This is a repository copy of *Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105281/

Version: Supplemental Material

Article:
Boschmans, J, Jacobs, S, Williams, JP et al. (7 more authors) (2016) Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers. Analyst, 141 (13). pp. 4044-4054. ISSN 0003-2654

https://doi.org/10.1039/c5an02456k

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Supplemental information:

Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers

Jasper Boschmans¹, Sam Jacobs², Jonathan P. Williams³, Martin Palmer³, Keith Richardson³, Kevin Giles³, Cris Lapthorn⁴, Wouter A. Herrebout², Filip Lemière¹, Frank Sobott¹

¹Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Antwerp, Belgium, ²Molecular Spectroscopy group, Department of Chemistry, University of Antwerp, Antwerp, Belgium, ³Waters Corporation, Stamford Avenue, Wilmslow, SK9 4AX, UK, ⁴Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham, ME4 4TB, UK

1. Calculation of CCS values

The used version of MobCalPARSER was modified in order to be compatible with the new MobCal code and Gaussian 09. In order to correctly refer to the chlorine atom, defined in the MobCal code, the integer mass of chlorine was corrected in the configuration file. In contrast to previous Gaussian versions that refer to a structure’s charge distribution as the ‘Mulliken atomic charge’, Gaussian 09 refers to the ‘Mulliken charge’. Therefore, the term ‘atomic’ was omitted from the MobCalPARSER code. When starting MobCalPARSER and prior to CCS calculation, the correct charge distribution was selected.

MobCal POTENT parameters are: 1000 (ipr). MOBIL4 (PA) was not used. MOBIL2 (TM) parameters: 10 (itn), 40 (inp) and 1000 (imp). Temperature was set at 301 K. Typical run time for the MobCal code using Method C is more than 12 hours (2.3 GHz Intel Core i5, 4GB RAM, 2 cores).
2. Supplemental figures

Figure S.1
3D-visualisation of the 5 lowest-energy structures of each of the three possible melphalan protomers after conformational analysis and subsequent standard-level DFT optimisation. CCS values were calculated using MobCal. Note the relatively large CCS difference between protomers, when compared to the smaller variation for different structures of the same protomer.
Figure S.2
3D-visualisation of the 5 lowest-energy structures of each of the three melphalan protomers after conformational analysis and subsequent "high" level DFT optimisation. CCS values were calculated using MobCal. Note the relatively large inter-protomer CCS variation, when compared to the smaller intra-protomer CCSs.
Figure S.3
3D-visualisation of the lowest-energy structures of melphalan (Mel; I) after conformational analysis of the protonated molecules and subsequent high-level DFT optimisation. CCS values were calculated using MobCal. Molecular electrostatic potentials (MEPs) are also shown.

Decreasing CCS and dipole moment
Figure S.4
3D-visualisation of the lowest-energy structures of dimethoxymelphalan (DOCH₃; II) after conformational analysis of the protonated molecules and subsequent high-level DFT optimisation. Two possible protomers are shown including MEPs: Nₐₐ (top) and Nₐ₃ (bottom). The dipole moments are relatively similar, which results in similar CCS. As a result, no IM separation is expected. This is confirmed by the ATD plot (see Figure 2).
Figure S.5

3D-visualisation of the lowest-energy structures of dihydroxymelphalan (DOH; III) after conformational analysis of the protonated molecules and subsequent high-level DFT optimisation. Two possible protomers are shown including MEPs: \(\text{N}_{\text{AA}} \) (top) and \(\text{N}_{\text{OH}} \) (bottom). Minor differences in dipole moments are observed between the protomers, which result in small differences in CCS. Nonetheless, no IM separation is observed (see Figure 2).
3D-visualization of the lowest-energy structures of para-benzocaine (IV) after conformational analysis of the protonated molecules and subsequent high-level DFT optimisation. Two possible protomers are visualized: N_{NH2} (top) and O_{CO} (bottom). MEPs are also given. A larger difference in dipole moments between both protomers is observed in comparison to melphalan. As a result, well-separated ATDs are observed (see Figure 3).
Figure S.7
3D-vizualization of the lowest-energy structures of ortho-benzocaine (V), after conformational analysis of the protonated molecules and subsequent high-level DFT optimization. MEPs are also given. Two possible protomers are visualized: N$_{NH_2}$ (top) and O$_{CO}$ (bottom). For ortho-benzocaine, only one ATD is observed (see Figure 3). Unlike for the other two benzocaine isomers, the difference between the calculated dipole moments of the protomers is much smaller.
Figure S.8
3D-vizualization of the lowest-energy structures of meta-benzocaine (VI) after conformational analysis of the protonated molecules and subsequent high-level DFT optimization. MEPs are also given. Two possible protomers are visualized: N_{NH2} (top) and O_{CO} (bottom). It is thought that the large difference in dipole moment, calculated for the lowest-energy protomers, results in the observation of two distinct ATDs (see Figure 3).
Figure S.9
3D-visualization of the lowest-energy structures of aniline (VII) after conformational analysis of the protonated molecules and subsequent high-level DFT optimization. MEPs are also given. Two possible protomers are visualized: N\textsubscript{NH2} (top) and the ring protomer (para-; bottom). Figure 3 also shows two ATDs for aniline, although less resolved than those of benzocaine. This is reflected in the calculated dipole moment values.