This is a repository copy of *The glacial geomorphology of the western cordilleran ice sheet and Ahklun ice cap, Southern Alaska.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105387/

Version: Accepted Version

Article:

https://doi.org/10.1080/17445647.2016.1234981

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
The Glacial Geomorphology of the Western Cordilleran Ice Sheet and Ahklun Ice Cap, Southern Alaska

Jeremy C. Ely *, Emily, A. Gribble and Chris D. Clark

Department of Geography, The University of Sheffield, Winter Street, Sheffield, S10 2TN, UK

*corresponding author: j.ely@sheffield.ac.uk
Abstract

During the late Wisconsinan, Southern Alaska was covered by two large ice masses; the western arm of the Cordilleran Ice Sheet and the Ahklun Mountains Ice Cap. Compared to the other ice sheets that existed during this period (e.g., the British-Irish, Laurentide and Fennoscandian ice sheets), little is known about the geomorphology they left behind. This limits our understanding of their flow pattern and retreat. Here we present systematic mapping of the glacial geomorphology of the two ice masses which existed in Southern Alaska. Due to spatially variable data availability, mapping was conducted upon digital elevation models and satellite images of varying resolutions. Offshore, we map the glacial geomorphology using available bathymetric data. For the first time, we document > 5000 subglacial lineations, recording ice flow direction. The distribution of moraines is presented, as well as features related to glacial meltwater drainage patterns (eskers and meltwater channels). Prominent troughs were also mapped on Alaska’s continental shelf. This map provides the data required for a glacial inversion of these palaeo-ice masses.

1. Introduction

Approximately 70,000 km² (5%) of Alaska is currently glaciated (Molnia, 2008). During the late Wisconsinan (~30 to 10 kya) ice extent was approximately 10 times greater than this, with previous glaciations greater still in extent (Kaufman and Manley, 2004; Kaufman et al., 2011). The majority of this ice was contained within three ice masses; an ice cap over the Brooks range to the north of Alaska (Hamilton and Porter, 1975), a second ice cap over the Ahklun Mountains (Briner and Kaufman, 2000) and a much larger ice sheet in the south. The latter formed the Western edge of the Cordilleran ice sheet at its maximum (Booth et al., 2004) and
covered the Aleutian Islands in the West, the Alaskan Peninsula and the Wrangell Mountains in the East (Mann and Peteet, 1994; Kaufman et al., 2011). As well as containing a large volume of fresh water, these Alaskan ice masses may have formed a barrier to human migration across the land bridge, known as Beringia, which existed between Alaska and Russia during the last glacial period (Mandryk et al., 2001; Misarti et al., 2012). Figure 1 shows the proposed extent of ice at different times across southern Alaska. This paper focuses upon the geomorphology left behind by the two principle ice masses in this area; the Ahklun Mountains Ice Cap and the Western Cordilleran Ice Sheet (Figure 1).

The maximum extent of the Alaskan ice masses has been proposed and mapped (e.g., Figure 1, Kaufman and Manley, 2004; Kaufman et al., 2011), but less is known about the pattern of the retreat of these ice masses. This is partially due to a lack of a map of the glacial landforms which this ice sheet left behind. The distribution of moraines, meltwater channels, glacial troughs, eskers and subglacial bedforms can be used to reconstruct ice sheets via a glacial inversion method (e.g., Kleman and Borgström, 1996, Clark, 1999; Stokes et al., 2015). This technique has proven informative for the British-Irish (e.g., Greenwood and Clark, 2008; Hughes et al., 2010; Clark et al., 2012), Fennoscandian (e.g., Kleman et al., 1997; Stroeven et al., 2015), Cordilleran (e.g., Margold et al., 2013) and Laurentide ice sheets (e.g., Boulton and Clark, 1990b; Trommelen et al., 2014). Here we present mapping of the glacial geomorphology for the Ahklun Mountains Ice Cap and the Western Cordilleran Ice Sheet across the area they each encompassed during the late Wisconsinan. This map will form the basis of an empirical reconstruction of these ice masses.

2. Methods
Onshore, glacial landforms were identified and mapped using three sources of data. All onshore sources were obtained from the USGS website www.earthexplorer.usgs.gov. The datasets used and their resolution are listed in Table 1. A digital elevation model (DEM) derived from interferometric synthetic aperture radar (IfSAR) provided the highest resolution data (5 m), but is not available across the whole of Alaska (Figure 2). Below 60°N the shuttle radar topography mission DEM (SRTM; 30 m resolution) was used (Figure 2). To fill the space where neither of these two datasets were available, glacial landforms were identified on Landsat ETM+ imagery (15 m pan-chromatic resolution), which is available globally. Offshore, elevation models are available from NOAA https://maps.ngdc.noaa.gov/viewers/bathymetry/. DEMs of various resolutions were available (Table 1). Where high resolution bathymetric data was not available, a coarser resolution (500 m) elevation model was used. Only the largest glacial features such as glacial troughs or large moraines (several km’s in length and 10’s of m in amplitude) were visible on this DEM.

To maximise landform identification, we adopted a repeat pass approach to mapping, checking each area multiple times. However, our mapping is necessarily limited where high resolution offshore elevation models are unavailable. Where high resolution data was available, for example the IfSAR DEM (Table 1 and Figure 2), this enabled a high level of identification and subsequent mapping of landforms. As a consequence, these areas are mapped in more detail than others. Therefore, we anticipate more detailed geomorphology may be revealed as higher resolution datasets become available, prompting future work. Landform preservation, burial and submergence also limit landform identification.

Glacial landforms were identified on hill-shaded relief models created from the available DEMs. Two hill-shades were created from each DEM, illuminating from 45° and 315° to avoid
azimuth biasing (Smith and Clark, 2005; Figure 3A and B). Hill-shades were made semi-transparent and overlaid on a DEM in order to avoid mapping hollows. False colour composite (bands 4, 3 and 2) Landsat images were enhanced using local image statistics in order to highlight subtle topography (e.g. Ely and Clark, 2016). The pan-chromatic band was used to further refine the imagery, to give a horizontal resolution of 15 m (Figure 3C). Features were mapped using a combination of hill-shade illumination angles and satellite data (Figure 3D).

The following features were identified and mapped: subglacial lineations, streamlined bedrock, moraines, eskers, meltwater channels and glacial troughs. Subglacial lineations were mapped as polygons around their break of slope. Break of slope was identifiable on hill-shaded DEMs (Hughes et al., 2010; Hiller et al., 2015; Figure 3A and B). On satellite imagery these breaks of slope were visible as changes in reflection or vegetation (Spagnolo et al., 2014). On the higher resolution IfSAR DEM (Table 1), many streamlined features were qualitatively different in appearance, giving the impression that they were predominately composed of bedrock (e.g., Bradwell, 2005; Lane et al., 2015; Figure 4). Differentiation of these features was aided by a surface geology map. Where possible, moraines were also mapped as polygons. Often, moraines were composed of several ridges comprising a moraine complex. Where this was the case, the smaller ridges were mapped as polylines and the moraine complex as a polygon (Figure 5). Furthermore, some smaller moraines were mapped solely as polylines along their crest. Eskers were also mapped as polylines along their crestline. Glacial meltwater channels were mapped as polygons along their thalweg. These were identified as glacial in origin due to their discordance with modern day fluvial drainage patterns (c.f. Greenwood et al., 2007). However, it is reasonable to expect that a channel may have been occupied by both a glacially dominated source of water and by a fluvial or glaciofluvial water source at a later stage. Finally, glacial
troughs were mapped as polylines along their banks, using 3D profiles and hill-shading to define their edges (Spagnolo and Clark, 2009). Unlike other ice sheets (e.g., Håttestrand and Kleman, 1999; Trommelen and Ross, 2010; McHenry and Dunlop, 2015), no examples of subglacial ribs, which form transverse to flow direction, were noted.

3. Map description

The Main Map was produced in ArcGIS 10.1. It is comprised of 12,846 digitised polylines and polygons. The background for the map is a merged bathymetric and terrestrial elevation model downloaded from the National Oceanic and Atmospheric Administration (NOAA, www.ngdc.noaa.gov). The extent of modern day glaciers, available from the Randolph Glacier Inventory (version 5, www.glims.org/RGI/), is also included on the map in order to contrast with landforms created by more extensive glaciers. The map is projected in NAD 1983 CORS96 Alaska Albers and is designed to be printed on 2A0 paper, at a scale of 1:1,000,000. The distribution, frequency and characteristics of the mapped glacial landforms are discussed below.

3.1. Subglacial lineations and streamlined bedrock

Despite their frequency both in the literature and upon previously glaciated landscapes, the subglacial bedforms of Alaska have hitherto received little to no mention within the literature. Here, 5878 subglacial lineations, which are formed aligned with flow direction, were mapped from the 4 main sources of data (Table 2). Exemplars were found near Becharof Lake (Figure 3), within McCarthy Borough, Valdez-Cordova (Figure 6A) and at the confluence between the West and East Forks of the Yetna River (Figure 6B). Lineations were also observed in the Akhlun ice cap area (Main Map; Figure 6C), where they record a radial flow pattern outward from the centre.
of the mountain range and along valley floors. Furthermore, subglacial lineations were also observed on offshore bathymetry (Figure 6D).

Subglacial lineations form a morphological continuum of landforms spanning those typically referred to as drumlins, to mega-scale glacial lineations (Ely et al., 2016). The majority of Alaskan subglacial lineations would fall into the shorter end of this continuum, having low length-width ratios and thus conforming to the part of this continuum which is typically referred to as drumlins (Clark et al., 2009). However, a few drumlins are remarkably long, elongate and parallel, reaching lengths above 6 km, exceeding the size of bedforms typically found on ice stream beds (e.g., Figure 6B; Spagnolo et al., 2014). Future work is required to establish the potential role of palaeo-ice streaming across Alaska.

Additionally, 1239 examples of subglacially streamlined bedrock landforms were mapped (Table 1). These are typically 500 m long and a few metres high: exemplars are shown on Figure 4. These landforms can also be used to infer past flow direction and possible ice streaming (e.g., Bradwell et al., 2008; Lane et al., 2015), but likely form by a separate set of processes to other subglacial bedforms (Dionne, 1987), hence their separation on our map. Streamlined bedrock is especially prominent on the mountains to the west of the Copper Basin (Figure 4). This suggests that at some point the Cordilleran Ice Sheet covered these mountains.

3.2. Moraines

Moraines were mapped as polylines and polygons (n = 4101) from the different data sources (Table 3). A large range of moraine sizes were observed, the smallest being less than a metre high and a few metres wide, with the larger moraine complexes several tens of metres in height and kilometres wide. Some of the most impressive morainic patterns were found on the
northern sides of the Alaskan Peninsula (Figure 7A), the Aleutian Range (Figure 7B) and the Alaska Range (Figure 7C). Impressive moraines were also noted to emanate from the Akhlun mountains (Figures 5 and 7D). Comparatively few moraines were noted offshore, at least partially due to sparse data coverage or burial by post-glacial sediment. Many of the moraines form concentric, looped patterns (Figures 5 and 7) suggesting along valley margin standstills as the ice retreated.

3.3. Eskers and meltwater channels

Eskers were only observed on the IfSAR DEM, either due to the higher resolution of this data, or perhaps eskers were only formed in the region that this DEM covers (Figure 2). Polylines (n = 592) included on the Main Map represent individual esker segments (e.g., Storrar et al., 2014), the shortest of which were a few tens of metres in length, but in places were traced for over 4 km. Compared to the Laurentide (Storrar et al., 2014) and Fennoscandian ice sheets (Stroven et al., 2015) eskers are rare. This perhaps highlights differences in the drainage of these ice sheets, or points toward a poor preservation of eskers in Alaska. An example esker is shown in Figure 8A. As has been reported for other palaeo-ice sheets (Greenwood et al., 2016), eskers were observed to switch into meltwater channels (e.g., Figure 8B), but meltwater channels were also observed in isolation from eskers (e.g., Figure 8C). In total, 1979 meltwater channels were mapped, again ranging from a few tens of metres to several kilometres in length. Future work is required to classify these meltwater channels before they can be used for glacial inversion (e.g., Greenwood et al., 2007).

3.4. Troughs
Polylines (n=135) marking the edge of troughs are included on the Main Map. The troughs are typically 50 to 300 m deep, and several hundreds of metres wide. The largest trough forms the Shelikof Strait, between the Aleutian Mountains and Kodiak Island, through which ice has been hypothesised to flow (Mann and Peteet, 1994). Further troughs are evident across the southern Alaskan continental shelf (Figure 9C and D; Schwartz et al., 2015). Elsewhere, ice streams form along such troughs (e.g., the Norwegian channel ice stream (Sejrup et al., 2003) and the Lambert Glacier-Amery ice shelf system (Hambrey and Dowdeswell, 1994)). However, a lack of high resolution bathymetry within the Shelikof Strait, and other troughs, prohibits any recognition of a possible palaeo-ice stream imprint (Stokes and Clark, 1999).

4. Summary and Conclusions

The Cordilleran Ice Sheet and Ahklun Mountains Ice Cap left behind a wealth of geomorphological evidence during the late Wisconsinan in southern Alaska. Here we present the first systematic map of the glacial geomorphology across the areas formally occupied by these ice masses. Our mapping covers the terrestrial portion of these ice sheets, and, where bathymetric data exists, the submerged geomorphology. The map documents numerous subglacial lineations, which may represent the tracks of palaeo-ice streams. Large, looping moraine sequences record the recession of the ice masses. We also note features related to glacial meltwater, channels and eskers, as well as systems of glacial troughs offshore. This map provides the basis for a future empirical reconstruction of the ice masses in this area.

5. Software

Mapping and data manipulation were conducted in ESRI ArcGIS 10.1.

6. Acknowledgements
This work was funded by a Sheffield University Research Experience (S.U.R.E) grant. We would like to thank Danni Pearce, Martin von Wyss, Jakob Heyman, Giedrė Beconytė, Martin Margold and the editors for their useful comments.

Map Design

The Main Map was produced using ArcMap v 10.1. The names of significant mountain ranges, river basins and oceans are included in order to orientate the map user. The background to the map is a semi-transparent DEM, classified to highlight the break of the continental shelf and to show upland regions. Modern day glacier distribution is shown to explain “blank” areas on the map where landforms are masked by ice, and to provide a contrast with the more extensive geomorphology left behind by the last ice sheets in Alaska.

7. References

Trommelen, M.S., Ross, M. and Ismail, A., 2014. Ribbed moraines in northern Manitoba, Canada: characteristics and preservation as part of a subglacial bed mosaic near the core regions of ice sheets. Quaternary Science Reviews, 87, pp.135-155.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Horizontal Resolution (m)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merged on and offshore DEM</td>
<td>500</td>
<td>NOAA</td>
</tr>
<tr>
<td>SRTM DEM</td>
<td>30</td>
<td>Earthexplorer.usgs.gov</td>
</tr>
<tr>
<td>Landsat ETM+</td>
<td>15 pan-chromatic</td>
<td>Earthexplorer.usgs.gov</td>
</tr>
<tr>
<td>IfSAR DEM</td>
<td>5</td>
<td>Earthexplorer.usgs.gov</td>
</tr>
<tr>
<td>Adak Bathymetry</td>
<td>30</td>
<td>NOAA</td>
</tr>
<tr>
<td>Akutan Bathymetry</td>
<td>12 – 200</td>
<td>NOAA</td>
</tr>
<tr>
<td>Chignik Bathymetry</td>
<td>10 - 30</td>
<td>NOAA</td>
</tr>
<tr>
<td>Chenega Bathymetry</td>
<td>12</td>
<td>NOAA</td>
</tr>
<tr>
<td>Coldbay Bathymetry</td>
<td>12 – 200</td>
<td>NOAA</td>
</tr>
<tr>
<td>Cordova Bathymetry</td>
<td>10 – 90</td>
<td>NOAA</td>
</tr>
<tr>
<td>Dutch Harbour Bathymetry</td>
<td>15</td>
<td>NOAA</td>
</tr>
<tr>
<td>Homer Bathymetry</td>
<td>12 – 200</td>
<td>NOAA</td>
</tr>
<tr>
<td>Kachemak Bay Bathymetry</td>
<td>4</td>
<td>NOAA</td>
</tr>
<tr>
<td>Kingcove Bathymetry</td>
<td>12 – 200</td>
<td>NOAA</td>
</tr>
<tr>
<td>Kodiak Bathymetry</td>
<td>12 – 200</td>
<td>NOAA</td>
</tr>
<tr>
<td>Nikolski Bathymetry</td>
<td>30</td>
<td>NOAA</td>
</tr>
<tr>
<td>Prince William Sound Bathymetry</td>
<td>4 – 200</td>
<td>NOAA</td>
</tr>
<tr>
<td>Sand Point Bathymetry</td>
<td>90</td>
<td>NOAA</td>
</tr>
<tr>
<td>Seldovia Bathymetry</td>
<td>30 – 90</td>
<td>NOAA</td>
</tr>
<tr>
<td>Seward Bathymetry</td>
<td>4 – 200</td>
<td>NOAA</td>
</tr>
<tr>
<td>Tatilek Bathymetry</td>
<td>8</td>
<td>NOAA</td>
</tr>
<tr>
<td>Yakutat Bathymery</td>
<td>4 – 200</td>
<td>NOAA</td>
</tr>
</tbody>
</table>
Table 2. Number of subglacial lineations and streamlined bedrock features per dataset.

<table>
<thead>
<tr>
<th>Landform type</th>
<th>Data source</th>
<th>Number of landforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subglacial lineations</td>
<td>Landsat ETM+</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>IfSAR DEM</td>
<td>3150</td>
</tr>
<tr>
<td></td>
<td>SRTM DEM</td>
<td>1749</td>
</tr>
<tr>
<td></td>
<td>Offshore Bathymetry</td>
<td>460</td>
</tr>
<tr>
<td>Streamlined bedrock</td>
<td>IfSAR DEM</td>
<td>1239</td>
</tr>
</tbody>
</table>
Table 3. The number of mapped moraines per data set.

<table>
<thead>
<tr>
<th>Data source</th>
<th>Number of moraine features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat ETM+</td>
<td>514</td>
</tr>
<tr>
<td>IfSAR DEM</td>
<td>949</td>
</tr>
<tr>
<td>SRTM DEM</td>
<td>1135</td>
</tr>
<tr>
<td>Offshore Bathymetry</td>
<td>403</td>
</tr>
</tbody>
</table>
Figure Captions:

Figure 2. Distribution of datasets used. Coastlines from thematicmapping.org

Figure 3. Subglacial lineations (drumlins) near Becharof Lake. (A) SRTM hill-shaded DEM, illuminated from the NW. Arrow denotes approximate palaeo-ice flow direction. (B) SRTM hill-shaded DEM, this time illuminated from the NE. (C) Landsat false colour composite of the same drumlins. (D) Mapped subglacial lineation outlines.

Figure 4. Examples of glacially streamlined bedrock. Arrows denote approximate palaeo-ice flow direction. (A) Hill-shaded IfSAR DEM of bedrock lineations West of Talkeetna, Matanuska-Susitna Borough. (B) Hill-shaded IfSAR DEM of a mixture of streamlined bedrock, crag and tails, and sediment lineations, near McKinley Fall, Matanuska-Susitna Borough. Regions of bedrock highs correspond to subglacial lineations with a qualitatively different morphology, thought to be streamlined bedrock.

Figure 5. Examples of moraine mapping. (A) Hill-shaded SRTM DEM of prominent moraines of both the Cordilleran Ice Sheet and the Akhlun Mountains Ice Cap. (B) Derived mapping. Note
how the areas of looping moraines denoted by polygons also have prominent ridges mapped as polylines. Kvichak Bay begins to the south east of these images.

Figure 6. Examples of Alaskan subglacial lineations. Arrows denote palaeo-ice flow direction. (A) Lineations within McCarthy Borough, dissected by the Chitina River. (B) Elongate lineations near the confluence between the West and East Forks of the Yetna River. (C) Hill-shaded STRM DEM of subglacial lineations (drumlins) on the valley floors of the Akhlun ice cap. This example depicts the area near lakes Nerka, Aleknagik and Nunavaugaluk. (D) Hill-shaded bathymetry of submerged subglacial lineations, SE of Mitrofania Bay.

Figure 7. Examples of Alaskan moraines. Arrows denote palaeo-ice flow direction and terminate at the moraines. (A) Hill-shaded SRTM DEM of moraines at the heads of Morzhovoi Bay (left) and Cold Bay (east). (B) Hill-shaded SRTM DEM of moraines north of the Alleutians, north of Mother Goose lake. (C) Hill-shaded SRTM DEM of concentric looped moraines, related to the Akhlun ice cap, east of Tikchik Lake. (D) Hill-shaded IfSAR DEM of moraines north of Mt. Denali.

Figure 8. Examples of eskers and meltwater channels on hill-shaded IfSAR DEMs. (A) A large esker, passing through Lower Tangle Lake, Paxson. (B) An esker which grades into a meltwater channel, west of Dickey Lake, Valdez-Cordova. (C) A series of meltwater channels, located along the Denali Highway, east of Alpine Creek Lodge.
Figure 9. Examples and profiles across glacially occupied troughs. Images are hill-shaded merged bathymetry and elevation data. (A) The Shelikof Strait. (B) Troughs and fjords, south of Kenai Fjords National Park. (C) Profiles across lines Y to Y’ and Z to Z’, located on (A) and (B).
Figure 1
Figure 4
Figure 5
Figure 6
Figure 8
Figure 9