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Abstract

Due to a problem of identification, how to estimate the distinct effects of age, time period and cohort has been a
controversial issue in the analysis of trends in health outcomes in epidemiology. In this study, we propose a novel approach,
partial least squares (PLS) analysis, to separate the effects of age, period, and cohort. Our example for illustration is taken
from the Glasgow Alumni cohort. A total of 15,322 students (11,755 men and 3,567 women) received medical screening at
the Glasgow University between 1948 and 1968. The aim is to investigate the secular trends in blood pressure over 1925
and 1950 while taking into account the year of examination and age at examination. We excluded students born before
1925 or aged over 25 years at examination and those with missing values in confounders from the analyses, resulting in
12,546 and 12,516 students for analysis of systolic and diastolic blood pressure, respectively. PLS analysis shows that both
systolic and diastolic blood pressure increased with students’ age, and students born later had on average lower blood
pressure (SBP: 20.17 mmHg/per year [95% confidence intervals: 20.19 to 20.15] for men and 20.25 [20.28 to 20.22] for
women; DBP: 20.14 [20.15 to 20.13] for men; 20.09 [20.11 to 20.07] for women). PLS also shows a decreasing trend in
blood pressure over the examination period. As identification is not a problem for PLS, it provides a flexible modelling
strategy for age-period-cohort analysis. More emphasis is then required to clarify the substantive and conceptual issues
surrounding the definitions and interpretations of age, period and cohort effects.
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Introduction

One longstanding problem and controversy in observational

research, such as epidemiology and sociology, surrounds how to

estimate the distinct impacts of age, time period, and cohort on the

changes in, for example, attitudes, behaviors and health outcomes

in the population [1–7]. Due to the intrinsic mathematical

relationship amongst the three variables, i.e. age + cohort =

period, there is an identification problem in traditional regression

analysis [8]. For example, suppose researchers observe an

increasing trend in the incidences of the type-I diabetes in

children in a geographic area over the last three decades [9], they

hypothesize that this trend might be due to (1) the improved

diagnostic skills in early indentifying young patients (i.e. time

period effect), or (2) the decreased early infections due to improved

hygiene and living environment (cohort effect), or maybe both.

However, as the risk of the type-I diabetes also increases with age,

to separate the effects of period and cohort, age too has to be

accounted for. Since the three variables are mathematically related

and have only two degrees of freedom, one has to be removed;

otherwise, mathematical computation in the regression analysis

cannot proceed, because the data matrix containing the three

variables is not full-rank [10]. Mathematically speaking, a matrix

without full rank is not invertible, and as a result, it makes the

estimation of unique regression coefficients impossible without

imposing additional constraints [11]. From a conceptual view-

point, since one variable is the sum of the other two, it seems to

makes little sense to estimate the ‘‘independent’’ effect of one by

holding the other two fixed [12].

There have been many attempts to overcome this estimation

(identification) problem in age-period-cohort analysis [1–8]. One

common approach is to put constraints in the estimation process to

overcome the computational problem with insufficient rank in the

data matrix. While this type of modelling strategy produces

simultaneous estimates of age, period, and cohort effects, it has

been criticized in the statistical literature because the results are

sensitive to the constraint chosen, and there is no empirical way to

confirm the validity of the chosen constraints [2,3,8]. For instance,

suppose in our previous hypothetical example of childhood type-I

diabetes, the age of children is categorised into 3 groups: year 0 to

5, 5 to 9 and 10 to 14; time period is categorised into 5 groups:

1981 to 1985, 1986 to 1990, 1991 to 1995, 1996 to 2000, and

2001–2005; and cohort into 7 categories: 1971 to 1975, 1976 to

1980, 1981 to 1985, 1986 to 1990, 1991 to 1995, 1996 to 2000,

and 2001–2005. As a result, there are 2, 4 and 6 dummy variables

for age, period and cohort effects by using the first group for each
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as the reference. To investigate fully all effects, 12 dummy

variables should be entered into the regression model simulta-

neously, but due to collinearity, we have to omit one. If, for

example, the dummy variable for cohort born in 1976 to 1980 is

omitted, this is equivalent to constraining its regression coefficient

to zero [2,8]. Apparently, there are at least 11 other constraints to

be chosen (e.g. the dummy variable for cohort born in 1981 to

1985 is omitted instead), and each will yield slightly different

results. However, it should be noted that to estimate the linear

effects, certain constraints have to be imposed in the estimation of

coefficients, and therefore the challenge is to seek for constraints

that are justifiable and interpretable.

Another approach is to construct higher-order variables for those

with perfect collinearity [13]. For instance, whilst age, period and

cohort are perfectly collinear, age, period and the product term of

age multiplied by cohort are not. However, even with just three

variables, there are quite a few second-order variables to be tested,

and the interpretation of these second-order effects is not

straightforward. There are many other attempts in the literature to

tackle the identification problem, but they do not always yield similar

results, and some modelling strategies are very complex [2–8,13–16].

Although traditional regression analysis (so-called generalised

linear modelling) implemented in statistical software packages

requires that the data matrix for covariates is full-rank, this is not a

requirement for statistical methods for data dimension reduction,

such as principal component regression and partial least squares

(PLS) regression [17–22]. Therefore, collinearity and related

identification problems are no longer a computational issue for

these methods. The aim of this study is to demonstrate how to use

PLS to separate the effects of age, period, and cohort, and to

explain how PLSR provides a solution to the identification

problem. A previous study used data from students who attended

the Glasgow University between the years 1948 and 1968, and

showed that systolic blood pressure (SBP) and diastolic blood

pressure (DBP) were lower in students born in the 1940s than

those born in the 1930s and 1920s [23]. In this study, we re-

analyse this dataset using PLS to estimate the separate effects of

age (age at examination), time period (year of examination), and

cohort (year of birth) on blood pressure to both illustrate the

methodology and seek what additional insight this provides.

Methods

Glasgow Alumni cohort
Details of the Glasgow Alumni cohort have been described

elsewhere [23,24]. Briefly, students attending Glasgow University

between 1948 and 1968 were invited to participate in a health

screening, including a questionnaire and clinical examination.

Data collected included socio-economic background, health

behaviours, and medical history. Height, weight, and blood

pressure were also recorded. A total of 15,322 students (11,755

men and 3,567 women) participated in the study. Students born

before 1925 or aged over 25 years at examination were excluded

from the analyses. Two students were excluded because of data

entry errors. Participants with missing values in the birth year and

any of following confounders were also excluded: body height,

body mass index, father’s socio-economic background and

cigarette smoking. Adjusted systolic blood pressure (SBP) and

diastolic blood pressure (DBP) were obtained in 9,337 and 9,314

men, respectively, with the adjustment of all confounders.

Similarly, adjusted SBP and DBP were obtained in 3,211 and

3,204 women, respectively.

Record linkage and follow-up of the Glasgow Alumni Cohort

was under the ethics approval by the Multicentre Research Ethics

Committees in the UK: MREC/99/0/9, ‘‘Influence of early life

nutritional status, adolescent and adult diet on cancer incidence

and mortality: a retrospective cohort study of Glasgow University

students’’, approved in March 2000. There was no consent

collected at the time, as it is a historical cohort started 60 years

ago; but this deemed acceptable by the ethics committees, if data

used in an anonymised form - as they are throughout the analysis.

Partial least squares (PLS) regression
PLS seeks to select components t that maximise the covariance

between the outcome (SBP or DBP in this study) and t [20–22].

For p variables, x1, x2,…, xp, each PLS component ti, is a weighted

composite of p covariates:

ti~wi1x1zwi2x2z:::zwipxp: ð1Þ

Like principal component analysis (PCA), variables with small

variances are penalised in the extraction of t, and therefore xi in

equation (1) is usually scaled to have unit variance and zero mean.

In contrast to PCA, PLS extracts components by taking into

account their relationships with the outcomes. In PCA, the

extraction of components is independent of the outcome variables,

whereas in PLS, components are extracted explicitly for their

association with the outcomes. The extraction of PLS components

operates under the same constraints as with PCA: (i) the sum of

the squared weights is unity, i.e.
P

w2
ip~1; and (ii) the correla-

tions amongst all components are zero. The number of ti that

can be extracted is equal to the dimension (i.e. the rank) in the

covariate matrix consisting of xi. For instance, in this study, there

are only two dimensions in the data matrix consisting of age, the

year at examination, and the year of birth; consequently, only two

PLS components can be extracted from the three variables.

PLS components are ordered according to the amount of

variance in the outcome that is explained by them, i.e. the first

PLS component has greater covariance with the outcome than the

second PLS component, and the second has greater covariance

than the third, etc. In PLS, the first PLS component explains most

of the outcome variance.

The PLS regression coefficient for each xi is then derived from

the sum of products of the regression coefficients for PLS

components and the weight for each xi. For example, when the

outcome SBP is regressed on the two PLS components, the

equation is given as:

SBP~b1 � t1zb2 � t2ze

~b1(w11agezw12periodzw13cohort)

zb2(w21agezw22periodzw23cohort)ze,

where b1 and b2 are the regression coefficients for PLS

components 1 and 2, respectively, and e is the residual error

term. The PLS regression coefficient for age is therefore

b1w11zb2w21.

Note that if all PLS components are used as new covariates, the

results from the PLS regression, such as regression coefficients and

R2, are equivalent to those from PCA regression (and also ordinary

least square regression, when the covariate matrix is full-rank).

The advantage of PLS over PCA is that the first few components

explain most of the covariance between the outcome and

covariates.

APC Analysis Using Partial Least Squares
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PLS and perfect collinearity
From a mathematical perspective, identification is a problem for

the age-period-cohort analysis using ordinary least squares

regression and related methods, because the inverse of the

covariate matrix does not exist. However, whilst the inverse of a

matrix without full rank does not exist, for a matrix without full

rank, a mathematical technique, namely singular value decompo-

sition (SVD), can still be used to obtain unique components of

original variables, which are weighted compositions of original

covariates [25–27]. In short, PCA is related to SVD of

correlation/covariance matrix for the covariates, whilst PLS with

one outcome is related to successive SVD of the vector for the

correlations/covariances between the outcome and covariates

[28]. This is why PCA and PLS have been widely used in

bioinformatics where the number of variables exceeds the number

of observations (which also gives rise to identification problem)

[19,22]. In PCA, three collinear variables with two dimensions

(such as age, period, and cohort) are projected into two new latent

variables, which are linear combinations of the original three

variables; these new latent variable are then used as covariates for

the regression analysis [23]. PLS may be viewed as a variant of

PCA, where the two latent variables are rotated so that the first

latent variable has the largest covariance with the outcome [29]. A

technical explanation about how PCA and PLS work for perfectly

collinear variables can be found in the Appendix S1. Briefly, it is

well known that a linear model with a non-full rank covariate

matrix (also called design matrix) has an infinite number of

solutions for the choice of regression coefficients, and a constraint

is therefore necessary to obtain a unique solution [30–32]. PLS

implicitly imposes an inherent constraint in its algorithms that

‘‘naturally’’ arises from the intrinsic mathematical relationship: Age

+ Cohort = Period. The application of SVD effectively ‘‘inherits’’

this constraint in the estimation of the PLS regression coefficients

[33,34]. PLS does not intentionally impose this constraint; it

emerges only due to the mathematical relationship of APC data. It

can be shown that the imposed constraint is different when original

or scaled variables are used in PLS, giving rise to different results. It

is our view that the implicit constraint made by PLS regression

seems to be a reasonable one, as it is a natural consequence of the

intrinsic mathematic relationship amongst age, cohort and period.

More explanation is found in the online Appendix S1.

Selection of PLS component
To employ PLS is to maximise the covariance between the

outcome and new composites, so it is justifiable to use the

increments in the explained variance in the outcome (e.g. changes

in R2) as a criterion for selecting PLS components. This gives us a

measure of predictive ability, the predictive residual error sum of

squares (PRESS) [35,36]. To obtain this, the data are first split into

a number of groups. For each, a prediction is obtained using the

model derived from all other groups. For example, one

Table 1. Mean adjusted systolic blood pressure (SBP),
diastolic blood pressure (DBP) and age at examination (Age)
for men in Glasgow Alumni cohort according to their year of
birth (Birthyear) and year of examination (Examyr).

SBP DBP Age

Birth year N Mean SD Mean SD Mean SD

1925 240 107.7 11.9 72.3 7.7 24.1 0.6

1926 332 109.7 12.3 73.5 8.4 23.3 0.9

1927 352 108.4 12.7 71.9 8.8 22.5 1.0

1928 385 107.9 12.8 71.2 7.8 21.8 1.2

1929 447 107.8 12.1 70.7 8.1 20.9 1.4

1930 491 108.2 11.4 71.2 8.0 20.1 1.7

1931 523 108.2 12.5 70.1 7.9 19.7 1.8

1932 457 108.6 12.4 69.4 8.2 19.7 1.9

1933 461 106.4 11.5 69.1 8.3 19.8 2.0

1934 436 106.6 12.9 68.1 7.8 19.9 1.9

1935 379 105.9 13.4 67.7 8.7 19.9 1.8

1936 426 106.9 12.7 67.2 8.7 19.7 1.8

1937 449 106.8 13.6 68.0 10.2 19.4 1.8

1938 445 106.6 12.4 67.1 8.8 19.2 1.8

1939 402 105.9 12.8 67.0 8.5 19.3 1.8

1940 356 107.0 12.5 67.3 8.5 19.5 2.0

1941 327 106.5 13.4 67.4 8.2 19.6 2.0

1942 317 104.3 13.6 65.9 8.3 19.8 2.0

1943 416 105.6 13.8 66.4 8.9 19.7 1.9

1944 480 103.5 13.9 66.2 8.0 19.5 1.7

1945 477 102.8 12.6 65.9 8.7 19.2 1.5

1946 430 102.0 12.3 65.5 8.1 19.0 1.4

1947 446 101.0 12.5 66.2 7.8 18.9 1.2

1948 380 99.9 12.1 66.0 7.1 18.5 0.9

1949 247 99.2 12.6 64.4 8.3 18.0 0.7

1950 118 101.4 13.4 65.7 8.9 17.7 0.5

Exam year

1948 315 107.1 12.2 71.9 8.4 20.2 1.9

1949 1,096 108.6 12.1 72.0 7.5 20.9 2.0

1950 759 109.1 12.6 71.4 8.6 21.0 2.2

1951 771 108.1 11.9 69.3 8.5 20.3 2.1

1952 437 107.7 12.6 68.6 7.8 19.9 2.1

1953 417 104.9 12.4 67.8 8.2 19.9 2.0

1954 229 107.6 12.4 67.9 9.5 19.3 2.1

1955 662 107.2 12.4 68.5 8.6 19.7 1.9

1956 493 107.9 13.5 69.0 10.6 19.6 2.0

1957 419 106.1 12.8 66.4 8.2 19.8 2.1

1958 454 105.1 12.4 67.2 8.5 19.7 1.9

1959 374 106.5 13.1 67.7 7.7 19.5 2.0

1960 252 107.3 12.7 68.3 8.3 19.9 2.0

1961 370 107.4 14.2 66.4 8.7 19.6 2.0

1962 385 104.8 13.6 66.1 8.2 19.2 1.7

1963 452 103.8 13.3 66.3 8.6 19.4 1.8

1964 514 101.7 12.5 64.6 8.2 19.2 1.6

1965 502 101.8 12.5 66.7 7.4 19.5 1.8

Exam year

1966 523 100.8 12.2 66.7 7.9 19.2 1.9

1967 473 100.0 12.1 65.6 7.9 19.7 1.9

1968 322 100.4 13.5 65.3 8.9 20.0 1.7

doi:10.1371/journal.pone.0019401.t001

Table 1. Cont.

APC Analysis Using Partial Least Squares
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observation is left out of the model, and we use the remaining

observations to predict the outcome. PRESS is calculated as the

sum of squares of the differences between the prediction for each

observation (when it is left out of the model) and the observed

value of the dependent variables.

Data analysis
We first undertook sex-specific linear PLS regression for SBP

and DBP by including the age at examination (16 to 25), the year

of examination (1948 to 1968) and the year of birth (1925 to 1950)

as continuous covariates. As PLS penalizes variables with small

variances (e.g. age at examination), covariates are scaled to have

unit variance [37–39]. Restricted cubic splines PLSR was then

undertaken to explore nonlinear associations [40]. Three knots

were placed for the year at examination (year 1954, 1959 and

1964) and four knots for the year of birth (year 1930, 1935, 1940,

1945 and 1950). In the final analysis, we created dummy variables

for the three continuous variables to compare the results to those

from linear and restricted cubic splines PLS regression. No

arbitrary constraint on the dummy variables was required for PLS

regression. All analyses were undertaken using a free data-mining

software Tanagra (version 1.4.36, http://chirouble.univ-lyon2.fr/

,ricco/tanagra/en/tanagra.html) with 1000 nonparametric boot-

straps to obtain 95% confidence intervals.

Results

Tables 1 and 2 show the adjusted mean blood pressure stratified

by the year of examination or the year of birth for men and

women, respectively. In general, participants born in the 1920s

went to university slightly older than those born later. There

seemed to be a decreasing trend in blood pressure for both the

year of birth and the year at examination.

Table 3 shows the results from linear PLS analysis with one or

two components. Whilst the PLS regression coefficients for age at

examination (Age) differed slightly between the two models, there

was little difference in the coefficients for the year of birth

(Birthyear) and the year at examination (Examyear). Both

Birthyear and Examyear showed similar negative associations

with blood pressure in men and women. The R2 in the PLS model

for SBP in men with one component was 3.45%, which is about

92% of the variance in SBP that could be explained by the three

covariates. For the other models, the second component added

little to the explained variance in blood pressure. Men born later

in this cohort had lower SBP than those born earlier

(20.17 mmHg/per year, 95% Confidence Intervals [CI]: 20.18

to 20.15). Men who attended the university later had lower SBP

than those who attended earlier (20.2, 95%CI: 20.18 to 0.22).

DBP for men born later was lower than that for those born earlier

(20.14, 95%CI: 20.15 to 20.13), and for those who attended the

university later was 0.15 mmHg/per year lower than those who

attended earlier. SBP for women born later was lower than for

Table 2. Mean adjusted systolic blood pressure (SBP),
diastolic blood pressure (DBP) and age at examination (Age)
for women in Glasgow Alumni cohort according to their year
of birth (Birthyr) and year of examination (Examyr).

SBP DBP Age

Birth year N Mean SD Mean SD Mean SD

1925 16 103.1 14.1 61.8 9.5 24.1 0.9

1926 19 104.6 11.7 58.3 8.8 23.0 0.8

1927 51 105.5 11.0 62.2 6.8 22.1 0.8

1928 95 103.0 11.5 60.5 7.1 21.5 1.1

1929 130 105.1 11.9 60.7 6.6 20.4 1.1

1930 159 106.1 11.8 61.3 7.5 19.4 1.2

1931 197 106.5 13.6 61.7 7.7 18.9 1.3

1932 202 107.2 12.3 60.9 7.8 18.8 1.3

1933 133 103.3 13.8 59.5 7.2 18.7 1.3

1934 168 100.9 12.1 57.7 8.1 18.7 1.2

1935 111 99.4 10.3 56.4 7.6 18.8 1.4

1936 128 100.9 11.8 58.5 7.3 18.9 1.6

1937 107 100.0 11.4 57.5 7.0 18.8 1.4

1938 149 98.3 11.3 56.5 7.5 18.7 1.6

1939 121 97.4 9.9 56.6 7.3 19.3 1.7

1940 120 98.6 10.3 57.7 7.1 19.2 1.6

1941 106 99.2 12.2 59.8 7.3 19.2 1.7

1942 124 98.2 11.0 57.6 8.5 19.7 1.8

1943 186 95.6 10.7 56.5 7.1 19.3 1.5

1944 173 95.6 10.1 56.3 7.0 19.4 1.6

1945 165 95.8 9.8 56.5 7.0 19.3 1.4

1946 185 97.6 11.9 57.4 6.9 19.2 1.5

1947 217 97.7 10.1 59.0 7.1 18.9 1.2

1948 182 97.6 10.5 58.6 6.6 18.6 0.9

1949 115 97.4 9.9 57.4 6.4 18.1 0.7

1950 59 94.6 11.5 55.6 7.0 17.6 0.6

Exam year

1948 113 104.7 10.5 61.4 6.6 19.1 1.6

1949 293 104.8 11.4 60.7 7.7 19.6 1.7

1950 257 106.6 13.3 61.0 7.1 19.6 1.8

1951 236 108.0 13.7 61.6 8.1 19.2 1.6

1952 152 102.3 12.1 58.8 7.2 18.8 1.5

1953 128 98.2 10.2 57.0 7.9 19.2 1.8

1954 131 100.6 12.4 57.8 7.1 18.7 1.3

1955 127 99.5 10.4 56.7 7.0 18.6 1.6

1956 124 98.5 11.0 55.6 7.4 18.9 1.6

1957 72 97.8 10.2 58.6 7.0 19.3 1.7

1958 132 98.9 12.3 58.3 8.1 19.1 1.4

1959 138 100.1 10.9 58.4 7.8 19.2 1.5

1960 80 97.9 10.6 57.3 7.8 18.9 1.5

1961 135 98.1 11.3 57.8 6.7 18.9 1.4

1962 133 94.5 10.6 57.5 7.2 18.9 1.3

1963 170 97.0 10.3 54.8 7.1 19.3 1.6

1964 207 96.9 11.0 56.5 7.5 19.2 1.6

1965 201 97.2 9.6 58.4 6.7 19.2 1.8

Exam year

1966 209 96.7 10.3 58.2 6.8 19.1 1.7

1967 236 95.7 10.1 57.9 6.8 19.3 1.5

1968 144 98.2 11.3 58.1 6.7 19.8 1.5

doi:10.1371/journal.pone.0019401.t002

Table 2. Cont.

APC Analysis Using Partial Least Squares
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Table 3. Results from linear partial least squares regression with scaled variables for men and women in Glasgow Alumni Cohort.

Men Women

1-Comp 2-Comp 1-Comp 2-Comp

Variables Coef 95% CI Coef 95% CI Coef 95% CI Coef 95% CI

SBP Age 0.08 (0.02 to 0.14) 20.28 (20.40 to 20.14) 20.02 (20.15 to 0.12) 20.30 (20.55 to 20.05)

Birth year 20.17 (20.18 to 20.15) 20.17 (20.19 to 20.15) 20.25 (20.28 to 20.22) 20.25 (20.28 to20.22)

Exam year 20.20 (20.22 to 20.18) 20.24 (20.27 to 20.22) 20.27 (20.30 to 20.24) 20.28 (20.31 to 20.25)

R2 (%) 3.45 3.76 8.07 8.21

DBP Age 0.27 (0.23 to 0.31) 0.25 (0.16 to 0.33) 0.11 (0.03 to 0.19) 0.12 (20.03 to 0.27)

Birth year 20.14 (20.15 to 20.13) 20.14 (20.15 to 20.13) 20.09 (20.11 to 20.07) 20.09 (20.11 to 20.07)

Exam year 20.15 (20.16 to 20.14) 20.15 (20.17 to 20.13) 20.09 (20.11 to 20.07) 20.09 (20.11 to 20.07)

R2 (%) 6.05 6.05 2.79 2.79

doi:10.1371/journal.pone.0019401.t003

Figure 1. The relationship between adjusted blood pressure and year at birth or examination for men and women in the restricted
cubic splines partial least squares regression. For SBP, the R2 is 3.75% for men and 4.48% for women, which are greater than 80% of total R2

that can be explained. For DBP, the R2 is 7.48% for men and 2.40% for women, which are greater than 56% of total R2 that can be explained.
doi:10.1371/journal.pone.0019401.g001

APC Analysis Using Partial Least Squares
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those born earlier (20.25, 95%CI: 20.28 to 20.22). Women who

attended the university later had lower SBP than those who

attended earlier (20.27, 95%CI: 20.30 to 20.24). Women who

were born (or attended the university) later had lower DBP than

those who were born (or attended the university) (20.09 mmHg,

95%CI: 20.11 to 20.07) earlier.

The component selection statistic, PRESS, identified only one

component for the restricted cubic splines PLS analysis for the

associations of blood pressure with Birthyear and Examyear with

Age entered as a continuous variable. Figure 1 shows that there

were decreasing tends in the blood pressure for both variables in

men and women. The trend for the relationships between blood

pressure and Birthyear for men and women showed a slightly

greater decline around year 1941.

Figures 2 and 3 show the trends in SBP and DBP, respectively,

when Birthyear and Examyear were treated as categorical variables.

The decreasing trends were less notable in DBP than in SBP and less

notable in women than in men. For men, the trend in SBP showed a

small further decline around 1943 for Birthyear and around 1961 for

Examyear, indicating both cohort and period effects.

Discussion

The previous analysis of the Glasgow Alumni cohort found

substantial downward trends in blood pressure occurred in male

and female students after confounding factors were controlled for

[19]. Results from our re-analysis using PLS are generally

consistent with those from the previous analysis, showing a cohort

effect on blood pressure. However, the previous analysis only

adjusted for age at examination without considering the effect of

the year at examination. Our study shows that there was also a

negative trend in blood pressure for period effects, i.e. students

who attended the university in the 1960s had lower blood pressure

than those attending university in the 1950s.

Interpretation of age, period and cohort effects in PLS
analysis

Research aiming at solving the collinearity problem in age-

period-cohort analysis has generated an extensive literature, and

most approaches have tried to accommodate the collinearity

problem within the scope of traditional regression analyses. From

a statistical viewpoint, an additional constraint can be made to

make the effects of age, period, and cohort estimable, but the

problem is that there are too many potential constraints. Hence,

the more pertinent issue is rather that of interpretation with regard

to the chosen constraint. As explained in the Appendix S1, an

implicit constraint is imposed in PLS estimation, and this

corresponds to the intrinsic mathematic relationship amongst

age, period, and cohort. We therefore feel that the constraint

imposed by PLS is both justifiable and interpretable.

Figure 2. The partial least squares regression coefficients plots for the year of birth or the year at examination. Both variables and age
at examination are treated as categorical with the first year as the reference group. The vertical bars are the confidence intervals. The outcome
variable is systolic blood pressure (SBP). PRESS only selected one PLS component for each model. The two-component models explained almost all
the variances (.98%) in blood pressure than can be explained.
doi:10.1371/journal.pone.0019401.g002
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The cohort effect is usually attributed to the impact of early

environment, such as nutrition in pregnancy and early childhood

[5,6]. According to the developmental origins of health and disease

hypothesis, early growth environment may have an important

impact on health outcomes in later life [41,42]. When the foetus

and infant makes predictive adaptive responses to the environment

in the early developmental process, adaptations chosen to cope

with the unfavourable environment may have adverse effects for

health in later phases of the lifecourse. It has also been suggested

that early childhood conditions, such as dehydration, may be

associated with blood pressure in later life [43,44]. On the other

hand, changes in nutrition and diet, such as reduction in salt intake

and increased consumption of vegetable and fruits in the first half

of the last century in the UK [23,45], may have contributed to the

decreasing trend in blood pressure across the year of birth found in

the previous and the present studies. Nevertheless, the negative

associations between blood pressure and year of examination

found in the present study also suggest that the improved nutrition

and living environment in the UK might have a continuing impact

on population health in adolescence and early adulthood.

In this study, we also found that there seemed to be differences

in trends for DBP, where the decreasing trends in exam year and

birth year were less notable in women than in men, but for SBP,

men and women had similar trends. Women had on average had

lower DBP than men by about 10 mmHg, and whilst healthy diets

or other factors were associated with improved blood pressure,

there might be a physiological limit on how much reduction in

blood pressure can be attained due to such factors.

Many studies in the age-period-cohort analysis literature aim to

resolve the identification problem in order to estimate the

‘‘unique’’ contribution of the three components [2]. However, as

one recent study argued, the conceptual definitions of such effects

are not always clear and therefore require further elaboration [5].

The cohort effect, such as that represented by the year of birth in

this study, is usually interpreted as the effect of early life

experience, e.g. early nutrition in epidemiological research. The

period effect is interpreted as exposure or events in later life. From

a lifecourse perspective, the impact of environment and its

interactions with biological factors continues throughout the

developmental process. The demarcation of lifecourse experience

into different phases such as cohort versus period, or early versus

later life, is a conceptual framework for research, but the

underlying biological process is nevertheless continuous. Age,

period and cohort are not only mathematically related but also

conceptually connected. PLS analysis partitions their joint life-

course effects according to their covariance structure with each

other and the outcome. Results from PLS yield the partitioning of

the total effects of age, period and cohort, which has meaning and

utility. This is a similar idea to that suggested recently by O’Brien

of the partitioning of the total variance [46]. Whilst it may be

tempting to interpret the PLS regression coefficients as the

‘‘independent’’ contributions of age, period and cohort, it is more

Figure 3. The partial least regression coefficients plots for the year of birth or the year at examination. Both variables are treated as
categorical with the first year as the reference group. The vertical bars are the confidence intervals. The outcome variable is systolic blood pressure
(SBP).
doi:10.1371/journal.pone.0019401.g003
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appropriate to view them as their ‘‘relative’’ importance in

contribution. In view of this perspective of interpretation, cohort

and period had similar effects on blood pressure in this study.

Comparisons between PLS and other modelling
strategies in the literature

The major difference between PLS and other modelling

strategies is that it is straightforward to incorporate all perfectly

collinear variables into the same model. Some approaches

proposed in the literature can only be applied to aggregated data

[3,7,8], but PLS can be used to analyse both individual data such

as those in this study and aggregated data such as mortality rates

for different age groups in different years. For example, a

commonly used approach is to plot the trends in the outcome

against age groups for different birth cohorts, and period effects

are inferred from the differences in trends between cohorts [4].

PLS is therefore complementary to those approaches. For wider

applications of PLS in epidemiology, further developments are

required to extend PLS to generalised linear models [47–49].

Nevertheless, PLS already provides a flexible modelling strategy

for age-period-cohort analysis.

Concluding remarks
There is an extensive literature in epidemiology and social

sciences as to how to estimate age, cohort and period effects.

Whilst some of the debates and controversies focused upon the

identification issue in the estimation [4–7], some are more

concerned with the meaning and interpretation of those effects

[1–3,8]. In this study, we propose to use PLS to address the

former, but whilst identification is no longer a computation issue

for PLS, more effort is required to clarify the substantive and

conceptual issues regarding the definitions and interpretations of

age, period and cohort effects. Those conceptual questions may be

even harder to answer.
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