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ABSTRACT	

The	 orientation	 of	 edges	 indented	 into	 the	 skin	 has	 been	 shown	 to	 be	 encoded	 in	 the	 responses	 of	

neurons	 in	 primary	 somatosensory	 cortex	 in	 a	 manner	 that	 draws	 remarkable	 analogies	 to	 their	

counterparts	in	primary	visual	cortex.	According	to	the	classical	view,	orientation	tuning	arises	from	the	

integration	of	untuned	input	from	thalamic	neurons	with	aligned	but	spatially	displaced	receptive	fields	

(RFs).	 In	a	recent	microneurography	study	with	human	subjects,	 the	precise	temporal	structure	of	 the	

responses	of	 individual	mechanoreceptive	afferents	 to	 scanned	edges	was	 found	 to	 carry	 information	

about	 their	 orientation.	 This	 putative	mechanism	 could	 in	 principle	 contribute	 to	 or	 complement	 the	

classical	rate-based	code	for	orientation.		

In	the	present	study,	we	further	examine	orientation	information	carried	by	mechanoreceptive	afferents	

of	Rhesus	monkeys.	To	this	end,	we	record	the	activity	evoked	in	cutaneous	mechanoreceptive	afferents	

when	edges	are	indented	into	or	scanned	across	the	skin.	First,	we	confirm	that	information	about	the	

edge	orientation	can	be	extracted	from	the	temporal	patterning	in	afferent	responses	of	monkeys,	as	is	

the	case	in	humans.	Second,	we	find	that	the	coarse	temporal	profile	of	the	response	can	be	predicted	

linearly	from	the	layout	of	the	RF.	Finally,	we	show	that	orientation	signals	in	tactile	afferents	are	often	

highly	 dependent	 on	 stimulus	 features	 other	 than	 orientation,	 which	 complicates	 putative	 decoding	

strategies.	We	discuss	the	challenges	associated	with	establishing	a	neural	code	at	the	somatosensory	

periphery,	where	afferents	are	exquisitely	sensitive	and	nearly	deterministic.	

INTRODUCTION	

Our	ability	to	dexterously	grasp	and	manipulate	objects	relies	critically	on	our	sense	of	touch,	without	

which	we	would	 struggle	 to	perform	even	 the	most	basic	activities	of	daily	 living	 (Witney	et	al.	2004;	

Johansson	and	Flanagan	2009).	To	successfully	grasp	and	manipulate	an	object	requires	that	we	acquire	

information	about	the	object	at	the	contact	points	(Augurelle	et	al.	2003),	 including	information	about	

the	orientation	of	local	edges	(Jenmalm	and	Johansson	1997;	Jenmalm	et	al.	2000).	Neurons	in	primary	

somatosensory	cortex	(S1)	exhibit	strong	tuning	for	edge	orientation	in	their	firing	rates,	a	tuning	that	is	

not	 observed	 in	 responses	 of	 cutaneous	 mechanoreceptive	 afferents	 (Bensmaia	 et	 al.	 2008a).	 The	

orientation	 tuning	 in	 S1	 draws	 a	 powerful	 analogy	 to	 that	 found	 in	 primary	 visual	 cortex	 (Pack	 and	

Bensmaia	2015),	which	is	thought	to	originate	from	the	integration	of	weakly	tuned	input	from	thalamic	

neurons	 with	 spatially	 displaced	 receptive	 fields,	 as	 first	 proposed	 by	 Hubel	 and	 Wiesel	 (Hubel	 and	

Wiesel	1962;	Priebe	and	Ferster	2012).	

The	classical	model	of	orientation	coding	in	vision	may	not	tell	the	whole	story	about	how	tactile	edges	

are	encoded,	however.	In	recent	microneurography	experiments	with	human	subjects,	temporal	spiking	

patterns	 of	 cutaneous	 mechanoreceptive	 afferents	 were	 shown	 to	 carry	 information	 about	 edge	

orientation	 not	 in	 their	 rates	 but	 in	 their	 precise	 spiking	 patterns.	 Indeed,	 the	 temporal	 sequence	 of	

spikes	evoked	by	scanned	bars	in	two	types	of	tactile	fibers	–	slowly	adapting	type	1	(SA1)	and	rapidly	

adapting	(RA)	afferents	–	differed	depending	on	the	orientation	of	the	bars	(Pruszynski	and	Johansson	

2014).	Receptive	fields	(RFs)	comprise	multiple	hotspots	(Johansson	1978)	so	scanning	edges	across	the	

RF	at	different	orientations	excite	 the	 fiber’s	hotspots	 in	different	 sequences,	 culminating	 in	different	

spiking	patterns.	In	principle,	then,	these	orientation	signals	could	contribute	to	the	tuning	in	S1	or	serve	

to	complement	a	rate-based	representation	of	edge	orientation	(Scholl	et	al.	2013).		

In	 the	 present	 study,	we	 investigated	 the	 nature	 of	 these	 orientation	 signals	 at	 the	 tactile	 periphery.	

First,	 we	 determined	 whether	 monkey	 afferents	 convey	 information	 about	 edge	 orientation	 in	 their	

responses.	Next,	we	assessed	the	degree	to	which	responses	could	be	predicted	from	RF	topography,	as	

is	the	case	in	the	human	nerves.	Third,	we	gauged	the	extent	to	which	edge	orientation	signals	in	tactile	

afferents	 are	 robust	 to	 changes	 in	 other	 stimulus	 parameters,	 for	 example	 scanning	 direction	 or	



indentation	depth.	Finally,	we	discuss	the	implications	of	these	results	on	tactile	orientation	processing	

and	consider	the	challenges	associated	with	establishing	a	neural	code	at	the	somatosensory	periphery.	

METHODS	

Neurophysiology	

All	 experimental	 protocols	 complied	with	 the	 guidelines	 of	 The	 Johns	Hopkins	University	Animal	 Care	

and	Use	Committee	and	 the	National	 Institutes	of	Health’s	Guide	 for	 the	Care	 and	Use	of	 Laboratory	

Animals.	 We	 recorded	 single	 units	 from	 the	 median	 and	 ulnar	 nerves	 of	 anaesthetized	 macaque	

monkeys	using	standard	methods	(Mountcastle	et	al.	1967;	Talbot	et	al.	1968)	as	previously	described	in	

detail	 (Bensmaia	et	al.	2008a).	Briefly,	 the	 forearm	and	hand	were	 fixed	by	a	 clamp,	and	 the	ulnar	or	

median	nerve	was	exposed	 in	the	upper	or	 lower	arm.	Next,	a	skin	 flap	pool	was	 formed,	and	a	small	

bundle	of	axons	was	separated	from	the	nerve	trunk	and	wrapped	around	a	silver	electrode.		

An	afferent	was	classified	as	SA1	if	it	had	a	small	RF	and	produced	a	sustained	firing	response	to	a	skin	

indentation,	as	RA	if	it	had	a	small	RF	and	responded	only	at	the	onset	and	offset	of	an	indentation,	and	

as	Pacinian	 (PC)	 if	 it	had	a	 large,	diffuse	RF	and	was	activated	by	air	blown	gently	over	 the	hand.	The	

point	 of	 maximum	 sensitivity	 (hotspot)	 was	 located	 using	 a	 handheld	 probe	 and	 the	 stimulus	 was	

centered	on	the	hotspot.	We	only	recorded	the	responses	of	RA	and	SA1	afferents	with	RFs	located	on	

the	distal	fingerpad	of	digits	2	through	5	(PC	fibers	were	not	included	for	analysis	as	their	RF	properties	

are	ill	suited	to	encode	the	spatial	properties	of	isolated	spatial	features).	

Stimuli	

Stimulator	

Stimuli	were	delivered	using	a	dense	array	tactile	stimulator	consisting	of	400	probes	arrayed	in	a	20	by	

20	grid	spanning	1	cm	x	1	cm	(Killebrew	et	al.	2007)	(Figure	1A).	Each	probe	was	driven	along	the	axis	

perpendicular	 to	 the	 skin’s	 surface	 by	 a	 dedicated	motor,	 under	 independent	 computer	 control.	 The	

stimulator	 is	 the	 tactile	equivalent	of	 a	 video	monitor,	 endowing	 the	experimenter	with	 the	ability	 to	

activate	 each	 pin	 independently	 to	 create	 arbitrary	 spatiotemporal	 patterns	 over	 an	 area	 of	 1	 cm
2
.	

Scanned	bars	were	generated	by	sequentially	activating	neighboring	pins	on	the	array.		

Single	probe	indentations	

This	stimulation	protocol	was	used	to	characterize	the	receptive	field	topography.	On	each	trial,	a	probe	

was	indented	into	the	skin	for	100	ms	at	an	amplitude	of	300	µm	with	an	inter-stimulus	interval	of	100	

ms.	Consecutively	indented	probes	were	not	adjacent	to	reduce	confounding	effects	of	skin	mechanics	

(Pawluk	and	Howe	1997;	Pawluk	et	al.	1998).	To	reconstruct	each	afferent’s	RF,	we	computed	the	mean	

of	five	responses	to	each	of	the	400	pins.	The	point	of	maximum	sensitivity	was	selected	as	the	hotspot.	

Scanned	bars		

This	protocol	most	closely	matched	that	used	 in	the	previous	study	 investigating	orientation	signals	 in	

the	nerve	(Pruszynski	and	Johansson	2014).	On	each	trial,	a	bar	was	scanned	across	the	fingertip	in	one	

of	16	directions,	ranging	from	0	to	337.5°	in	22.5°	steps	(Figure	2,	0°	corresponds	to	rightward	motion)	

and	 one	 of	 three	 indentation	 depths	 (100,	 200,	 and	 300	 µm).	 Each	 direction	 and	 amplitude	 pair	was	

presented	five	times	 in	pseudorandom	order,	yielding	a	total	of	240	trials.	The	scanning	speed	was	40	

mm/s,	and	the	inter-stimulus	interval	was	200	ms.		

Indented	bars	

We	wished	 to	extend	 the	 results	 from	 the	original	 study	by	examining	whether	afferent	 responses	 to	

indented	 edges	 also	 conveyed	 information	 about	 their	 orientation.	 Indeed,	 to	 the	 extent	 that	



orientation	signals	are	dependent	on	the	sequential	activation	of	multiple	spatially	displaced	receptors	

innervated	by	 a	 given	 afferent,	 responses	 to	 indented	bars	will	 not	 carry	 orientation	 information.	 On	

each	trial,	a	bar	was	indented	into	the	skin	at	one	of	8	orientations,	ranging	from	0	to	157°	in	22.5°	steps	

(with	 0°	 degrees	 corresponding	 to	 the	 long	 axis	 of	 the	 finger).	 The	 indentation	 depth	 of	 the	 bar	was	

always	500	µm,	and	its	duration	30	ms.	The	bar	was	either	indented	in	the	center	of	the	RF	(determined	

from	the	RF	map	derived	from	the	single	probe	indentations),	or	it	was	displaced	by	1	to	5	mm	along	the	

axis	normal	to	the	orientation	of	the	bar	(for	a	total	of	11	different	locations	at	each	orientation,	Figure	

1C).	Bars	were	each	presented	10	times	for	each	orientation	and	location	pair	for	a	total	of	880	trials.		

Data	Analysis		

Metric	space	analysis	for	orientation	classification	

To	 assess	 the	 degree	 to	 which	 information	 about	 orientation	 is	 carried	 in	 the	 spiking	 responses	 of	

individual	 afferents,	 we	 implemented	 a	 classification	 analysis.	 Specifically,	 we	 wished	 to	 determine	

whether	we	 could	 classify	 stimuli	 that	 differed	 in	 orientation	 based	 on	 the	 responses	 they	 evoked	 in	

individual	afferents.	We	used	a	nearest	neighbor	classifier,	which	gauges	whether	spike	trains	evoked	by	

a	class	of	stimuli	(bars	at	a	specific	orientation	in	this	case)	are	more	similar	to	each	other	than	to	those	

evoked	by	other	classes	of	stimuli	(bars	at	different	orientations).	We	used	spike	distance	as	a	measure	

of	 dissimilarity	 between	 two	 spike	 trains	 (Victor	 and	 Purpura	 1997),	 as	 we	 have	 previously	 done	

(Mackevicius	 et	 al.	 2012;	Weber	 et	 al.	 2013).	 In	 brief,	 spike	 distance	 is	 the	 smallest	 possible	 cost	 of	

transforming	 one	 spike	 train	 into	 another:	 There	 is	 a	 cost	 (of	 1)	 associated	with	 adding	 and	 deleting	

spikes,	and	a	cost	per	unit	time,	q,	associated	with	moving	spikes.	A	benefit	of	this	analysis	 is	 that,	by	

varying	 the	 parameter	q,	we	 can	manipulate	 the	 contribution	 of	 precise	 spike	 timing	 to	 the	 distance	

computation	and	thus	to	the	classification	analysis.	If	q	is	0,	then	the	distance	amounts	to	computing	the	

difference	in	spike	count.	As	q	increases,	it	becomes	less	and	less	advantageous	to	move	spikes	around	

rather	 than	 to	 add	 and	 subtract	 them,	 and	 so	 small	 differences	 in	 the	 timing	 of	 individual	 spikes	

increasingly	 determines	 spike	 distance.	 We	 modified	 this	 analysis	 by	 computing	 the	 pairwise	 spike	

distance	between	 temporally	 shifted	 spike	 trains	 (shifted	by	1ms	 increments,	up	 to	100ms)	and	using	

the	minimum	distance	across	all	shifts	to	ensure	that	classification	did	not	exploit	differences	in	absolute	

response	latency,	which	is	largely	determined	by	the	precise	location	of	the	RF	relative	to	the	stimulus.	

Using	spike	distance	with	different	values	of	q	is	analogous	to	taking	the	cross	correlation	between	spike	

trains	 convolved	 with	 filters	 at	 different	 widths	 (Pruszynski	 and	 Johansson	 2014)	 but	 the	 temporal	

precision	 is	 more	 clearly	 defined	 with	 spike	 distance	 than	 for	 filtered	 spike	 trains	 and	 we	 found	

classification	 performance	 to	 be	 consistently	 higher	 with	 the	 former	 than	 with	 the	 latter	 (data	 not	

shown).	

Prediction	of	firing	rates	based	on	receptive	field	topography	

To	 determine	 whether	 RF	 topography	 could	 predict	 firing	 profiles	 in	 response	 to	 edge	 orientation	

stimuli,	we	implemented	a	simple	linear	model.	We	predicted	each	afferent’s	response	to	scanned	bars	

by	 convolving	 the	 empirically	 derived	 RF	 map	 with	 the	 time-varying	 stimulus	 pattern	 to	 gauge	 the	

degree	to	which	the	afferent’s	firing	rate	is	shaped	by	the	linear	superposition	of	the	receptive	field	area	

and	 the	 stimulus	pattern	 (Pruszynski	 and	 Johansson	2014).	We	 interpolated	 the	RF	map	and	 stimulus	

pattern	to	achieve	a	temporal	resolution	of	2.5	ms	in	our	response	predictions.	Model	performance	was	

quantified	by	 cross	 correlating	 predicted	 firing	profiles	 and	 the	mean	 instantaneous	 firing	 profiles	 for	

each	scanning	direction.		

To	 assess	 the	 temporal	 resolution	 at	 which	 predicted	 responses	 matched	 observed	 responses,	 we	

measured	 the	 cross-correlation	 of	 predicted	 responses	 and	 observed	 responses	 after	 filtering	 the	



responses	 in	 different	 frequency	 bands.	We	 used	 a	 6
th
	 order	 bandpass	 Butterworth	 filter	 across	 the	

following	frequency	ranges:	333-500	Hz	(2-3ms);	125-200Hz	(5-8	ms);	66-100	Hz	(10-15ms);	33-50Hz	(20-

33ms);	 10-20Hz	 (50-100ms).	 We	 then	 cross-correlated	 band-passed	 predicted	 responses	 with	 band-

passed	 observed	 responses	 at	 the	 frequencies	 ranges	 specified	 above.	 This	way,	we	 could	 determine	

which	 frequency	band,	or	 temporal	 resolution,	elicited	the	highest	correlation.	We	also	computed	the	

cross-correlation	 of	 observed	 responses	 to	 repeated	 presentations	 of	 each	 stimulus	 at	 the	 different	

frequency	bands	to	establish	the	repeatability	of	the	response	within	each	band.	We	then	assessed	how	

close	the	predictions	were	to	the	best	possible	performance,	fixed	by	the	repeatability	of	the	response	

within	 each	 frequency	 band.	 Specifically,	 we	 calculated	 the	 ratio	 between	 the	 mean	 R
2
	 value	 for	

predicted	vs.	observed	and	that	for	observed	vs.	observed	within	each	frequency	range.		

RESULTS							

We	recorded	the	responses	of	22	afferents	(12	SA1	and	10	RA)	to	scanned	bars	and	of	a	subset	of	these	

to	indented	bars	(18	total:	10	SA1	and	8	RA,	Figure	2).		

Edge	orientation	signals	in	afferent	responses	

Our	first	objective	was	to	replicate	the	finding	that	the	spiking	responses	of	mechanoreceptive	afferents	

carry	 information	about	 the	orientation	of	 edges	 scanned	across	 the	 skin	 in	monkeys	 (Pruszynski	 and	

Johansson	2014).	To	this	end,	we	attempted	to	classify	the	orientation	of	scanned	edges	based	on	the	

responses	 evoked	 in	 individual	 afferents.	 Specifically,	 we	 used	 a	 nearest	 neighbor	 classifier,	 which	

gauges	the	degree	to	which	the	responses	to	bars	at	a	given	orientation	are	similar	to	each	other	and	

different	from	those	at	different	orientations.	The	dissimilarity	between	spike	trains	was	measured	using	

spike	distance,	which	 is	 the	cost	 to	 transform	one	 spike	 train	 into	another	 (Victor	and	Purpura	1997).	

Adding	 or	 removing	 a	 spike	 incurs	 a	 cost	 of	 1,	moving	 a	 spike	 incurs	 a	 cost	 of	q	 per	millisecond.	We	

performed	 the	 classification	 analysis	 at	 different	 values	 of	q	 to	 determine	 the	 temporal	 resolution	 at	

which	afferent	signals	are	most	informative	about	orientation.		

Scanned	Bars	

Bars	at	8	orientations	(ranging	from	0	to	167.5°	 in	22.5°	steps)	and	three	 indentation	 levels	(100,	200,	

and	300	µm)	were	scanned	across	each	afferent’s	RF	(see	Figure	2).	First,	we	classified	orientation	based	

on	the	spiking	responses	evoked	in	a	single	direction	for	each	orientation	(at	an	amplitude	of	300	µm).	

That	is,	we	split	the	data	set	in	two,	with	each	half	containing	afferent	responses	to	each	orientation	in	

one	 of	 the	 two	 directions	 (each	 perpendicular	 to	 the	 bar’s	 orientation).	 The	 classification	 analysis	

revealed	that	we	orientation	could	be	resolved	with	high	fidelity	(>90%)	at	a	temporal	resolution	of	~2	

ms	(Figure	3A-C)	with	both	SA1	and	RA	responses	(averaged	across	both	scanning	directions),	consistent	

with	 results	 obtained	 with	 human	 tactile	 afferents	 (Pruszynski	 and	 Johansson	 2014).	 However,	 as	

temporal	resolution	decreased,	discriminability	markedly	declined	and	was	near	chance	at	the	coarsest	

temporal	resolution,	consistent	with	earlier	observations	that	firing	rates	are	not	tuned	for	orientation	

(Bensmaia	et	al.	2008a).	Furthermore,	when	we	compared	classification	with	 the	300-µm	bars	 to	 that	

with	shallower	bars,	we	found	that	higher	stimulus	amplitudes	resulted	in	better	direction	classification	

for	 SA1	 fibers	 but	 not	 RA	 fibers,	 likely	 because	 the	 former	 exhibit	 higher	 response	 rates	 to	 higher	

amplitude	stimuli	but	the	latter	do	not	(Figure	3D)(Blake	et	al.	1997).	Finally,	RA	afferents	were	found	to	

encode	 orientation	 substantially	 better	 than	 SA1	 afferents,	 especially	 at	 lower	 indentation	 levels.	

Differences	in	performance	may	be	attributable	in	part	to	the	larger	RF	size	of	RA	afferents	(SA1:	12.14	±	

3.38	mm
2
	SD;	RA:	24.32	±	7.35	mm

2
	SD),	which	allows	for	a	more	temporally	extended	response	to	the	

same	scanned	 stimulus	and	 thus	 for	more	opportunity	 for	 the	 time-varying	 responses	 to	differ	across	

stimuli.	 Overall,	 these	 results	 demonstrate	 that	 individual	 afferent	 firing	 patterns	 convey	 information	



about	orientation	in	response	to	scanned	bars	(single	direction)	and	do	so	in	the	precise	timing	of	their	

spikes,	replicating	the	result	obtained	with	human	tactile	afferents	(Pruszynski	and	Johansson	2014).		

Predicting	responses	from	RF	topography	

The	 orientation-specific	 spiking	 responses	 have	 been	 suggested	 to	 arise	 as	 a	 consequence	 of	 the	

sequential	 activation	 of	 spatially	 displaced	 receptors	 as	 the	 bar	 moves	 over	 each	 receptor	 in	 turn	

(Pruszynski	 and	 Johansson	2014).	 To	 test	 this	 hypothesis,	we	 first	 investigated	 the	degree	 to	which	 a	

neuron’s	 responses	 to	 scanned	 edges	 is	 shaped	 by	 the	 spatial	 arrangement	 of	 its	 transduction	 sites,	

replicating	 the	 model	 established	 in	 the	 human	 microneurography	 study	 (Pruszynski	 and	 Johansson	

2014).	To	this	end,	we	assessed	the	degree	to	which	the	spiking	responses	could	be	predicted	from	the	

linear	superposition	of	RF	topography	and	stimulus	(Figure	4A-B).	We	found	that	the	linear	predictions	

matched	the	observed	firing	profiles,	each	 in	1	ms	bins,	for	both	SA1	and	RA	afferents	(Figure	4C)	(r	=	

0.83	±	0.04,	mean	±	s.d.),	as	was	found	with	human	afferents.		

We	then	wished	to	determine	the	degree	to	which	the	predicted	responses	captured	the	fine	temporal	

structure	 in	 their	 observed	 counterparts.	 To	 this	 end,	 we	 band-passed	 filtered	 the	 predicted	 and	

observed	responses	within	multiple	frequency	ranges:	333-500	Hz	(2-3ms);	125-200Hz	(5-8	ms);	66-100	

Hz	(10-15ms);	33-50Hz	(20-33ms);	10-20Hz	(50-100ms).	Next,	we	cross-correlated	the	filtered	predicted	

and	 observed	 responses	within	 each	 frequency	 band.	We	 also	 cross	 correlated	 the	 filtered	 observed	

responses	to	repeated	presentation	of	each	stimulus	amongst	themselves	to	assess	the	degree	to	which	

responses	were	repeatable	within	each	band.	At	the	lower	frequency	ranges,	and	thus	coarser	temporal	

resolutions,	 the	 cross-correlations	with	 the	predictions	became	 closer	 to	 the	 cross-correlations	 across	

repeats	 (Figure	 4D).	 In	 other	 words,	 the	 coarse	 structure	 of	 the	 response	 is	 reflected	 in	 the	 linear	

prediction	while	 its	 fine	 structure	 is	 not.	Given	 that	 the	orientation	 information	 is	 conveyed	 at	 a	 fine	

temporal	resolution,	it	is	likely	that	the	spatial	configuration	of	the	RF	is	not	sufficient	to	account	for	the	

orientation	signals.	

Indented	Bars		 	

To	further	test	the	sequential	activation	hypothesis,	we	 investigated	whether	the	spiking	responses	to	

indented	bars	carry	orientation	information	even	though	the	bar	does	not	move	relative	to	the	RF.	Each	

afferent	was	indented	with	bars	at	8	different	orientations,	with	the	center	of	the	bars	positioned	on	the	

RF	center	or	slightly	shifted	there	from	(by	up	to	5	mm	in	1-mm	steps	in	each	direction,	see	Figure	1C).	

As	 was	 found	 with	 scanned	 bars,	 we	 achieved	 high	 classification	 performance	 at	 fine	 temporal	

resolutions	(~2	ms)	(Figure	3E),	even	when	the	indented	bar	was	presented	at	an	offset	from	the	center	

of	the	RF	of	up	to	~2	mm	in	each	direction	(Figure	3F),	as	might	be	predicted	from	the	measured	RF	size.	

This	 high	 level	 of	 classification	 performance	 is	 surprising	 given	 the	 short	 duration	of	 the	 stimulus	 (30	

ms).		

In	summary,	then,	individual	afferents	carry	edge	orientation	information	throughout	their	RF,	even	for	

indented	bars,	 suggesting	 that	 the	sequential	 contact	with	spatially	displaced	hotspots	 is	not	 required	

for	the	genesis	of	precisely	timed	spiking	patterns	carrying	orientation	information.		

Testing	the	robustness	of	orientation	signals	across	conditions	

A	 neural	 code	 for	 orientation	 would	 be	 robust	 to	 changes	 in	 other	 stimulus	 properties	 so	 that	

orientation	information	could	be	decoded	by	downstream	structures	regardless	of	the	precise	geometry	

of	the	edge	or	of	 its	motion	across	the	RF	(or	 lack	thereof).	To	the	extent	that	orientation	signals	vary	

depending	 on	 other	 stimulus	 properties,	 decoding	 becomes	 more	 challenging	 and	 a	 biologically	

plausible	 theory	 of	 decoding	must	 be	 formulated.	 For	 example,	 orientation	 signals	 dilate	 or	 contract	

systematically	 with	 decreases	 or	 increases	 in	 scanning	 speed	 (Pruszynski	 and	 Johansson	 2014).	 In	



principle,	then,	speed	could	in	principle	be	corrected	for	when	decoding	orientation.	Here,	we	wished	to	

characterize	whether	the	temporal	spiking	sequences	that	signal	orientation	depend	on	other	stimulus	

properties,	including	their	amplitude,	movement	direction,	and	precise	location	on	the	RF.	To	this	end,	

we	attempted	to	classify	the	orientation	of	stimuli	that	also	differed	in	other	stimulus	parameters	based	

on	 the	 evoked	 neuronal	 response.	 To	 the	 extent	 that	 the	 orientation	 signals	 were	 consistent	 across	

changes	in	other	stimulus	features,	classification	performance	would	be	high.		

First,	we	examined	the	effect	of	changes	in	indentation	amplitude	on	classification	performance.	That	is,	

we	 pooled	 responses	 to	 scanned	 bars	 at	 amplitudes	 of	 100	 and	 300	 µm,	 and	 assessed	 whether	

responses	at	200	µm	were	more	similar	to	their	counterparts	at	100	and	300	µm	when	the	orientation	

was	 the	 same	 than	 when	 it	 was	 different.	 We	 found	 that	 classification	 was	 poor	 under	 these	

circumstances	(Figure	5A),	despite	the	fact	that	classification	performance	was	high	at	each	amplitude	

separately	(Figure	3D).	That	is,	we	could	classify	orientation	when	the	amplitude	was	held	constant,	but	

not	when	it	varied.	These	results	suggest	that	orientation	signals	are	amplitude-dependent.		

Second,	 we	 gauged	 the	 degree	 to	 which	 information	 about	 the	 orientation	 of	 a	 scanned	 edged	 was	

consistent	 across	 scanning	 directions.	 To	 this	 end,	 we	 computed	 the	 distance	 between	 spike	 trains	

evoked	 in	 one	 direction	 to	 those	 evoked	 in	 the	 opposite	 direction	 and	 found	 that	 classification	

performance	 fell	 to	 chance	 levels	 (Figure	 5A).	 That	 is,	 the	 spiking	 response	 to	 a	 given	 orientation	

scanned	in	a	given	direction	is	no	more	similar	to	the	response	to	the	same	orientation	scanned	in	the	

opposite	direction	than	it	is	to	the	response	to	a	different	orientation.	Orientation	signals	are	thus	highly	

dependent	 on	 scanning	 direction.	 To	 the	 extent	 that	 orientation	 signals	 are	 determined	 by	 the	

sequential	 activation	 of	 receptors,	 we	 might	 expect	 that	 the	 spiking	 pattern	 in	 one	 direction	 might	

match	the	reversed	spike	pattern	in	the	opposite	direction.	We	tested	this	hypothesis	by	comparing	the	

responses	to	one	direction	with	the	reversed	responses	to	the	opposite	direction	(Figure	5B).	Again,	we	

found	 that	 classification	was	poor	 (Figure	5A),	which	 constitutes	 further	evidence	 that	RF	 topography	

cannot	completely	account	for	the	orientation	information	in	afferent	responses.			

Third,	 we	 investigated	 the	 dependence	 of	 the	 orientation	 signals	 for	 indented	 bars	 on	 the	 precise	

location	within	the	RF	at	which	they	were	presented.	To	this	end,	we	compared	the	responses	evoked	

by	bars	offset	by	1	mm	from	the	RF	center	to	those	evoked	by	bars	was	delivered	at	the	RF	center.	We	

chose	 this	 range	 of	 offsets	 because	 our	 initial	 analysis	 revealed	 that	 orientation	 discriminability	

remained	 relatively	 constant	 over	 this	 range,	 when	 classification	 was	 performed	 at	 each	 location	

separately	 (Figure	 3F).	 Again,	 we	 found	 that	 classification	 was	 poor,	 indicating	 that	 spiking	 patterns	

depend	critically	on	the	location	of	the	stimulus	within	the	RF	(Figure	5C).		

In	conclusion,	then,	spike	patterns	evoked	in	the	nerve	depend	not	only	on	orientation	but	also	on	other	

stimulus	features.	In	fact,	the	responses	evoked	by	bars	at	the	same	orientation	that	differ	in	other	ways	

are	 no	more	 similar	 to	 each	 other	 than	 they	 are	 to	 responses	 to	 bars	 at	 different	 orientations.	 The	

strong	susceptibility	of	afferent	responses	to	influence	from	all	stimulus	features	makes	the	decoding	of	

orientation	from	these	responses	challenging.		

DISCUSSION	

Explicit	signaling	of	edge	orientation	by	mechanoreceptive	afferents	

We	aimed	 to	address	 the	 following	 three	questions:	1)	Do	mechanoreceptive	afferents	of	non-human	

primates	carry	edge	orientation	signals	as	do	those	of	humans?	2)	Can	firing	rate	patterns	be	predicted	

from	RF	 topography?	 3)	How	 robust	 are	 these	 edge	orientation	 signals	when	other	 stimulus	 features	

vary?			



First,	 our	 findings	 suggest	 that	 similar	 representations	 of	 edge	 orientation	 exist	 in	 human	 and	 non-

human	 primates.	 Indeed,	 our	 analyses	 of	 data	 analogous	 to	 those	 from	 the	 previous	 human	

microneurography	study	(Pruszynski	and	Johansson	2014)	–	namely	afferent	responses	to	bars	scanned	

in	a	single	direction	–	yield	results	that	are	virtually	identical.	One	minor	difference	between	human	and	

non-human	afferents	is	that	RA	fibers	seem	to	signal	orientation	better	than	do	their	SA1	counterparts,	

a	discrepancy	that	can	be	attributed	to	differences	in	RF	size.	Indeed,	some	SA1	afferents	have	such	tiny	

RFs	that	there	is	little	opportunity	for	temporal	modulation	as	the	bar	is	scanned	across	the	RF	(see	also	

Sripati	et	al.	2006).	Such	an	effect	might	not	be	observed	in	humans	because	RA	and	SA1	receptive	fields	

are	more	comparable	to	each	other	in	size	(Johansson	1978;	Vallbo	and	Johansson	1984).	

Second,	we	 showed	 that,	while	 the	 coarse	 temporal	 structure	of	 afferent	 responses	 could	be	 linearly	

predicted	from	the	RF	topography,	the	fine	temporal	structure	could	not.	Since	edge	orientation	signals	

rely	 on	 spiking	 patterns	 at	 the	 millisecond	 timescale,	 the	 fine	 spatial	 structure	 of	 afferent	 RFs	

topography	is	not	sufficient	to	account	for	the	resulting	orientation	information.	

Finally,	 we	 explored	 the	 dependence	 of	 orientation	 signals	 on	 other	 stimulus	 features	 by	 testing	 the	

ability	 of	 classifiers	 to	 generalize	 across	 stimulus	 conditions.	 In	 the	 human	 microneurography	 study,	

afferent	responses	to	scanned	edges	remained	consistent	across	speeds,	and	were	consistently	warped	

in	time	depending	on	the	speed	(Pruszynski	and	Johansson	2014).	Here,	we	aimed	to	explore	the	effect	

of	 other	 stimulus	 parameters,	 including	 those	 whose	 impact	 on	 cortical	 orientation	 signals	 and	 on	

human	perception	has	been	shown	to	be	minimal	(Bensmaia	et	al.	2008a,	2008b).	We	found	that	slight	

changes	 in	 the	 location	 at	 which	 the	 stimulus	 was	 delivered	 abolished	 the	 ability	 to	 classify	 its	

orientation,	 as	 did	 changes	 in	 amplitude	 or	 scanning	 direction.	 Given	 their	 dependence	 on	 other	

stimulus	features,	then,	orientation	signals	can	only	be	decoded	in	a	context-dependent	manner.	In	light	

of	 this,	 it	 is	 critical	 to	articulate	a	biologically	plausible	decoder	 that	 could	make	use	of	 these	 signals.	

Indeed,	questions	 remain	as	 to	 their	 role	 in	perception	or	 in	motor	 control.	Regarding	 the	perceptual	

coding	 of	 orientation,	 one	 might	 ask	 whether	 these	 temporal	 orientation	 signals	 contribute	 to	 the	

robust	 rate-based	 orientation	 signals	 observed	 in	 S1,	 or	 complement	 them	 in	 some	 way.	 In	 motor	

control,	 information	 about	 the	 presence	 and	 orientation	 of	 edges	 would	 support	 the	 dexterous	

manipulation	of	objects.	How	such	a	susceptible	signal	might	drive	subtle	adjustments	of	hand	posture	

during	object	interactions	has	yet	to	be	clearly	articulated.		

Stimulus	coding	in	tactile	afferents	

Cutaneous	mechanoreceptive	afferents	produce	spiking	 responses	 that	are	 (1)	 remarkably	 repeatable,	

with	precision	down	to	the	sub-millisecond	time	scale	(Johansson	and	Birznieks	2004;	Mackevicius	et	al.	

2012;	 Bale	 et	 al.	 2015)	 and	 (2)	 exquisitely	 sensitive	 to	 skin	 stimulation.	 In	 other	words,	 tactile	 fibers	

produce	 responses	 that	 are	 virtually	 identical	 when	 the	 same	 stimulus	 is	 presented	 repeatedly,	 and	

different	when	different	stimuli	are	presented,	even	 if	 these	stimulus	differences	are	very	subtle.	As	a	

result,	 the	 information	about	stimulus	 identity	 in	afferent	 responses	 is	off	 the	charts	 if	 spike	 timing	 is	

taken	 into	 consideration,	 particularly	 with	 good	 stimulus	 control	 that	 allows	 for	 precise	 repeated	

presentation	of	the	same	stimulus	(Chagas	et	al.	2013).	In	other	words,	almost	any	pair	of	non-identical	

stimuli	 can	be	distinguished	based	on	 the	 spiking	patterns	 they	evoke	 in	mechanoreceptive	afferents.	

The	key	 to	understanding	neural	 coding	 in	 the	nerve,	 then,	 is	 to	 identify	how	different	aspects	of	 the	

afferent	 response	 systematically	 encode	 different	 aspects	 of	 the	 stimulus	 in	 such	 a	 way	 that	 these	

aspects	can	be	decoded	by	downstream	structures.		

There	are	several	ways	to	establish	a	neural	code.	One	way	is	to	demonstrate	that	information	about	a	

stimulus	quantity,	known	to	be	accessible	perceptually,	is	only	carried	in	a	given	aspect	of	the	neuronal	

response	 (Jacobs	et	 al.	 2009).	 For	 example,	we	have	 shown	 that	 the	 frequency	 composition	of	 a	 skin	

vibration	 is	 encoded	 in	 the	 timing	 of	 the	 responses	 and	 that	 it	 cannot	 be	 decoded	 from	 their	 rates	



(Mackevicius	 et	 al.	 2012).	 Similarly,	 information	 about	 fine	 textures	 is	 only	 carried	 in	 the	 temporal	

spiking	patterns	evoked	in	RA	and	PC	fibers	(Weber	et	al.	2013).	Another	way	is	to	demonstrate	that	an	

aspect	 of	 the	 neural	 response	 covaries	 with	 a	 stimulus	 property	 in	 the	 same	 way	 as	 does	 the	

corresponding	 perceptual	 dimension.	 For	 example,	 we	 have	 shown	 that,	 while	 several	 aspects	 of	

afferent	 responses	 change	 when	 the	 stimulus	 amplitude	 increases	 (firing	 rate,	 size	 of	 the	 activated	

population,	etc.),	one	of	these	covaries	more	strongly	than	the	others	with	the	perceived	magnitude	of	

the	stimulus	(population	firing	rate	weighted	by	afferent	type),	which	strongly	bolsters	 its	claim	as	the	

neural	code	for	intensity	(Muniak	et	al.	2007).	The	third	and	probably	most	powerful	way	to	confirm	a	

neural	 code	 is	 to	 test	 it	 causally	 by	 artificially	 inducing	 a	 pattern	 of	 neuronal	 activation	 (through	

electrical	or	optogenetic	stimulation,	e.g.),	and	assessing	whether	it	results	in	the	predicted	perceptual	

consequence.	 In	 a	 recent	 study,	 we	 confirmed	 the	 intensity	 coding	 hypothesis	 mentioned	 above	 by	

showing	 that	 it	 accounted	 for	 the	 perceived	 magnitude	 of	 electrically	 induced	 activation	 of	 the	

peripheral	nerve	(Graczyk,	E.;	Schiefer,	M.;	Delhaye,	B.;	Saal,	H.;	Bensmaia,	S.;	Tyler	2016).	

The	remarkable	sensitivity	and	precision	of	afferents	presents	a	unique	challenge	in	understanding	how	

they	encode	stimulus	information.	There	is	little	question	that	spike	timing	carries	stimulus	information	

and	 is	behaviorally	 relevant	 (Saal	and	Bensmaia	2016).	The	orientation	of	edges	 impinging	on	the	skin	

can	theoretically	be	decoded	from	the	temporal	spiking	patterns	evoked	tactile	fibers.	The	challenge	will	

be	to	determine	how	this	is	accomplished	given	the	volatility	of	these	signals.		 	
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Figure	 1.	 Experimental	 set	 up.	 A|	 Bottom	 view	 of	 the	 400-probe	 stimulator	 (Killebrew	 et	 al.	 2007).	

Individual	 pins	 converge	 onto	 a	 1	 cm
2
	 area	 over	 the	 skin.	 B|	 Sequence	 of	 snapshots	 depicting	 a	 bar	

indented	at	different	edge	orientations.	C|	Representation	of	a	135-degree	bar	indented	at	the	hotspot	

and	at	two	offsets	from	the	hotspot.	The	heat	map	shows	the	RF	topography.	The	overlaid	black	bar	is	

centered	on	the	hotspot,	the	dark	and	gray	bars	are	displaced	by	±1	mm	and	±2	mm	respectively.	The	

hotspot	is	denoted	by	the	white	circle.		

	

	

	

	

	



	

Figure	2:		Responses	to	oriented	edges.	A|	RF	map	for	a	typical	SA1	(top)	and	RA	(bottom)	afferent.	B|	

Rasters	(for	5	repeats)	and	firing	rate	profiles	to	a	bar	scanned	at	a	subset	of	orientations	for	the	same	

two	 afferents	 (SA1	 in	 blue,	 RA	 in	 orange).	 C|	 Responses	 evoked	 to	 indented	 bars	 at	 a	 subset	 of	

orientations	 for	 the	 same	 two	 afferents.	 Firing	 rate	 profiles	 are	 consistent	 within	 but	 vary	 across	

orientations	for	both	scanned	and	indented	bars.		

		

	

	

	



	

	

Figure	 3:	 Afferent	 orientation	 signals	 for	 scanned	 and	 indented	 bar	 stimuli.	 A|	 Classification	

performance	based	on	the	responses	of	an	SA1	afferent	to	300-µm	scanned	bars	at	8	orientations	as	a	

function	 of	 the	 temporal	 resolution	 of	 the	 classifier	 (1/q).	 The	 leftmost	 extreme	 of	 the	 curve	 shows	

classification	performance	when	submillisecond	differences	in	spike	timing	are	taken	into	consideration,	

the	rightmost	extreme	of	the	curve	shows	classification	performance	based	solely	on	spike	counts	over	

the	stimulus	interval.	B|	Classification	performance	based	on	the	responses	of	an	RA	afferent.	C|	Mean	

classification	performance	based	on	the	responses	of	10	SA1	(blue)	and	12	RA	fibers	(orange)	to	scanned	

bars.	D|	Peak	classification	performance	at	three	amplitudes.	E|	Mean	classification	performance	based	

on	 the	 responses	 of	 8	 SA1	 and	 10	 RA	 fibers	 to	 indented	 bars.	 F|	 Peak	 classification	 performance	 at	

different	 locations	 relative	 to	 the	 hotspot	 (located	 at	 displacement	 =	 0	 mm).	 In	 this	 analysis,	

classification	 is	 performed	 at	 each	 location	 separately.	 As	 was	 found	 in	 humans,	 tactile	 fibers	 carry	

considerable	information	about	edge	orientation	in	the	precise	timing	of	their	responses.	Error	shading	

denotes	standard	error	of	the	mean.		

	 	



	

Figure	1:	Predicting	the	firing	rate	profiles	from	RF	topography.	A|	Example	of	predicted	(gray)	and	observed	

(blue)	firing	rate	profiles	for	a	single	SA1	afferent.	B|	Example	of	predicted	(gray)	and	observed	(orange)	firing	

rate	 profiles	 for	 a	 single	 RA	 afferent.	 Although	 observed	 and	 predicted	 firing	 patterns	 are	 highly	 correlated,	

predicted	firing	patterns	capture	the	coarse	structure	of	the	firing	profiles,	but	not	their	fine	structure.		C|	Mean	

maximum	 cross	 correlation	 between	 predicted	 and	 observed	 firing	 rate	 profiles	 for	 SA1	 and	 RA	 afferent	

populations.	The	error	bar	represents	the	standard	error	of	the	mean.	D|	Ratio	of	R
2
	for	predicted	vs.	observed	

(!!∀#∃
! )	to	the	R

2	
for	observed	vs.	observed	(!!∀#

! )	across	multiple	temporal	resolutions.	Error	shading	denotes	

standard	deviation.	Predicted	firing	rate	profiles	closely	match	observed	firing	rate	profiles	at	coarse	temporal	

resolutions,	but	not	at	fine	ones.	



	

	

	

	

Figure	5.	Robustness	of	orientation	signals.	A|	Peak	horizontal	dashed	lines	denote	peak	classification	

performance	when	all	other	stimulus	features	are	constant.	Amplitude:	Comparison	of	the	responses	at	

100-µm	and	 300-µm	 to	 those	 at	 200-µm.	Direction:	 Comparison	 of	 the	 responses	 in	 one	 direction	 to	

those	 in	 the	 opposite	 direction.	 Direction	 (rev):	 Comparison	 of	 the	 responses	 in	 one	 direction	 to	

reversed	 responses	 in	 the	 opposite	 direction.	 B|	 Example	 of	 spike	 patterns	 evoked	 from	 a	 single	 RA	

afferent	 for	one	scanned	direction	(left,	purple	rasters	and	mean	firing	rate	profiles)	and	the	opposite	

scanned	direction	(right,	purple	rasters	and	mean	firing	rate	profiles).	Reversed	spike	trains	and	mean	

firing	 rate	 profiles	 of	 the	 corresponding	opposite	 scanned	direction	 are	 displayed	 in	 red	 (bottom).	 C|	

Peak	 classification	 performance	 for	 indented	 bars	 at	 different	 locations.	 The	 horizontal	 dashed	 bars	

denote	peak	classification	performance	when	the	bar	is	centered	on	the	hotspot,	while	chance	levels	are	

at	0.125.	Grey	bars	represented	standard	error	of	the	mean.	Classification	performance	is	substantially	

reduced	when	other	stimulus	features	vary.		

	 	

	


