This is a repository copy of *Bacterial competition and quorum-sensing signalling shapes the eco-evolutionary outcomes of model in vitro phage therapy*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105397/

Version: Accepted Version

Article:
Mumford, Rachel and Friman, Ville-Petri orcid.org/0000-0002-1592-157X (2016) Bacterial competition and quorum-sensing signalling shapes the eco-evolutionary outcomes of model in vitro phage therapy. Evolutionary applications. ISSN 1752-4571
https://doi.org/10.1111/eva.12435

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Bacterial competition and quorum-sensing signalling shapes the eco-evolutionary outcomes of model *in vitro* phage therapy

Authors: Rachel Mumford¹ and Ville-Petri Friman¹,²,*

Affiliations:
¹Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
²University of York, Department of Biology, Wentworth Way, York, YO10 5DD, UK

*Corresponding author

E-mail: Rachel Mumford (rachel-mumford@hotmail.co.uk); Ville-Petri Friman (ville.friman@york.ac.uk)

Article Type: Original Research articles

Running head: Phage therapy in polymicrobial communities
ABSTRACT

The rapid rise of antibiotic resistance has renewed interest in phage therapy – the use of bacteria-specific viruses (phages) to treat bacterial infections. Even though phages are often pathogen-specific, little is known about the efficiency and eco-evolutionary outcomes of phage therapy in polymicrobial infections. We studied this experimentally by exposing both quorum sensing (QS) signalling PAO1 and QS-deficient lasR Pseudomonas aeruginosa genotypes (differing in their ability to signal intra-specifically) to lytic PT7 phage in the presence and absence of two bacterial competitors: Staphylococcus aureus and Stenotrophomonas maltophilia – two bacteria commonly associated with P. aeruginosa in polymicrobial cystic fibrosis lung infections. Both the P. aeruginosa genotype and the presence of competitors had profound effects on bacteria and phage densities and bacterial resistance evolution. In general, competition reduced the P. aeruginosa frequencies leading to a lower rate of resistance evolution. This effect was clearer with QS-signalling PAO1 strain due to lower bacteria and phage densities and relatively larger pleiotropic growth cost imposed by both phage and competitors. Unexpectedly, phage selection decreased the total bacterial densities in the QS-deficient lasR pathogen communities, while an increase was observed in the QS-signalling PAO1 pathogen communities. Together these results suggest that bacterial competition can shape the eco-evolutionary outcomes of phage therapy.

Keywords: Competition, coevolution, cost of resistance, host-parasite interactions, phage therapy, polymicrobial infections, quorum sensing signalling, resistance
1. INTRODUCTION

Growing concern for the evolution of antibiotic resistant bacteria and in particular for multi-resistant gram-negative bacteria (Levy and Marshall 2004), has led to renewed interest in alternative treatments including phage therapy (Rossolini et al. 2014). Phage therapy - the use of pathogen-specific parasitic viruses (bacteriophages) as a treatment for bacterial infections - is almost hundred years old and has been used for decades to treat bacterial infections in Eastern European countries such as Georgia and Poland (Alisky et al. 1998; Housby and Mann 2009; Abedon et al. 2011). While many studies have demonstrated the safety and benefits of phage therapy (Merabishvili et al. 2009; Abedon et al. 2011; Rose et al. 2014) phages have not yet been incorporated into western medicine partly due to lack of proper clinical trials and historically inconsistent treatment results (Kutateladze and Adamia 2008). While large-scale clinical trials are currently under way (e.g. Phagoburn; (Expert round table on and re-implementation of bacteriophage 2016)), the evolutionary outcomes of phage therapy are relatively unknown. Recent studies have shown that bacteria and phages can rapidly coevolve during model phage-therapy treatments (Betts et al. 2013; Friman et al. 2016) and that the diversity of phage communities can affect the bacterial resistance evolution (Hall et al. 2012; Betts et al. 2016). Besides rapid coevolution, further complications could arise from interspecific bacterial competition due to polymicrobial nature of bacterial infections: many human infections contain multiple different pathogenic bacterial and other microbial species (Peters et al. 2012). Considerable genotypic variation also exists between different strains of a pathogen and this variation is known to differ between different patients and to affect the pathogen susceptibility to phages (Debarbieux et al. 2010; Essoh et al. 2013; Friman et al. 2013). Understanding the relative importance and interactive effects of these potentially complicating factors is thus crucial for developing reliable and consistent phage therapy treatments. Here we focused explicitly on the ecological and evolutionary outcomes of phage therapy in polymicrobial communities and asked how focal bacterial genotype and the competition with other bacterial pathogens affect the total bacterial loads and focal pathogen resistance evolution during in vitro model phage therapy.
The bacterium *Pseudomonas aeruginosa* is an opportunistic pathogen that commonly infects many immunocompromised patients including cystic fibrosis (CF) and burn victim patients (Harrison 2007; Turner et al. 2014). *P. aeruginosa* is often characterised by multi-drug resistance to conventional antibiotics (Strateva and Yordanov 2009), and hence, the development of novel phage therapy treatments could potentially help a large number of patients (Harper and Enright 2011).

While *P. aeruginosa* can rapidly evolve resistance to various bacteriophages, which could decrease the feasibility and long-term benefits of phage therapy (Hall et al. 2012; Betts et al. 2013; Friman et al. 2013), it has also been shown that phages can counteract resistance evolution by coevolving to be more infective (Betts et al. 2016; Friman et al. 2016). However, it is less clear how important these coevolutionary dynamics are in more complex microbial communities. For example, lung and wound infections are often very diverse and consist of multiple different non-pathogenic and pathogenic bacterial species (Harrison 2007; Folkesson et al. 2012; Korgaonkar et al. 2013) that could modify phage effects indirectly via competition.

Competition could affect the evolution of phage resistance via demographic and genetic effects. Firstly, competition is likely to reduce focal pathogen population densities which could weaken the selection for resistance due to less frequent phage-bacteria encounter rates and lowered supply of resistance mutations (Levin and Bull 2004; Lopez-Pascua and Buckling 2008). These demographic effects could be occurring indirectly via competition for shared resources in the site of infection or directly via interference competition via bacteria-specific toxins such as bacteriocins (Inglis et al. 2009; Ghoul et al. 2015). Furthermore, *P. aeruginosa* has been shown to display greater virulence, antibiotic tolerance and growth when co-cultured with gram-positive *S. aureus* bacterium (Korgaonkar et al. 2013; Michelsen et al. 2014), which suggests that the presence of other bacterial species could also facilitate target pathogen coexistence in polymicrobial infections. Secondly, there might be trade-offs between evolving phage resistance and retaining competitive ability or virulence due to conflicting selection pressures (Friman and Buckling 2014). Such trade-offs are often manifested as antagonistic pleiotropy where a mutation in the gene that confers benefit in the
The presence of phage has a negative effect on some other function such as uptake of nutrients (Lenski and Levin 1985). The magnitude of such trade-offs is often dependent on environmental conditions, being larger in nutrient-poor environments (Yoshida, Hairston, and Ellner 2004) or in the presence of competitors (Kassen 2002). Lastly, it has been shown that the presence of a phage can change the competitive interactions between different bacterial species and that this effect depends on which competing bacterial species is affected by the phage (Harcombe and Bull 2005).

The effect of competitors on focal pathogen fitness, and pathogen potential to evolve resistance to phages, could further depend on the focal pathogen genotype. For example, *P. aeruginosa* CF lung infections are genetically diverse and this heterogeneity is driven by both temporal (Marvig et al. 2014) and spatial variation (Jorth et al. 2015). It has been recently shown that phages can have a different effect on *P. aeruginosa* density and resistance evolution depending on the strain and the genotype; specifically, the time bacteria spent adapting to the lung environment seem to make bacteria more susceptible to phages (Friman et al. 2013; Friman et al. 2016). One notable adaptation to the CF lung environment is the loss of quorum sensing related traits (Marvig et al. 2014; Michelsen et al. 2014; Andersen et al. 2015). Quorum sensing (QS) is a means by which bacteria communicate through the release of signalling molecules allowing cells to carry out density-dependent gene expression (Miller and Bassler 2001). In *P. aeruginosa*, the ability to quorum sense is critical for controlling behaviours such as the production of virulence factors (Folkesson et al. 2012) and it is known that strains from acute infections (early colonisations) are more virulent compared to strains from chronic infections (long-term colonisations) (Smith et al. 2006; Marvig et al. 2014). Interestingly, recent evidence suggests that QS-regulated genes can also affect bacterial resistance to phages. For example, with *E. coli*, QS genes regulate resistance to phage plastically via reduction of cell surface receptors (Hoyland-Kroghsbo, Maerkedahl, and Svenningsen 2013; Taj et al. 2014). Similarly, QS has been shown to be an important ‘switch’ for choosing between different anti-phage defence strategies in the bacterium *Vibrio anguillarum* (Tan,
Svenningsen, and Middelboe 2015). As a result, the decrease of phage resistance in *P. aeruginosa*

QS-mutants could be due to the loss of functional QS-genes.

Here we used *in vitro* experimental evolution approach to study the eco-evolutionary outcomes of phage therapy with *P. aeruginosa* focal pathogen, that frequently co-infects the lungs of CF patients (Harrison 2007). We manipulated both the presence of *Staphylococcus aureus* and *Stenotrophomonas maltophilia* competitors (one or two competitors present - our definition of a polymicrobial community from here on) and the PT7 phage, and used two *P. aeruginosa* pathogen genotypes: QS-signalling PAO1 strain and QS-deficient lasR mutant strain, which does not produce or respond to QS-signals (Diggle et al. 2007). These bacterial species were chosen because they commonly coexist and infect humans patients suffering from burn wounds or cystic fibrosis (CF) lung infections (Harrison 2007). We used fully factorial design where both *P. aeruginosa* genotypes were evolved in all possible combinations and measured bacterial and phage densities and coevolutionary changes between *P. aeruginosa* and PT7 phage at the end of the selection experiment. We hypothesised that the rate of phage resistance evolution could be negatively affected by competition via negative effects on population densities (lowered mutation supply rate and phage-bacteria encounter rates) and that the effect of competition could further depend on the focal pathogen genotype, the composition of competitor community, and the pleiotropic costs of adaptation.

2. MATERIALS AND METHODS

Bacterial and phage strains

In addition to *Pseudomonas aeruginosa* (Diggle et al. 2007), we used *Staphylococcus aureus subsp. aureus* (DSM-20231) and *Stenotrophomonas maltophilia* (DSM-50170) bacteria in our experiments. We chose *P. aeruginosa* as our focal species as it is one of the most common causes of morbidity for CF patients, while *S. aureus* and *S. maltophilia* often coexist with *P. aeruginosa* among *Haemophilus influenza, Streptococcus pneumoniae, Burkholderia cenocepacia, Ralstonia*
and Achromobacter (Jelsbak et al. 2007; Folkesson et al. 2012). To compare the effect of pathogen genotype, two strains of Pseudomonas aeruginosa were used: QS-signalling PAO1 and QS-deficient PAO1 lasR mutant strains (Diggle et al. 2007). Apart from the mutation in QS-signalling pathway, the two isolates were otherwise isogenic (Fletcher et al. 2007). The lasR mutation is often associated with isolates from the later stages of long-term infections in CF patients (Marvig et al. 2014; Andersen et al. 2015) and its weakened virulence is due to inability to detect and produce quorum sensing signalling molecules that activate the expression of P. aeruginosa virulence factors (Smith et al. 2006). A lytic bacteriophage, PT7, which obligately kills P. aeruginosa, was used as a phage (Friman et al. 2016). Relatively little is known about PT7 phage. Even though its genome has not been sequenced, previous studies suggest that it is not closely related to PB1-like or phiKMV-like phages (Merabishvili et al. 2007). Similarly, it is unclear which receptors it uses to infect P. aeruginosa. Prior the experiment, we confirmed that phage PT7 was not able to infect S. aureus or S. maltophilia (tested with streak assays), and that the presence of S. aureus or S. maltophilia had no effect on phage densities during short-term co-cultivation (24h). Moreover, both the PAO1 and lasR strains were susceptible to phage PT7 in the beginning of the experiment (streak assays) yielding similar phage population densities (phage efficiency of plating with plaque essay: ~10^8 phage particles mL^{-1} from the same ancestral phage stock).

Experimental design, growth conditions and selection experiment

We used a factorial design to independently manipulate bacterial community composition, the presence of phage and P. aeruginosa genotype. To this end, P. aeruginosa focal pathogen strains, PAO1 and lasR, were evolved in both the absence and presence of phage under four different competition treatments: alone, with S. aureus, with S. maltophilia and with both S. aureus and S. maltophilia. Each treatment (16 in total) was replicated five times.

The communities were grown in 1.5 mL of 10% nutrient broth (NB) media (containing 0.5g peptone and 0.3g beef extract per litre distilled water) in deep 96-well plates (Starlab; 2.2 mL of
total volume). All treatments were inoculated with approximately 3.8×10^5 bacterial cells per mL, where two-competitor treatments were inoculated with 1:1 ratio of both bacteria and three-competitor treatments with 1:1:1 ratio of every bacteria. Approximately 1.5×10^8 phage particles were added to all phage treatments. All populations were incubated as static cultures at 37°C to reflect human body temperature. The selection experiment was run for 16 days with transfers carried out every fourth day. At each transfer, the cultures were first mixed and homogenised using a pipette before an inoculum of 250 µL was transferred to new deep-well plates containing 1.5 mL fresh media in each well, after 500 µL of each microbial community was cryopreserved in 20% of glycerol at -80°C. Given nutrient broth concentration was chosen to allow prolonged growth during 4-day transfer intervals and to reduce the *P. aeruginosa* biofilm and exopolymer production.

Bacterial and phage density measurements

Bacterial densities were measured only at the end of the experiment by serially diluting the samples isolated from the last time point and plating out 10µl of each dilution onto NB agar plates (100% NB media supplemented with 12g agar per litre). To determine *P. aeruginosa* densities in multispecies communities, community treatment samples were also plated on *Pseudomonas* selective agar plates (16g Peptic digest of animal tissue, 10g Casein enzymic hydrolysate, 10g K₂SO₄, 1.4g MgCl₂ • 6H₂O, 10ml glycerol and 11g Agar per litre with 200mg C-N selective supplement dissolved in 4ml 1:1 ethanol:distilled water). Bacteria were incubated at 37°C for 48 hours before counting the colonies and calculating the number of colony forming units (CFU) per ml. At every transfer, phages were extracted by mixing with 10% chloroform to kill the bacteria. After vortexing and centrifugation, chloroform-free phage supernatants were stored at 4°C. Phage densities were estimated at every transfer with plaque assays where phage densities are defined as growth on a lawn of ancestral PAO1 bacterial strain. PAO1 ancestral strain was grown at 37°C for 24hours and 200µl of this culture was then mixed with 20ml of 50°C soft agar and poured in an even overlay over square NB agar plates. A 10µl of phage serial dilutions ($10^{-4} – 10^{-7}$) was then pipetted onto the
surface of the pseudomonas-agar overlay, plates were incubated at 37°C for 24 hours, and the number of phage plaques, i.e. phage particles, counted.

Phage resistance assays

A streak assay methodology was used to estimate the evolution of bacterial resistance and phage infectivity (Buckling and Rainey 2002). 12 randomly chosen colonies per each *P. aeruginosa* population were isolated at the end of the experiment and grown in 96-well microplates at 37°C in 150µl of NB media. After 24-hour growth, colonies were cryopreserved at -80°C as above for evolutionary analyses. Phage resistance was measured by pipetting 25µl of phage in a line across square NB plates. A sterilised 12-pin replicator (V&P Scientific) was then used to streak 12 bacterial colonies across the dried line of phage. Plates were incubated at 37°C for 24 hours (or until the bacterial streak became visible). Colonies with a clear reduction in growth over the phage line were scored as susceptible (0) and with normal growth over the phage as resistant (1). Phage resistance was determined at the population level in terms of a proportion of resistant colonies per population. All *P. aeruginosa* colonies were tested against the ancestral PT7 phage and evolved PT7 phages isolated from their own population (coevolved phage population isolated by the way of chloroforming as described above).

Measuring the pleiotropic cost of adaptation

The pleiotropic cost of adaptation was measured as the final bacterial density at 48h by using the same colonies that were used in the phage resistance assays. Colonies were inoculated in 96-well microplates containing 200µl NB media per well by using a sterilised 96-pin replicator (Boenik). The plates were then grown at 37°C and optical density (OD$_{600}$) measurements taken after 48 hours. The growth of the colonies, which had been subjected to competition and or phages in the selection experiment was compared to colonies that had evolved alone. A mean population density was calculated for all the colonies isolated from the same population. Even though this method results in
indirect fitness measures it was the only practical way to estimate the cost due to a high number of
evolved clones (960 clones).

Statistical analysis

All models and test statistics are presented in the supplementary tables 1-5. For the bacterial density
data, a linear model was fitted predicting square root transformed *P. aeruginosa* density as a
function of phage treatment, competition and pathogen genotype. For the phage density data, a
mixed model was used for log transformed phage density data as a function of competition and
pathogen genotype with time set as a repeated factor. For the phage resistance data, a linear model
was fitted predicting arsin transformed resistance data as a function of phage evolution (ancestral or
coevolved), pathogen genotype, and competition. A similar model was used for data predicting the
cost of adaptation with the exception that untransformed bacterial growth data was used for the
analysis. Post hoc tukey honest significance difference tests were carried out to further investigate
significant interactions between factor levels. All analyses were conducted in R, version 3.1.2.
(Team. 2014).

3. RESULTS

Bacterial and phage densities during the selection experiment

Both phages (F$_1$, 64 = 8.67, p=0.005) and competitors (F$_3$, 64 = 48.80, p<0.001) significantly reduced
P. aeruginosa densities in the end of the selection experiment (Fig. 1a-b, Supplementary Table 1). In
the absence of phages, both PAO1 and lasR monocultures had higher *P. aeruginosa* densities
compared to all polymicrobial communities, and PAO1 strain reached higher population densities
compared to lasR strain when evolving in the absence of a phage and competitors (p<0.001 for all
comparisons). However, the relative effect of competition was stronger for the PAO1 strain
(genotype × competition: F$_3$, 64 = 5.02, p=0.003). Moreover, phages reduced the densities of PAO1
strain more compared to a lasR strain (phage × competition: F$_3$, 64 = 7.70, p<0.001). The phage
effect depended also on the type of competitive community: in general, phage had a negative effect
on *P. aeruginosa* in the presence of *S. aureus* regardless of the pathogen genotype, while phages had mainly non-significant effects in the other polymicrobial communities (and even a positive effect in the presence of *S. maltophilia*, Fig. 1a-b). Unexpectedly, phage selection also affected the total bacterial biomasses in the polymicrobial communities (Fig. 1c, supplementary table 2) by increasing the total bacterial densities in the PAO1 communities, and decreasing the total bacterial densities in the *lasR* communities in general (genotype × phage: F$_{1, 56}$ = 8.04, p=0.006; the effect varied depending on the community composition, supplementary figure 1).

Phage densities decreased during the selection experiment in general (Time: F$_{5, 30.35}$ = 17.34, p<0.001, Fig. 2a-b, Supplementary table 3). While competition had no significant main effect on the phage densities, a significant interaction was found: even though competition had no effect in the weakly virulent pathogen communities, it reduced the phage densities in the PAO1 pathogen communities (genotype × competition: F$_{1, 32.1}$ = 2.96, p=0.047, Fig. 2a-b). The number or type of competitors did not affect the phage densities with either PAO1 or *lasR* strain (p>0.05 in all comparisons). Together these results suggest that competitors had stronger negative effects on both the bacteria and phages in the PAO1 compared to *lasR* pathogen communities.

Bacteria-phage coevolution in different communities

Both initially susceptible PAO1 and *lasR* strains evolved increased levels of resistance to ancestral phage (Fig. 3a-b, supplementary table 4), while the *lasR* strain evolved higher levels of resistance compared to the PAO1 strain in general (genotype: F$_{1, 62}$ = 35.94, p<0.001). While competitors had no effect on the *lasR* strain resistance evolution, they generally constrained PAO1 resistance evolution (phage origin × competition: F$_{1, 62}$ = 6.94, p<0.001) with all competitive communities having similar effects (p>0.05 in all comparisons). We also found that phages coevolved to become more infective during the selection experiment (Fig. 3a-b): the resistance of evolved bacteria was lower when measured against evolved compared to ancestral phages (phage origin: F$_{1, 62}$ = 25.38 p<0.001). Interestingly, PAO1 resistance was less affected by phage coevolutionary history
(ancestral vs. coevolved) compared to lasR strain (phage origin × genotype: $F_{1, 62} = 4.15$, $p=0.046$). Together these results suggest that competition altered the trajectory of bacteria–phage co-evolution.

Pleiotropic cost of adaptation

Coevolutionary history with the phage led to reduced bacterial growth in the absence of phages ($F_{1, 71} = 13.36$, $p<0.001$, Fig. 4a-b, Supplementary table 5). While the focal pathogen genotype ($F_{1, 71} = 2.34$, $p=0.131$) or the presence of competitors ($F_{1, 71} = 1.88$, $p=0.175$) had non-significant main effects on the pathogen growth, the growth cost imposed by phage selection was larger with the PAO1 strain (genotype × phage: $F_{1, 71}=6.27$, $p=0.015$). Moreover, already the presence of competitors led to reduced PAO1 strain growth in the absence of phage selection (genotype × competition: $F_{1, 71} = 7.08$, $p=0.010$; all competitive communities had similar effects: $F_{3, 63} = 2.38$, $p=0.078$). Consistent with the population density data, the evolved PAO1 strain reached higher population densities compared to lasR strain when bacteria had evolved in the absence of a phage and competitors (genotype × phage: $F_{1, 71}=6.27$, $p=0.015$). These results suggest that even though both pathogen genotypes suffered from a reduced growth due to phage selection in monocultures, only the PAO1 strain was affected by the presence of competitors and hence suffered relatively higher pleiotropic cost of adaptation in polymicrobial communities.

4. DISCUSSION

Here we studied the role of bacterial competition for the efficiency and eco-evolutionary outcomes of phage therapy in model polymicrobial infections *in vitro*. We found that both phages and competitors reduced the focal pathogen densities. However, this effect was strongly dependent on the focal pathogen genotype with both competitors and phage having a more severe effect on the QS-signalling PAO1 strain. The negative effects of competition observed at the population level correlated with reduced rate of resistance evolution. Interestingly, phage presence decreased the
total bacterial densities in \textit{lasR} pathogen communities demonstrating an unexplored potential benefit of phage therapy: indirect, community-wide reduction in pathogenic bacterial loads in polymicrobial infections. However, a converse pattern was observed in PAO1 communities, which suggest that phages could also indirectly worsen the polymicrobial infections by increasing the density of other pathogenic bacteria. Together these results suggest that phage-mediated effects depend on bacterial competition and the focal pathogen genotype pinpointing the need to understand eco-evolutionary consequences of phage therapy in the community context.

Both competitors and phage had a negative effect on \textit{P. aeruginosa} densities while the effect of competition was relatively larger compared to the effect of a phage. While the number or the composition of competitive communities had no clear effects on \textit{P. aeruginosa} densities, the effect of competition depended on the \textit{P. aeruginosa} genotype being more severe for the PAO1 compared to \textit{lasR} strain in general. This suggests that QS may play an important role for \textit{P. aeruginosa} competition against other bacterial species. For example, the proportion of \textit{lasR} mutants typically increases during chronic polymicrobial CF-infections (Smith et al. 2006; Marvig et al. 2014; Ghoul et al. 2015) and this could be potentially partly explained with QS-mediated competitive interactions with other bacteria (Harrison et al. 2008). There are several mutually nonexclusive explanations for reduced \textit{P. aeruginosa} growth in the presence of competitors. First, competition for limited resources was likely stronger in the presence of other bacterial species leading to lower \textit{P. aeruginosa} densities in polymicrobial pathogen communities. Second, interference competition could have directly reduced \textit{P. aeruginosa} growth directly. For example, \textit{S. maltophilia} has been observed to influence \textit{P. aeruginosa} biofilm architecture and protein synthesis (Ryan et al. 2008), while \textit{P. aeruginosa} has been shown to have negative effects on \textit{S. aureus} due to upregulation of antistaphylococcal substances such as pyocyanin and phenazine (Michelsen et al. 2014). Even though \textit{S. aureus} has not been shown to have direct negative effects on \textit{P. aeruginosa}, the \textit{S. aureus} presence has been shown to favour the increase in the frequency of QS-deficient mutants (Harrison et al. 2008). In line with this study, it has been found that a QS-positive PAO1 strain interacts more
negatively with *S. aureus* compared to a QS-negative *lasR* strain (Michelsen et al. 2014). Recent
evidence suggests that reduced antagonism between *S. aureus* on *P. aeruginosa* *lasR* mutants could
be due to metabolic divergence (Frydenlund Michelsen et al. 2015). However, more detailed
community level experiments are needed to understand these dynamics more profoundly.

The negative effect of phage was clearest in PAO1 monoculture and generally in the
presence of *S. aureus* with both pathogen genotypes. The presence of *S. maltophilia* did not affect
phage efficiency with the PAO1 strain and even increased the *lasR* densities in the presence of
phage (Fig. 1a-b), while phage had no effects on *P. aeruginosa* densities in the presence of both *S.
maltophilia* and *S. aureus*. Together these results suggest that phages can reduce *P. aeruginosa*
densities additively in the presence of competitors but that this effect depends on the strength of
competition and the composition of the competing bacterial community. Interestingly, phage
presence decreased and increased the total bacterial densities of polymicrobial *lasR* and PAO1
communities, respectively. Reduction in PAO1 frequency by the phage could have led to a
competitive release and increased the growth of *S. aureus*, *S. maltophilia* and total bacterial
densities. Conversely, resource competition was likely more intense and more symmetric within
lasR communities due to stronger levels of phage resistance evolution (and hence higher *P.
aeruginosa* density). Lastly, it has been shown that phage selection can impose relatively higher
competitive cost for the PAO1 compared to the *lasR* strain due to upregulation of siderophore
production (Vasse, Torres-Barcelo, and Hochberg 2015). Such metabolic cost could also potentially
explain relatively poorer PAO1 growth in the presence of competitors even in the non-social culture
conditions used in this experiment. In addition to demographic explanations, the potential changes
at the gene expression level warrant thus further investigation in the future.

In line with the bacterial density data, the phage abundances were also generally
lower in the presence of competitors and this effect was clearer with the PAO1 strain that suffered
more heavily from competition compared to the *lasR* strain. Competition-mediated reduction in
bacterial and phage densities correlated with reduced levels of resistance evolution, and as a result,
PAO1 strain evolved lower levels of resistance compared to the \textit{lasR} strain. Simple demographic effects that weaken the strength of selection via reduced bacteria and phage encounter rates and lowered mutation supply rate (Lopez-Pascua and Buckling 2008) could thus be important for the evolutionary outcomes of phage therapy in polymicrobial infections. We also found that phages coevolved to be more infective during the selection experiment as demonstrated by higher levels of resistance of evolved bacteria to the ancestral compared to evolved phage populations. In line with the population dynamics data, the coevolutionary signal was stronger in \textit{lasR} pathogen communities where both bacterial and phage densities were also higher. Bacterial competition did not thus constrain only the bacterial resistance but also the phage infectivity evolution and the trajectory of phage-bacteria coevolution.

Also, some underlying genetic differences could have affected PAO1 and \textit{lasR} strain response to phages. It has been shown that removing, altering and concealing cell surface receptors can prevent phage adsorption (Seed 2015) and that a functional QS system is important for regulating such phage defences (Hoyland-Krogsho, Maerkedahl, and Svenningsen 2013; Taj et al. 2014; Tan, Svenningsen, and Middelboe 2015). In contrast to these findings, we found that QS-defective strains were able to evolve higher levels of resistance to phages especially in the presence of bacterial competitors. A similar pattern has been found before, where the loss of QS impaired bacterial twitching motility leading to elevated resistance to pili-specific phages (Glessner et al. 1999). Even though the PT7 target receptor is unknown, both the PAO1 and \textit{lasR} strains were equally susceptible to the phage in the beginning of the experiment. This suggests that initial differences in PAO1 and \textit{lasR} strains’ QS ability unlikely drove the long-term differences in the bacterial resistance and phage infectivity evolution. Phage receptors are also often important for other purposes including nutrient uptake (Lenski and Levin 1985), and hence, mutations in phage receptors often reduce bacterial competitive ability. In support for this, we found that both evolved PAO1 and \textit{lasR} monoculture strains suffered reduced growth in the absence of phages and competitors if they had evolved in the presence of a phage during the selection experiment.
Interestingly, while competitors increased the magnitude of the growth cost with PAO1 strain, competitors had no effect or even a positive effect on lasR growth. One explanation for this is that less antagonistic interactions between the lasR and competitors allowed more rapid accumulation of compensatory mutations during the selection experiment due to relatively large population size and mutation supply rate compared to PAO1 strain. We also found that evolved PAO1 strain grew better in the growth media compared to lasR strain when the bacteria had evolved in the absence of a phage and competitors. This suggest that functional QS-system could help P. aeruginosa to adapt to abiotic environmental conditions potentially due to depressing of growth-limiting intracellular metabolism (Asfahl et al. 2015). In the community context our results suggest that even though both focal pathogen genotypes were able to evolve resistance to phage the PAO1 strain suffered more severe costs of adaptation due to both competition and phage.

Our results have important implications for the development of phage therapies in the context of polymicrobial infections. First, selection for phage resistance could be weaker in polymicrobial communities due to a competition-mediated reduction in the focal pathogen density and relatively higher pleiotropic costs of adaptation. Competition could thus enhance the phage efficacy when treating acute CF and burn infections that are commonly co-infected by QS-signalling P. aeruginosa, S. aureus and S. maltophilia (Harrison 2007; Turner et al. 2014). However, in contrary, P. aeruginosa resistance evolution to phages could be a more severe problem in chronic polymicrobial CF infections that are often dominated by P. aeruginosa mutants that have lost QS-signalling ability during the long-term adaptation (Smith et al. 2006; Marvig et al. 2014; Andersen et al. 2015). Interestingly, we found that higher levels of lasR strain resistance evolution were correlated with the higher rate of phage infectivity evolution, which could open up avenues for pre-adapting phages to be more infective before clinical phage therapy treatments (Betts et al. 2013; Friman et al. 2016). Moreover, it would be interesting to investigate if our results hold when multiple phage species are applied as a phage cocktail. We also want note that it is possible that both S. aureus and S. maltophilia strains evolved during the selection experiment. For example, it is
known that *P. aeruginosa* can promote the formation of small colony variants with *S. aureus* leading to changes in virulence and antibiotic resistance (Hoffman et al. 2006; Frydenlund Michelsen et al. 2015). It is thus important to expand the study the evolutionary effects of competition and phage selection across the whole polymicrobial community in the future and also link these phenotypic changes with the changes at the genotypic level.

In conclusion, here we show that the presence of competitors can modulate the phage-mediated effects on a focal pathogen. Crucially, phage selection imposed weaker selection for resistance evolution when the effect of competition with the focal pathogen was strong. Moreover, while the phage presence indirectly reduced the total bacterial loads in weakly virulent *lasR* pathogen communities, phages increased the total bacterial densities in highly virulent PAO1 pathogen communities. Bacterial competition is thus likely to be an important factor affecting both the ecological and evolutionary outcomes of phage therapy in polymicrobial infections. From a therapeutic perspective, the fact that overwhelming phage numbers were not able to eradicate *Pseudomonas* even in the presence of competitors reinforces the importance of studying phage-bacteria interactions in the polymicrobial context.

Acknowledgements

We thank Dr Stephen Diggle for providing the *P. aeruginosa* strains and Imperial College Junior Research Fellowship program, Wellcome Trust and British Ecological Society for the funding (VPF).

Data Archiving Statement

Data available from the Dryad Digital Repository: http://dx.doi.org/xxxxx

References

Jorth, P., B. J. Staudinger, X. Wu, K. B. Hisert, H. Hayden, J. Garudathri, C. L. Harding, M. C.
Radey, A. Rezayat, G. Bautista, W. R. Berrington, A. F. Goddard, C. Zheng, A. Angermeyer,
M. J. Brittnacker, J. Kitzman, J. Shendure, C. L. Fligner, J. Mittler, M. L. Aitken, C. Manoil,
J. E. Bruce, T. L. Yahr, and P. K. Singh. 2015. Regional Isolation Drives Bacterial

Kassen, R. 2002. The experimental evolution of specialists, generalists, and the maintenance of

enhances Pseudomonas aeruginosa virulence during polymicrobial infection. *Proc Natl Acad

Et Maladies Infectieuses* 38 (8):426-430.

- a Model, Some Experiments, and Predictions for Natural Communities. *American

Reviews Microbiology* 2 (2):166-173.

Lopez-Pascua, L. C. and A. Buckling. 2008. Increasing productivity accelerates host-parasite

adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. *Nature genetics
47*:57-64.

Krylov, J. Mast, L. Van Parys, R. Lavigne, G. Volekaert, W. Mattheus, G. Verween, P. De

FIGURE LEGENDS

Figure 1. The comparison of *P. aeruginosa* (panels a and b) and total bacterial population densities (panel c) in the end of the selection experiment between different treatments (CFU denotes for
colony forming units per mL). Panel c shows the mean over all competition treatments for PAO1 and lasR strains, respectively. All bars show ±1 s.e.m.

Figure 2. Phage population densities in PAO1 (panel a) and lasR (panel b) focal pathogen communities in the absence and presence of competitors (PFU denotes for plaque forming units, i.e., phage particles per mL). All bars show ±1 s.e.m.

Figure 3. The resistance of evolved PAO1 (light grey) and lasR (dark grey) strains to ancestral and coevolved phages measured at the end of the experiment. Competition treatment shows the absence and presence of competitors during the selection experiment. Only populations that had evolved in the presence of phage were used for the analysis; all *P. aeruginosa* populations that had evolved in the absence of phage were susceptible to phages. All bars show ±1 s.e.m.

Figure 4. The cost of adaptation measured in terms of maximum population density after 48h of growth. Panel (a) shows the growth of evolved PAO1 and panel (b) the growth of evolved lasR strain in the absence of phage or competitors at the end of the selection experiment. Phage and competition treatments denote the absence and presence of a phage and competitors during the selection experiment. All bars show ±1 s.e.m.
a) PAO1 strain

b) lasR strain

Sampling day

Phage densities (log10 PFU mL\(^{-1}\))

Competition treatment

- Light gray: *P. aeruginosa* monoculture
- Solid black: *S. aureus*
- Dashed black: *S. maltophilia*
- Dotted black: *S. aureus* + *S. maltophilia*
$P. \text{aeruginosa}$ growth in the absence of phage or competitors (OD 600nm)

- **a)** PAO1 strain
- **b)** lasR strain

Competition treatment

<table>
<thead>
<tr>
<th>Strain Combination</th>
<th>Monoculture</th>
<th>S. aureus</th>
<th>S. maltophilia</th>
<th>S. aureus + S. maltophilia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phage treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No phage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evolutionary Applications
ID: EVA-2016-106-OA.R1
Title: Bacterial competition and quorum-sensing signalling shapes the eco-evolutionary outcomes of model in vitro phage therapy

Dear Dr. Friman:

It is my pleasure to accept your manuscript for publication in Evolutionary Applications. Your paper will now move to the next stage in the production process. Your manuscript files will be checked to ensure that they are ready for publication. We may contact you if updated versions of files are required. Please contact the journal office (evolappl@wiley.com) if you have any questions.

Your article cannot be published until the publisher has received the appropriate signed license agreement. Once your article has been received by Wiley for production the corresponding author will receive an email from Wiley’s Author Services system which will ask them to log in and will present them with the appropriate license for completion.

We would be interesting in receiving your photo contribution(s) for use on an Evolutionary Applications issue eCover, related journal promotional materials and the website. Please send your photo contribution (along with a photo caption and photo credit) to evolappl@wiley.com, and in your email please indicate that you permit us to use your contribution for the uses specified above.

Thank you for choosing Evolutionary Applications for publishing your best work, and we look forward to your continued contributions to the journal.

Sincerely,
Dr. Louis Bernatchez
Editor in Chief, Evolutionary Applications
Louis.Bernatchez@bio.ulaval.ca

ASSOCIATE EDITOR COMMENTS

Associate Editor
Comments to the Author:
Thank you for your thoughtful and thorough revision. I think you've done an excellent job of incorporating the suggestions, and that the manuscript is greatly improved. I am confident that this work will make a nice contribution to the literature, and thank you for submitting your work to Evolutionary Applications.

Response: We thank both Editor and Associate Editor for the acceptance of the manuscript

Best,
Ville Friman and Rachel Mumford