tables S2 and S3 in Supplementary Materials list the BChl coordi-

nates as well as the constants employed in this study and discuss the computation of the quantum

yield in greater detail.

The coupling V I
ij in Equation (2) can be computed for well separated pigments (rij>1 nm) using

the point-dipole approximation (Ritz et al., 2001; Sener et al., 2011), employing,

Vij ¼C
d̂i � d̂j

r3ij
� 3

d̂i � rij
� �

d̂j � rij
� �

r5ij

0

@

1

A; (3)

where d̂i is the transition dipole moment unit vector of pigment i, rij is the vector joining pigments i

and j; the coupling constant C has the value C¼ 348;000�A
3
cm�1 (using wavenumbers as unit of

energy) (Şener et al., 2007, 2010). Couplings between closely spaced pigments (rij<1 nm) require

quantum chemical calculations as described in (Damjanović et al., 1999; Tretiak et al., 2000).

The exciton states aj Þ ¼
P

i ciajii and the associated energies �a correspond to the eigenstates

defined through HI aj Þ ¼ �a aj Þ. As electronic excitations settle within about 1 ps into the Boltzmann-

populated excitons (Strümpfer et al., 2012; Strümpfer and Schulten, 2009), excitation transfer

among LH2 and LH1 involves the excitons, not individual chlorophyll or carotenoid excitations. The

rate of excitation transfer between a donor complex I and an acceptor complex J is given by

(Ritz et al., 2001; Şener et al., 2007, 2011)
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kIJ ¼
2p

�h

X

�2 I

X

n2J

pI� �ð jHIJ nj Þj j2J�n ; (4)

where HIJ is the matrix of interactions between the excited states of pigments in complexes I and J,

and

J�n ¼
Z

dESD� ðEÞSAn ðEÞ ; (5)

is the spectral overlap between donor exciton state �j Þ and acceptor exciton state nj Þ in units of (1/

energy) (Sener et al., 2011); SI�ðEÞ and SJnðEÞ are the normalized (
R

dESðEÞ ¼ 1) spectra for emission

of the donor (D) and absorption of the acceptor (A), respectively; pI� in Equation (S6) are the popula-

tions of donor exciton states, which, as stated, become very rapidly (~1 ps) (Strümpfer and Schul-

ten, 2009) Boltzmann-distributed such that pI� are given by

pI� ¼
e�b��

P

g2I e
�b�g

: (6)

The above description is known as the generalized Förster theory (Förster, 1948;

Novoderezhkin and Razjivin, 1996; Hu et al., 1997; Sumi, 1999; Scholes et al., 2001). For reviews

see (van Grondelle and Novoderezhkin, 2006a; Sener et al., 2011; Strümpfer et al., 2012). Exci-

tation transfer kinetics in the chromatophore was reported experimentally in (Woodbury and Par-

son, 1984; Visscher et al., 1989; Crielaard et al., 1994; Hess et al., 1994, 1995).

Exciton migration across the network of light harvesting complexes in the chromatophore can be

described by a rate matrix K which is constructed from inter-complex exciton transfer rates kIJ , the

latter given by Equation (S6), as follows (Sener et al., 2010, 2007)

Kð ÞIJ¼ kJI � dIJ
X

M

kIM þ kdiss þ kCS dI;RC

 !

; (7)

where I;J are defined as in Equation (S6); kdiss ¼ 1=ns is the rate of excitation loss due to internal

conversion; kCS ¼ 1=ð3psÞ is the rate of charge separation at the RC (Ritz et al., 2001); dI;RC assumes

the value 1 if complex I is a RC and the value 0 otherwise.

The quantum yield, q, is the probability for an absorbed photon to initiate charge transfer at a RC

ready for electron transfer; q is given for an initial state vector Pð0Þ by (Sener et al., 2011,

2007; Ritz et al., 2001)

q¼�kCS 1RCð ÞT �K�1 �Pð0Þ (8)

where the components of the vector 1RCð Þ are 1RCð ÞI¼ dI;RC; the initial state, Pð0Þ, corresponds to

every BChl in the system being equally likely to be excited by photon absorption and accordingly is

given by

ðPð0ÞÞI ¼NI=ð
X

J

NJÞ; (9)

where NI is the number of BChls in complex I as indicated above. The effect of the initial state, Pð0Þ,
on the quantum yield, q, arising, for example, due to wavelength-dependent absorption, is consid-

ered in (Şener et al., 2007), with the result that q is altered by less than 3%. Therefore, wavelength

dependence of q, through corresponding changes in Pð0Þ, is not considered further in the present

study. The quantum yield given by Equation (8) for the vesicle shown in Figure 1 is 0.91.

For alternate vesicle compositions considered in Figure 3, the quantum yield q is not computed

by an explicit construction of vesicles to avoid massive computation; instead, q is approximated as a

linear interpolation between the values reported earlier for high LH2:RC and low LH2:RC chromato-

phore vesicles (Şener et al., 2007, 2010, 2011), namely between q ¼ 0:85 and q ¼ 0:95. For a vesicle

containing nB cytbc1 dimers and nL LH1-RC dimers, the corresponding number of LH2 complexes

nLH2ðnB; nLÞ is estimated by the excluded surface resulting from changes in nB and nL with respect to

the reference vesicle in Figure 1. The corresponding quantum yield is estimated according to
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q¼ 0:91þ 0:0152 ðs0 � sÞ (10)

chosen to reproduce the correct value of q for the reference vesicle (Figure 1) as well as for the low

LH2 limit (Sener et al., 2011); here s¼ nLH2=ð2nLÞ is the LH2:RC stoichiometry, which for the refer-

ence vesicle equals s0 ¼ 2:625; a lower limit of q¼ 0:85 is imposed to account for high LH2:RC vesicles

(Şener et al., 2007), where the linear interpolation breaks down.

Validity of the generalized Förster formulation, thus outlined, has been demonstrated by excita-

tion transfer calculations employing the so-called hierarchy equation of motion formalism of stochas-

tic quantum mechanics (Ishizaki and Fleming, 2009b; Strümpfer and Schulten, 2012b); the

calculations show that photoexcitation of chromatophore BChls relaxes into a Boltzmann occupancy

of exciton states within approximately 1 ps, i.e., faster than inter-complex transfer that takes 3–5 ps

(Hess et al., 1995; Strümpfer and Schulten, 2012b). Accordingly, the assumption underlying gener-

alized Förster theory, namely that transfer occurs from a thermally relaxed distribution of exciton

states, holds in good approximation.

The final step in stage I of energy conversion is the formation of quinol from quinone at the RC.

The respective formation rate can be expressed

kQ!QH2
ðIÞ ¼ 1

2
I qpRCðIÞ; (11)

where the prefactor 1

2
accounts for every quinol requiring two electron transfer events at the RC.

Here q is the quantum yield given by Equation (8) and pRCðIÞ is the probability for the RC to hold a

quinone Q or a semiquinone QH, in either case the RC being ready to accept and convert an elec-

tronic excitation. The probability pRCðIÞ decreases with increasing I, since the quinone/quinol pool

becomes quinol rich/quinone poor at increasing light intensities, due in part to coupling (Figure 5)

to chromatophore redox factors, succinate dehydrogenase, NADPH dehydrogenase, and cyto-

chrome c oxidase (Klamt et al., 2008). As the quinone/quinol ratio decreases, it becomes less likely

for RC to have a quinone/semiquinone available for electron transfer. The stated change in the qui-

none/quinol pool is crucial for energy conversion control of the chromatophore and comes about

through the proton motive force, generated through light harvesting, inducing in the redox factors

redox generation of products along with quinone/quinol conversion. The light-condition dependency

of the quinone/quinol pool is described in the present model heuristically as explained below in

Equation (15–19).

Under the assumed steady state conditions, the rate kQ!QH2
ðIÞ, i.e., the rate at which RCs release

QH2 as given by Equation (11), is equal to the rate at which RCs bind fresh quinones. Accordingly

holds

1

2
I qpRCðIÞ ¼ ½nRC ð1 � pRCðIÞÞ�=tRCðIÞ ; (12)

where nRC ¼ 2nL is the number of RCs in the chromatophore (24 for the vesicle shown in Figure 1),

1 � pRCðIÞ is the fraction of RCs ready to bind a fresh Q, tRCðIÞ is the mean time needed for a RC to

become available for binding a new Q after it had just accepted a Q (Remy and Gerwert, 2003).

Below, we refer to tRCðIÞ as the cycling time.

The probability pRCðIÞ is assumed, for convenience, to be uniform across all RCs rather than to

vary between RCs due to inhomogeneities in the redox state of the quinone/quinol pool. This

assumption is strictly valid only when the mixing time of quinols and quinones in the vesicle lipid

phase is shorter than the time scales associated with the rates in Equation (1). The spatial inhomo-

geneity of pRCðIÞ can be determined only through the simulation of the diffusive processes in the

chromatophore, which is currently prohibitive.

It had been suggested in (Geyer and Helms, 2006) that the primary rate-limiting step in the chro-

matophore is quinol turnover at cytbc1 rather than cytochrome c2 diffusion; in (Geyer and Helms,

2006) it had been estimated that each cytochrome c2 is capable of approximately 80 electron trans-

fers per second and that three cytochrome c2’s per vesicle are sufficient to saturate the turnover

capacity of an ATP synthase. A chromatophore vesicle is expected to feature 10–20 cytochrome c2

molecules (Geyer and Helms, 2006; Cartron et al., 2014), safely exceeding the necessary number

Sener et al. eLife 2016;5:e09541. DOI: 10.7554/eLife.09541 17 of 30

Research article Biophysics and Structural Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.09541


needed for saturation. Therefore, cytochrome c2 kinetics should not be rate limiting for energy con-

version in the chromatophore.

Using Equation (12), pRCðIÞ can be expressed in terms of tRCðIÞ, namely,

pRCðIÞ ¼ 1þ 1

2
I qtRCðIÞ

1

nRC

� ��1

: (13)

According to Equations (11) and (13), tRCðIÞ needs to be determined in order to compute the rate

kQ!QH2
ðIÞ or, equivalently, kATPðIÞ.

Stage II: Diffusion of charge carriers and estimate of cycling time tRCðIÞ
The cycling time, tRCðIÞ, arising in Equations (12,13), depends on light intensity. The cycling time is

related to the quinone/quinol stoichiometry, i.e., the redox state of the quinone/quinol pool: the

fewer quinones are present, the longer is the cycling time. The redox state is affected by not only

RC and cytbc1 reactions, but also by transmembrane enzymes succinate dehydrogenase and NADH

dehydrogenase (Figure 5). The low-light and high-light limits for the cycling time, tRC, employed

below are based on experimental observation (Woronowicz et al., 2011b, 2011a; Crofts, 2004)

instead of direct computation; the reported values of tRC implicitly combine the redox reactions of

all enzymes interacting with the quinone/quinol pool, including NADH dehydrogenase.

In a stationary state, the rate kATPðIÞ of ATP synthesis is equal to the rate kQ!QH2
ðIÞ as stated in

Equation (1), which according to Equations (11) and (13) can be expressed through the cycling

time, tRCðIÞ. The condition of equilibrium assumed here might not be valid for rapidly fluctuating

light intensities, where spatial inhomogeneities of the vesicle and the quinone/quinol pool are

expected to play a nontrivial role on the cycling time.

The low-light limit, tL, of the cycling time, tRCðIÞ, is observed to range from 0.7 ms for the mem-

brane of an LH2-minus mutant to about 3 ms for the LH2-rich chromatophores adapted to low-light

growth conditions (Woronowicz et al., 2011b, 2011a). In the following, we assume tL ¼ 3ms for

the low-light growth vesicle shown in Figure 1.

At the high-light limit, the immediate vicinity of a RC contains mostly quinols and the replacement

of the converted quinones at the RC becomes rate limited by the turnover at cytbc1
(Woronowicz et al., 2011b, 2011a). The high-light limit, tH , of the cycling time, tRCðIÞ, can be esti-

mated by considering the total turn-over rate at all RCs, namely nRCt
�1

H . In the stationary high I

regime, this rate must be equal to the quinol turnover rate at all cytbc1, namely nBt
�1

B , i.e., it holds

nBt
�1

B ¼ nRCt
�1

H ; (14)

where nB is the number of cytbc1 dimers (4 for the vesicle shown in Figure 1) and tB ¼ 25 ms is the

quinol turnover time at a cytbc1 (Crofts, 2004).

Rate limitation of energy conversion by cytbc1
The estimate of the cycling time, tRCðIÞ, given below is based on the observation that energy con-

version in the chromatophore is rate limited by quinol turnover at cytbc1 (Lavergne et al., 2009;

Geyer et al., 2010). This rate limitation follows directly from a comparison of turnover capacities, i.

e., maximal turnover rates, at each key protein. The turnover rates of proteins are, in general, a func-

tion of the chromatophore conditions such as light intensity and redox states. The rate limiting com-

ponents of the chromatophore can be identified by comparing the maximal values of the turnover

rates, i.e., the turnover capacities, at each key protein, namely the quinol turnover capacity at

cytbc1, the quinol generation capacity at RC and the proton utilization capacity at ATP synthase.

As an illustration of the cytbc1-limited kinetics, we first compare quinol turnover capacities at the

cytbc1 and the RC. At a light intensity equivalent to 5% of full sunlight, i.e., 50 W/m2, a chromato-

phore vesicle absorbs I=1860 photons/s (estimated from the functional absortion cross-section of a

chromatophore given in [Woronowicz et al., 2011a]), corresponding to a quinol turnover capacity

at the RCs of 1

2
Iq ¼846 s�1. In contrast, the quinol turnover capacity at all cytbc1s, given by Equa-

tion (14), is equal to nB t
�1

B ¼ 160 s�1. Hence, already at 5% of full sunlight the quinol production

capacity at the RCs exceeds the total quinol turnover capacity at cytbc1 by more than five-fold. Con-

sequently, under steady-state conditions the quinol production at the RCs at this illumination
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becomes limited by quinol turnover at cytbc1. The onset of saturation of the energy conversion rate

arising from rate limititation due to cytbc1 at low light intensities is evident in Figure 2A.

Next, we compare the proton turnover capacities at the cytbc1 and the ATP synthase. The maxi-

mal proton turnover capacity at cytbc1 for the vesicle shown in Figure 1 is 4� nBt
�1

B ¼ 640 s�1. In

comparison, total proton utilization capacity of ATP synthases is 4� 2� 270 ¼ 2160 s�1, estimated

based on the reported ATP synthase turnover capacity of 270 ATP molecules/s (Etzold et al., 1997)

with four protons utilized per ATP and 2 ATP synthases present in the vesicle shown in Figure 1.

Thus, the proton utilization capacity at ATP synthases exceeds the proton turnover capacity at

cytbc1s by more than threefold. In summary, of the three potential kinetic bottlenecks in the chro-

matophore, cytbc1, RC, and ATP synthase, the lowest total turnover capacity is displayed by cytbc1.

Light intensity dependence of the cycling time at RC
The I-dependence of the cycling time, tRCðIÞ, needed to evaluate Equation (13), is approximated in

terms of the relative populations of a two state system, the two states corresponding to the low-light

and high-light limits

tRCðIÞ ¼ cLðIÞtLþ cHðIÞtH ; (15)

where cLðIÞ and cHðIÞ are the probabilities that quinol turnover follows the low-light (limited to RC

vicinity) or high-light (cytbc1-limited) kinetics, respectively; it holds

cLðIÞþ cHðIÞ ¼ 1: (16)

The high-light limit of the cycling time, tH , can be expressed using Equation (14),

tH ¼ nRC

nB
tB: (17)

Since low-light and high-light limits are actually the extremes of a gradual behavior, the assumption

of a two-state system appears rather drastic. However, at low light levels tL is diffusion controlled

and amounts to the first passage time of the quinone to the RC, while tH is determined by cytbc1
turnover, not diffusion. As a result one expects a distinct transition between tL and tH at some light

intensity I corresponding to the saturation of the rate-limiting process in the chromatophore. From

Equation (15,16) follows

tRCðIÞ ¼ tLþðtH � tLÞ 1� cLðIÞð Þ: (18)

The description of the cycling time according to Equation (18) is heuristic only. Future studies need

to account for the time-dependent spatial inhomegeneity of the quinone/quinol pool by explicitly

modeling the diffusion processes and redox states in the chromatophore.

The population of photosynthetic states with respect to light intensity is typically governed by a

Poisson distribution in terms of the utilization rate of excitations (Mauzerall, 1986; Peterson et al.,

1987). In order to express the relative population of the low-light state, cLðIÞ, we observe that

charge separated states are created at the RCs with the rate Iq and that the characteristic time for

electron turnover at all cytbc1s is given by 1=ð2� nB t
�1

B Þ. The probability that no charge separation

events occur during this time, i.e., the probability that the system remains in the low-light state, is

given by the zero-event Poisson distribution, employed typically in describing the light intensity-

dependence of photoproduct yield (Mauzerall, 1986; Peterson et al., 1987). According to this

description holds, cLðIÞ ¼ expð� 1

2
Iq=BÞ, where B ¼ 2� nB t

�1

B is the total turnover capacity of cytbc1s,

which along with Equation (18) permits an estimate of the cycling time tRCðIÞ, namely,

tRCðIÞ ¼ tL þðtH � tLÞ 1� e
1

2
IqB�1

� �

: (19)

Equation (19), when substituted into Equations (11) and (13), permits an estimate of the quinol

turnover rate kQ!QH2
ðIÞ, employed below for the computation of the ATP synthesis rate.
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Stage III: ATP synthesis
As the last step of energy conversion, the proton gradient, generated at cytbc1 through quinol !
quinone conversion, is utilized by ATP synthase for the production of ATP. The ATP turnover rate of

the vesicle, kATPðIÞ, under stationary conditions is equal to kQ!QH2
ðIÞ given by Equation (11). This

equality is based on the assumption that ATP synthase of Rba. sphaeroides has an Fo of 12 c-subu-

nits such that four Hþ conducted through the Fo-ring of ATP synthase lead to a 120˚ rotation of the

stalk in the F1 part and, thereby, to synthesis of one ATP. Currently, the structure of the ATP syn-

thase of Rba. sphaeroides and the corresponding number of c-subunits is not known experimentally.

If the Fo oligomer were to feature, e.g., 11 or 10 subunits instead, this structural detail would propor-

tionally affect the number of protons required for the rotation of the stalk and subsequent synthesis

of each ATP and, therefore, directly influence the estimated energy conversion efficiency of the chro-

matophore, by 11% or 20%, respectively.

Combining Equation (1),(11),(13), the ATP turnover rate can be expressed

kATPðIÞ ¼
1

2
I q 1þ 1

2
I qtRCðIÞ

1

nRC

� ��1

; (20)

where the cycling time at the RC, tRCðIÞ, is given by Equation (19).

The overall energy conversion efficiency of the chromatophore, hATPðIÞ, can be defined as the

ratio of formation rate of energy in the form of ADP!ATP synthesis to the total absorption rate of

photon energy

hATPðIÞ ¼
EATP kATPðIÞ

Eg I
; (21)

where EATP ¼ 4197~cm�1 is the ATP hydrolysis energy in the cell (Berg et al., 2011) and Eg is the

average energy of an absorbed photon, taken to be the photon energy at 850 nm (11765 cm�1).

Not all the energy of an absorbed photon, Eg, is available for energy harvesting. The fraction of Eg

available for conversion into chemical energy is the so-called Carnot yield (Lavergne, 2009)

described by comparing photochemical energy conversion to the function of a heat engine. This lim-

itation in photochemical energy conversion establishes a theoretical upper limit for photosynthetic

energy conversion at broad daylight of approximately 0.7 (Lavergne, 2009).

The determination of the energy conversion efficiency, hATPðIÞ, computed through Equation (21),

has the shortcoming that the ATP hydrolysis energy, EATP, depends, in principle, on the ADP, ATP,

and Hþ concentrations in the cytoplasm, which are not modeled explicitly. Nevertheless, Equa-

tion (21) permits a comparison with similar measures of efficiency reported for other photosynthetic

or photovoltaic systems (Blankenship et al., 2011).

Supplementary material
Computation of quantum yield and table of BChl properties
In the following, we describe the computation of the quantum yield, q, given by Equation (8), in sec-

tion 2.2 of the main text. The quantum yield is central to the overall efficiency of the chromatophore

as it accounts for the efficiency of the primary subsystem, the light harvesting apparatus. The con-

stants employed in the computation of the quantum yield are listed below in Table 1. We adopt the

same values as in similar computations reported by us in (Sener et al., 2010, 2007). For the sake of

clarity, this section repeats some information in the main text, as indicated.

In order to describe the electronic excitation transfer in the chromatophore and determine the

quantum yield, q, the matrix of transfer rates, kIJ , between BChl clusters, I; J, needs to be con-

structed, which in turn depends on the effective Hamiltonian, HI , for each BChl cluster, I. In the fol-

lowing, the indices, I; J, label the BChl clusters listed in the previous section: for the vesicle shown in

Figure 1, based on (Cartron et al., 2014), there are 63 LH2 B850 BChl clusters, 24 LH1 B875 BChl

clusters, and 24 RC BChl clusters. As mentioned in the previous section, LH2 B800 BChls do not

form excitonically coupled states, transferring excitation energy, after light absorption, immediately

to LH2 B850 BChls.

The effective Hamiltonian HI of each BChl cluster I is given, according to (Strümpfer et al.,

2012), by Equation (2) in the main text, namely
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HI ¼
X

NI

i¼1

EI
i jiihijþ

X

NI

i> j>0

V I
ij jiihjj þ jjihijð Þ; (S1)

where NI is the number of BChls in cluster I. The site energies EI
i in Equation (S1) are

EI
i ¼

�LH2

1;2 ; I : LH2 B850;

�LH1; I : LH1 B875;

�RC
1;2; I : RC;

8

>

<

>

:

(S2)

with energy constants as listed in Table 1 for corresponding BChl groups, chosen to reproduce cor-

responding absorption peaks. The couplings V I
ij in Equation (S1) are determined through the point-

dipole approximation as described below with the exception of nearest neighbor couplings of the

LH2 B850 and LH1 B875 BChl clusters and the RC special pair coupling,

V I
i ¼

VLH2

1;2 ; I : LH2 B850;nearest neighbor;

VLH1

1;2 ; I : LH1 B875;nearest neighbor;

VRC; I : RC; special pair;

8

>

<

>

:

(S3)

which are instead taken from (Damjanović et al., 2000; Şener and Schulten, 2002) following quan-

tum chemistry computations reported in (Tretiak et al., 2000) and listed in Table 1.

For non-nearest neighbor BChls, the coupling V I
ij in Equation (S1) is computed according to the

point-dipole approximation (Ritz et al., 2001; Sener et al., 2011) (Equation (3) in the main text)

Vij ¼C
d̂i � d̂j

r3ij
� 3

d̂i � rij
� �

d̂j � rij
� �

r5ij

0

@

1

A; (S4)

where d̂i is the transition dipole moment unit vector of pigment i, rij is the vector joining pigments i

and j, in BChl cluster I; the coupling constant C (Şener and Schulten, 2002) is listed in Table 1. The

Table 1. Constants employed in the computation of the quantum yield.

Symbol Value* Description

�LH2

1
�LH2

2
12,459 cm�1

12,625 cm�1
BChl site energies for alternating LH2 B850 BChls, used in Equation (S2)

�LH1 12,344 cm�1 BChl site energies for LH1 B875 BChls, used in Equation (S2)

�RC
1
�RC
2

12,092 cm�1

12,581 cm�1
BChl site energies for RC special pair and accessory BChls, used in Equation (S2)

VLH2

1
363 cm�1

nearest neighbor BChl-BChl coupling for LH2 B850 BChls within the same ab dimer, used for V I
ij values in Equation (S3)

VLH2

2
320 cm�1

nearest neighbor BChl-BChl coupling for LH2 B850 BChls across neighboring ab dimers, used for V I
ij values in Equation (S3)

VLH1

1
806 cm�1

nearest neighbor BChl-BChl coupling for LH1 B875 BChls within the same ab dimer, used for V I
ij values in Equation (S3)

VLH1

2
377 cm�1

nearest neighbor BChl-BChl coupling for LH1 B875 BChls across neighboring ab dimers, used for V I
ij values in Equation (S3)

VRC 500 cm�1 Coupling between RC special pair BChls, used in Equation (S3)

C 348,000 Å3 cm�1 coupling constant for transition dipole interactions between non-nearest neighbor LH2 BChls, used in Equation (S4)

sLH1 235 cm�1 linewidth of LH1 exciton states, assumed uniform, used for sA in Equation (S8)

sLH2 188 cm�1 linewidth of LH2 exciton states, assumed uniform, used for sA in Equation (S8)

kLH1;RC (35 ps)�1 excitation transfer rate from LH1 B875 BChls to RC, used for corresponding kIJ values in in Equation (S10)

kRC;LH1 (8 ps)�1 excitation transfer rate from RC to LH1 B875 BChls, used for corresponding kIJ values in in Equation (S10)

kdiss (1 ns)�1 excitation decay rate due to internal conversion, used in Equation (S10)

kCS (3 ps)�1 charge separation rate at reaction center, used in Equation (S10)

*: energy units given in wavenumbers (1 eV = 8066 cm�1).

DOI: 10.7554/eLife.09541.009
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http://dx.doi.org/10.7554/eLife.09541.009Table%201.Constants%20employed%20in%20the%20computation%20of%20the%20quantum%20yield.%2010.7554/eLife.09541.009SymbolValue&x002A;Description\epsilon^{LH2}_{1}\epsilon^{LH2}_{2}12,459%20cm&x2212;1%2012,625%20cm&x2212;1BChl%20site%20energies%20for%20alternating%20LH2%20B850%20BChls,%20used%20in%20Equation%20(S2)\epsilon^{LH1}12,344%20cm&x2212;1BChl%20site%20energies%20for%20LH1%20B875%20BChls,%20used%20in%20Equation%20(S2)\epsilon^{RC}_{1}\epsilon^{RC}_{2}12,092%20cm&x2212;1%2012,581%20cm&x2212;1BChl%20site%20energies%20for%20RC%20special%20pair%20and%20accessory%20BChls,%20used%20in%20Equation%20(S2)V_{\rm%201}^{LH2}363%20cm&x2212;1nearest%20neighbor%20BChl-BChl%20coupling%20for%20LH2%20B850%20BChls%20within%20the%20same%20\alpha\beta%20dimer,%20used%20for%20V^{I}_{ij}%20values%20in%20Equation%20(S3)V_{\rm%202}^{LH2}320%20cm&x2212;1nearest%20neighbor%20BChl-BChl%20coupling%20for%20LH2%20B850%20BChls%20across%20neighboring%20\alpha\beta%20dimers,%20used%20for%20V^{I}_{ij}%20values%20in%20Equation%20(S3)V_{\rm%201}^{LH1}806%20cm&x2212;1nearest%20neighbor%20BChl-BChl%20coupling%20for%20LH1%20B875%20BChls%20within%20the%20same%20\alpha\beta%20dimer,%20used%20for%20V^{I}_{ij}%20values%20in%20Equation%20(S3)V_{\rm%202}^{LH1}377%20cm&x2212;1nearest%20neighbor%20BChl-BChl%20coupling%20for%20LH1%20B875%20BChls%20across%20neighboring%20\alpha\beta%20dimers,%20used%20for%20V^{I}_{ij}%20values%20in%20Equation%20(S3)V^{RC}500%20cm&x2212;1Coupling%20between%20RC%20special%20pair%20BChls,%20used%20in%20Equation%20(S3)C348,000&x2009;&x00C5;3%20cm&x2212;1coupling%20constant%20for%20transition%20dipole%20interactions%20between%20non-nearest%20neighbor%20LH2&x00A0;BChls,%20used%20in%20Equation%20(S4)\sigma^{LH1}235%20cm&x2212;1linewidth%20of%20LH1%20exciton%20states,%20assumed%20uniform,%20used%20for%20\sigma_{A}%20in%20Equation%20(S8)\sigma^{LH2}188%20cm&x2212;1linewidth%20of%20LH2%20exciton%20states,%20assumed%20uniform,%20used%20for%20\sigma_{A}%20in%20Equation%20(S8)k_{\rm%20LH1,RC}(35%20ps)&x2212;1excitation%20transfer%20rate%20from%20LH1%20B875%20BChls%20to%20RC,%20used%20for%20corresponding%20k_{IJ}%20values%20in%20in%20Equation%20(S10)k_{\rm%20RC,LH1}(8%20ps)&x2212;1excitation%20transfer%20rate%20from%20RC%20to%20LH1%20B875%20BChls,%20used%20for%20corresponding%20k_{IJ}%20values%20in%20in%20Equation%20(S10)k_{\rm%20diss}(1%20ns)&x2212;1excitation%20decay%20rate%20due%20to%20internal%20conversion,%20used%20in%20Equation%20(S10)k_{\rm%20CS}(3%20ps)&x2212;1charge%20separation%20rate%20at%20reaction%20center,%20used%20in%20Equation%20(S10)&x002A;:%20energy%20units%20given%20in%20wavenumbers%20(1%20eV%20=%208066%20cm&x2212;1).
http://dx.doi.org/10.7554/eLife.09541


transition dipole moment unit vector d̂k for BChl k is determined from the coordinates listed in the

previous section according to

d̂k ¼
ðrDk � r

B
k Þ

jrDk � rBk j
; (S5)

where r
B
k and r

D
k are the positions of atoms NB and ND of BChl k; the transition dipole moment is

centered at the position, rMk , of the MG atom of BChl k, as labeled in the PDB files.

Based on the effective Hamiltonians, Equation (S1), thus constructed, the rate of excitation trans-

fer between a donor complex I and an acceptor complex J, kIJ , can be calculated according to the

so-called modified Förster theory (Ritz et al., 2001; Şener et al., 2007, 2011) given by Equation (4)

in the main text, namely through

kIJ ¼
2p

�h

X

�2 I

X

n2J

pI� �ð jHIJ nj Þj j2J�n ; (S6)

where ðHIJÞij is the matrix of interactions between the excited states of pigments i and j in com-

plexes I and J, computed according to Equation (S4) and �ð jHIJ nj Þ are the couplings (HIJ )ij in the

basis of the eigenstates �j Þ and nj Þ of Hamiltonians HI and HJ , respectively; p
I
� ¼ e�b��=

P

g2I e
�b�g are

Boltzman weights for the eigenstates HI �j Þ ¼ �� �j Þ, where �� are the exciton energies defined as the

eigenvalues of the Hamiltonian, HI , given in Equation (S1). The overlap integrals J�n are described

according to Equation (5) in the main text)

J�n ¼
Z

dESD� ðEÞSAn ðEÞ : (S7)

J�n is the spectral overlap between donor exciton state �j Þ and acceptor exciton state nj Þ. The donor

and acceptor lineshapes, SD� ðEÞ and SAn ðEÞ, used in the calculation of J�n, are approximated by nor-

malized Gaussians

SA�ðEÞ ¼
1
ffiffiffiffiffiffi

2p
p

sA

exp � E� ��
sA

� �2
" #

; (S8)

SD� ðEÞ ¼ SA�ðE� SÞ; (S9)

sA is the linewidth of excitons assumed to be uniform across all states (Jimenez et al., 1997) and is

given in Table 1 as sLH1 and sLH2; S denotes the spectral shift between donor and acceptor spectra

(Small, 1995; Damjanović et al., 2000).

The transfer rates, kIJ , in Equation (S6) are negligible for any non-neighboring BChl clusters, I; J,

and are taken to be zero in those cases. The transfer rates between the B875 and the RC BChls of a

LH1-RC complex needs to be determined only once, since the relative pigment geometry is identical

within each LH1-RC complex. Accordingly, for the LH1!RC and RC!LH1 transfer rates, the values

(35 ps)�1 and (8 ps) �1 are assumed, respectively (Sener et al., 2010, 2009), in Table 1; the LH1!RC

value was chosen in (Sener et al., 2010) to match the observed excitation lifetime in the RC-LH1

complex of 50 ps; the value of the LH1!RC transition rate, computed according to Equation (S6),

was reported to result in an overestimate of the excitation lifetime (Sener et al., 2009). The remain-

ing transfer rates, kIJ , namely between neighboring LH2 B850 and LH1 B875 BChl clusters are deter-

mined according to Equation (S6).

Exciton migration in the chromatophore is governed by the rate matrix for inter-complex exciton

transfers, KIJ (Sener et al., 2010, 2007) Equation (7) in the main text)

Kð ÞIJ¼ kJI � dIJ
X

M

kIM þ kdiss þ kCS dI;RC

 !

; (S10)

where the dissipation rate kdiss and the charge separation rate kCS are listed in Table 1. The quantum

yield, q, is finally expressed in terms of KIJ (Şener et al., 2007, 2011) according to Equation (8) in

the main text, namely through
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q¼�kCS 1RCð ÞT � K�1 �Pð0Þ; (S11)

where ðPð0ÞÞI ¼NI=ð
P

J NJÞ, corresponds to a uniform probablity for initial excitation. The quantum

yield is not strongly dependent on the choice of the initial state ðPð0ÞÞ (Şener et al., 2007).
The quantum yield, q, is computed by substituting the BChl atom coordinates, as listed in the

caption of Supplementary file 1, into Equations (S4 and S5) to determine the couplings, Vij, and

subsequently the matrices kIJ and KIJ according to Equations (S6 and S10), substituted finally into

Equation (S11). The quantum yield of the chromatophore shown in Figure 1, thus computed, is

0.91.
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Additional files
Supplementary files
. Supplementary file 1. BChl groups of the chromatophore and the corresponding transition dipole

moments needed to determine the effective Hamiltonian: LH2 complexes. (file: Vesicle30BCLdipo-

leLH2.pdb) Here we provide the transition dipole moments of all 2577 chromatophore BChls defin-

ing the effective Hamiltonian in Equations (2,3) of the main text, needed for evaluation of the

excitation transfer rates through Equation (4). The reader is referred to (Cartron et al., 2014;

Şener et al., 2007, 2010) for the construction of the underlying chromatophore structural model.

The three PDB files listed here contain the coordinates for the MG, NB, ND atoms of the BChls in

the chromatophore model (Cartron et al., 2014) that define the transition dipole moment unit vec-

tors as discussed in the text and given according to Equation (S1) below. These coordinate files cor-

respond to the following protein complexes: LH2 : [Vesicle30BCLdipoleLH2.pdb], dimeric RC-LH1 :

[Vesicle30BCLdipoleLH1RCdimer.pdb], monomeric RC-LH1 : [Vesicle30BCLdipoleLH1RCdimer.pdb],

where coordinates of multiple complexes of the same type are concatenated into one file for each

complex type.The BChls of the chromatophore can be divided into the following groups: (i) B800

BChls of LH2 : labeled as [resid=307] in the file [Vesicle30BCLdipoleLH2.pdb] (resid is used here as

an abbreviation for residue sequence number in the PDB file format); named after the absorption

peak of 800 nm; (ii) B850 BChls of LH2 : labeled as [resid=301, 302] in the file [Vesicle30BCLdipo-

leLH2.pdb]; named after the absorption peak of 850 nm; (iii) B875 BChls of LH1-RC (both monomer

and dimer) : labeled as [resid=100-155] in the files [Vesicle30BCLdipoleLH1RCdimer.pdb] and [Vesi-

cle30BCLdipoleLH1RCmonomer.pdb]; named after the absorption peak of 875 nm; (iv) reaction cen-

ter (RC) BChls of LH1-RC (both monomer and dimer) : labeled as [resid=301, 302, 303, 304] in the

files [Vesicle30BCLdipoleLH1RCdimer.pdb] and [Vesicle30BCLdipoleLH1RCmonomer.pdb]; the so-

called special pair BChls where electron transport is initiated are labeled by [resid = 302, 303]. Of

the aforementioned BChl clusters, the three, namely, LH2 B850, LH1 B875, and RC BChls, form

strongly coupled excitonic states; the LH2 B800 BChls do not share excitation energy between them-

selves, transfering it rapidly (within 0.5 ps) (Şener et al., 2007; Ritz et al., 2001) to the B850 ring of

the same LH2. The theory of excitation transfer between the BChl clusters listed above is described

in Supplementary materials.

DOI: 10.7554/eLife.09541.010

. Supplementary file 2. BChl groups of the chromatophore and the corresponding transition dipole

moments needed to determine the effective Hamiltonian: RC-LH1 dimer complexes. (file: Vesi-

cle30BCLdipoleLH1RCdimer.pdb) As explained for Supplementary file 1, but for BChls belonging

to RC-LH1 dimers.

DOI: 10.7554/eLife.09541.011

. Supplementary file 3. BChl groups of the chromatophore and the corresponding transition dipole

moments needed to determine the effective Hamiltonian: RC-LH1 monomer complexes. (file: Vesi-

cle30BCLdipoleLH1RCmonomer.pdb) As explained for Supplementary file 1, but for BChls belong-

ing to RC-LH1 monomers.

DOI: 10.7554/eLife.09541.012
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Chandler DE, Strümpfer J, Sener M, Scheuring S, Schulten K. 2014. Light harvesting by lamellar chromatophores
in Rhodospirillum photometricum. Biophysical Journal 106: 2503–2510. doi: 10.1016/j.bpj.2014.04.030

Clark AJ, Cotton NPJ, Jackson JB. 1983. The relation between membrane ionic current and ATP synthesis in
chromatophores from Rhodopseudomonas capsulata. Biochimica et Biophysica Acta 723:440–453. doi: 10.
1016/0005-2728(83)90051-8
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Strümpfer J, Schulten K. 2009. Light harvesting complex II B850 excitation dynamics. The Journal of Chemical
Physics 131: 225101. doi: 10.1063/1.3271348
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