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Abstract—Modern Data Center Networks (DCNs) that scale to
thousands of servers require high performance switches/routers
to handle high traffic loads with minimum delays. Today’s
switches need be scalable, have good performance and -more
importantly- be cost-effective. This paper describes a novel three-
stage Clos-network switching fabric with partially-buffered cross-
bar modules and different scheduling algorithms. Compared to
conventional fully buffered and buffer-less switches, the proposed
architecture fits a nice model between both designs and takes the
best of both: i) less hardware requirements which considerably
reduces both the cost and the implementation complexity, ii) the
existence of few internal buffers allows for simple and high-
performance scheduling. Two alternative scheduling algorithms
are presented. The first is scalable, it disperses the control
function over multiple switching elements in the Clos-network.
The second is simpler. It places some control on a central
scheduler to ensure an ordered packets delivery. Simulations for
various switch settings and traffic profiles have shown that the
proposed architecture is scalable. It maintains high throughput,
low latency performance for less hardware used.

Index Terms—Data Center Networks switching fabric, Clos-
network, Partially-buffered, Packet scheduling

I. INTRODUCTION

The tremendous growth rate of Data Center Networks is key

motivation for developing high performance switches/routers.

DCN switching fabrics are evolving for increased scalability,

higher performance and less complexity. They are using more

large-capacity switches/routers to build large-scale networks.

However, the scalability of the DCN fabric is closely related to

the capability of its switching elements to expand and to scale

to future demand. A scalable switching architecture should

be able to expand with simple and repeatable design. It also

needs to accommodate the increased traffic flows or new traffic

patterns with no impact on the application work flows as well

as the cost per port.

Single stage switches although perfectly non-blocking and

simple to implement, prove to be capacity-restricted. First,

scaling single-stage switches in the number of ports is not pos-

sible as the building costs become more and more prohibitive.

Besides, both the complexity of the switching hardware and

the scheduling algorithms depend on the square of the number

of the switch ports. Moreover, packaging techniques and the

current VLSI (very Large Scale Integrated circuits) technology,

allow only the deployment of switches with single-stage

crossbars of few Tbps [1]. To overcome the limitations of

a single-stage design, multistage switching architectures have

been proposed. They are a good alternative to build large

cost-effective switches. Clos-network architectures are among

the most used patterns. They allow multiple crossbars and/or

memory sets to be connected in a non-blocking way. A Clos

switch is described according to the nature of its switching

modules. While a bufferless module is referred to as Space

(S), a buffered crossbar is called Memory (M).

Bufferless Clos switches appear to be cheap and attractive.

However, they reach their limitations with large port counts

and high data rates. This is mainly because they rely on

centralized schedulers to perform a global path-allocation. The

scheduler maintains records for all ports and assigns conflict-

free paths to packets. Increasing the number of ports of the

switch results in high unfeasible scheduling complexity and

makes bufferless switches valency-sensitive. Buffered Clos-

network switches solve the complexity and scalability issues

that bufferless architectures encounter. Internal buffers offer

some overprovisioning of the traffic admissions, allow to

implement distributed scheduling and enhance performance.

Central Modules (CMs) of a fully buffered Clos-network

switches keep N2 internal buffers (N is the number of

I/O links of a single CM). A major weakness of buffered

multistage Clos-network architectures comes from the fact

that the number of internal buffers grows quadratically with

the switch ports count. This makes Memory-Memory-Memory

switch (MMM) expensive and less appealing for large-scale

switches/routers.

In order to substantially reduce the comparatively large

number of the crosspoint buffers, the Partially Buffered Cross-

bar (PBC) was introduced [2]. Only a small number of

internal buffers with small capacities are used rather than

N2 crosspoint queues. The scheduling process in PBCs is a

mixture of unbuffered and buffered crossbar scheduling. PBC

switches requires some extra scheduling logic (as compared to

buffered switches) in order to successfully manage the limited

storing space inside the fabric.

In this paper, we propose and evaluate a partially buffered

Clos-network switching architecture with a small number of

buffers and simple scheduling scheme. At packets arrival,

requests are forwarded to the central modules. They are

granted by a scheduling sub-system that manages the credits

per output link and allocates space to requesting packets. The

scheduling process is distributed. It can be pipelined and the

scheduling phases might be run in parallel. In subsequent



parts, we discuss a centralized frame-based scheduling that

ensures an ordered packets delivery. Our switch has conceptual

analogies to what was proposed in [3]. However, we show

that the proposed switch achieves high performance with less

buffers, limited queues size and simpler scheduling. In section

II, we present the related work. Section III overviews the

main design considerations and highlights the contribution of

a PBC-based design. Section IV gives details of the switching

architecture as well as the scheduling approaches. We evaluate

the switch performance in section V and conclude the paper

in section VI.

II. RELATED WORK

Multistage network switches provide better scalability fea-

tures than single stage switches. Clos-network interconnected

crossbars have been proposed as a non-blocking architecture

that allows building large valency switches/routers with rea-

sonable costs. A multistage Clos architecture can be fully

described with reference to the nature of its building Switching

Elements (SEs) located at the different stages of the Clos.

A three-stage network that has bufferless crossbars at the

Input, Central and Output stages is abbreviated as S3 [4],

which stands for Space-Space-Space Clos-network. For better

performance, some proposals suggested the combination of

space and memory in a multistage switching architecture.

Among the famous Clos-network types can be cited the

Memory-Space-Memory (MSM) [5]. Though MSM do lack

buffers in the central stage modules, it is still called a bufferless

architecture. Generally, a three-stage bufferless Clos-network

requires a two-step scheduling process before proceeding to

packets transfer. The first step consists on resolving the output

port contention for requesting inputs and the second is about

finding conflict-free paths to allocate to the pre-scheduled

inputs [6]. This phase is also called the global path-allocation.

In [6], authors proposed an heuristic approach to resolve the

output contention and the global path allocation simultane-

ously. The MSM switch as described in [5] provides full

throughput. Using Virtual Output Queues (VOQs) to prevent

the Head-of-Line (HoL) blocking and Round-Robin (RR)

arbiters, the matching is determined and paths are assigned. In

essence, bufferless multistage switches are appealing for their

low-cost. However, they use a centralized scheduler to resolve

contentions, which proves to be unscalable for high valencies

and contributes to rising the cost/complexity ratios (since they

require two iSLIP-style exact matchings to be found, some

of which among N ports, per time slot) [2]. We conclude

that bufferless multistage Clos-network architectures are not

attractive for large-scale switches/routers such as those needed

in a DCN environment.

To shorten the switch configuration time and ameliorate

performance, buffered SEs were added to several stages of

the switching architecture. An MMM packet switch is a

straightforward alternative to scale up the single-stage buffered

crossbar switch. It absorbs all contentions and offers backlog

buffers at all stages to temporarily store unscheduled packets

[7]. In a three-stage Clos network with bufferless middle

stage modules, packets reach the egress line cards orderly.

However, in-sequence packets delivery matters in buffered

multistage switches. Packets are more likely to experience

variable queuing delays in the internal buffers which result

in disordered packets forwarding. In [8], authors described

the MMMe which implements per-output flow queues at the

middle stage of the switch. The queuing policy and the

scheduling process do not only guarantee good performance,

but they also preserve the order of packets while being

forwarded to their output ports. The TrueWay switch was

proposed in [9]. It is a multi-plane MMM that provides in-

order packets delivery using the hashing technique to allocate

a path per flow. A more recent work [1] discussed an MMM

with batch scheduling for in-order packets delivery. Although

they simplify the scheduling process in multistage packet

switches, fully buffered architectures are costly. The number

of crosspoint buffers increases quadratically with the number

of I/Os of one single middle-stage module.

A clearly preferable alternative to the previously described

switching architectures, is a partially buffered Clos switch.

This solution comes in between bufferless and fully buffered

packet switches. The scheduling process can also be in-

spired of both the centralized and the distributed approaches.

Chrysos. et al discussed and evaluated an MMM switch where

all central SEs are buffered [3]. Instead of a dedicated buffer

per crosspoint, a shared memory per output link was con-

sidered and multiple pipelined arbiters were used to schedule

packets. Recent results are shown in [10], where authors added

a proactive congestion control scheme (to their previous work

in [3]) for better QoS.

In this paper we suggest a buffered Clos-network switch

with only few internal buffers in the CMs. Our goal is

to design a cost-effective switch that provides performance

comparable to an MMM switch and defeats the shortcomings

of conventional MSM switches. Throughout the paper, we

will refer to our design as the Partially Buffered Clos switch,

PBClos. The proposal differs from [3] in many ways, mainly:

(1) we use B internal buffers per CM, where B ≪ k , (2)we

use physically separate memories inside the CM crossbar

fabrics instead of costly shared memories and (3), we simplify

the scheduling process.

III. ARCHITECTURAL DESIGN CHALLENGES

A. Over-provisioning in conventional MMM

In TABLE I, we compare some of the HW requirements

of different switching architectures. Conventional MMM

switches like those proposed in [1] and [10], adopt fully

buffered modules in the central stage of the Clos. For any

couple of Input Module (IM) and Output Module (OM), there

is a dedicated crosspoint buffer in a CM, which capacity

may vary from one packet to several packets. Scaling up a

crosspoint buffer size to several packets, boosts the switch

performance especially if the traffic arrivals are irregular or

bursty [7] [3]. Provided there is enough space, packets often

find a room in the middle stage crossbars where they wait to

exit CMs to the output stage of the switch instead of being
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Fig. 1: N ×N Three-stage PBClos switch architecture

discarded [1]. Note that, holding many internal buffers in

the middle-stage modules or/and increasing their capacities,

is carried out to cater for the amount of packets dispatched

at the input scheduling phase. However, both measures are

without interest in the output scheduling phase. Actually, with

no speedup used, an output scheduler serves one packet from

one internal buffer among those dedicated to an LC link at a

time.

Packet scheduling is a paramount task in any switching

architecture. It strongly depends on the design itself. More

importantly, it affects the switch performance and the imple-

mentation complexity. In a MMM switch, we tend to simplify

the scheduling process at the expense of the hardware cost by

distributing the arbitration function over different units. The

rule of thumb says that the more intermediate buffering is

available, the less a central control is needed. In bufferless

MSM switch [5], a centralized scheduler must be able to find

a conflict-free matching between a large set of requests and

output links.

The goal of this work is to contribute towards two things:

– A less expensive switching architecture.

– A good scheduling that provides high performance.

We suggest the use of only few crosspoint buffers (much

less than in common MMMs). We specify that an internal

buffer can store only one packet. In addition to the straightfor-

ward distributed approach, we present a frame-based schedul-

ing whereby we simplify the central scheduler complexity as

compared to MSM switch.

B. In-order packets forwarding

Buffered multistage packet switches must preserve two

primordial aspects: high performance (namely the switch

throughput and the overall packets latency) and its ability

to deliver packets in order. A three-stage Clos interconnect

provides multiple paths to route packets from the input stage

modules to the middle stage switching elements, and from the

central modules to the output stage buffers. Adding buffers

to the central stage of the Clos-network switching architec-

ture potentially leads to an out-of-order packets delivery. In

general, cells are scheduled to cross different CMs. They

experience variable queuing delays in the buffered fabric

and reach to their OMs disorganized. The new design trends

rise many challenges and questions. Can we provide perfor-

mance comparable to fully buffered Clos switches using only

few internal buffers in the CMs? Is it possible to forward

packets their output ports without order disruption and with

no performance degradation? Can all of the aforementioned

objectives be achieved with a simple scheduling scheme? This

paper tackles these issues and gives alternatives to all these

objectives combined.

IV. PARTIALLY-BUFFERED CLOS SWITCHING

ARCHITECTURE

A high-level abstraction of the switch architecture is de-

picted in Fig.1. Ingress Line Cards (ILCs) do the variable-size

packets segmentation into fixed-size cells before they enter the

IMs. Egress Line Cards (ELCs) reassemble received cells into

packets and finally send them out of the PBClos switch.

A. High-level architecture terminology

We describe a three-stage Clos-network switch made of

buffered modules that operates on fixed sized cells. Packets

of variable length get segmented into fixed size cells while

inside the switch and are reassembled back to packets upon

their exit. There are k IMs, each has a dimension (n × m).

IMs are connected to the Central Modules (CMs) by means

of m links LI(i , r ) (where i is the ith IM and r is the rth

CM; 0 ≤ i ≤ k − 1 and 0 ≤ r ≤ m − 1). The third stage

consists of k OMs, each of which is of size (m× n). Buffers

in the input stage are organized into N Virtual Output Queues

(VOQs) to eliminate the HoL blocking (N = n.k). Every

queue stores cells coming from an input port in IM(i) to

an output port OP(j, h). CM switches are Partially Buffered

Crossbars (PBCs) [2]. A CM(r ) has k output links, each of

which is denoted as LC(r , j ) that connects it to OM(j ). An

OM(j ) has n OPs to which is associated an output buffer. An

output buffer can receive at most m packets and forward one

packet to the output line at every time slot.

Unlike traditional crosspoint queued crossbars, a PBC

crossbar contains only a small number of internal buffers;

B ≪ k. A total of B separate internal buffers are maintained

per output link, LC. For simplicity, we consider the Clos-

network’s expansion factor to be m

n
= 1, which makes the

architecture a Benes network; the lowest-cost practical non-

blocking fabric. However, all the descriptions remain valid for

any non-blocking Clos-network settings.

B. Scheduling in the PBClos: Distributed Approach

Packets scheduling can be either centralized or distributed.

In some switching architectures, we adopt both approaches

to trade-off complexity and performance. Distributed arbiters

avoid the scalability limitation of a centralized approach by

dispersing the scheduling function over the switching modules

of the Clos-network. We first opt for a distributed scheduling.

We use n Accept Schedulers (ASs) in every IM, one per input

port and k Output Schedulers (OSs) in a CM; one per LC link.



TABLE I: Comparison between the different switching architectures

MSM [5] MMM [1] MMM [10] PBClos

Type of the fabric bufferless buffered buffered partially-buffered

Type of the scheduling centralized centralized distributed distributed (IV-B)
centralized (IV-C)

Number of crosspoint buffers NA k2 k2 k.B†

Size of crosspoint buffer NA 1 packet 12 packets 1 packet

Type of internal memory NA separate memory banks shared memory separate memory banks

Size of the centralized scheduler O(m.N)‡ O(
√
k) NA O(

√
k) ∗

In-sequence packets delivery yes yes no yes♣

†. (B ≪ k)
‡. N = n.k
∗. The explanation is the same as done in reference [1].
♣. If centralized frame-based scheduling is used.
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Fig. 2: PBClos switch with distributed scheduling. Grants are for-
warded from CMs to active VOQs. A VOQ that receives more than
one grant from a CM (i.e. The CM has room to house a packet to
the corresponding OP), accepts one grant in a RR fashion

Fig.2 depicts the succession of events in one time slot. Up

to n new packets arrive to an IM and get stored to their

corresponding queues. As in [10], the path allocation is made

in the upstream direction. An AS selects the first non-empty

VOQ that appears in its RR selector and marks it as active.

The distributed scheduling provides no visibility on the status

of the internal buffers in the middle stage fabric. Hence, an

active VOQ sends requests to all CMs. At the starting of

the scheduling cycle, the source/destination tuple of the HoL

packets are copied to the Request Matrix of a LI link (event 1

from active VOQs to the Request Matrix). A Request Matrix of

LI(i, r) serves to map all active requests that come to a CM(r)

through LI(i, r). The mapping action does not include any cells

transfer. It just sends requests to trigger the PBC modules’

schedulers in the next pipeline stage of the scheduling. The

output schedulers send grants to requests (event 2 , from the

CMs to VOQs) and ultimately, accept schedulers select, each,

one grant (event 3 ).

Grant and Accept scheduling:

The internal buffers run at the external line rate. The choice

for isolated buffers is to make sure that we use low bandwidth

and to avoid the need for high-throughput shared memories

used in [2], [3]. Fig.3 shows the grant mechanism in a central

module. Each internal buffer can house at maximum one

packet. Output schedulers hold Credit Queues (CQs) of size
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Fig. 3: Scheduling in the central stage PBC switches

B to record the number of empty internal buffers per LC

link. Credits are decremented at each time a grant is sent to a

mapped request in the Request Matrix (event 3 in Fig.3) and

they get incremented at the end of the scheduling cycle; when

packets exit the fabric. At the end of the grant phase, grants are

directly forwarded to active VOQs in the IMs (event 4 ). If an

active VOQ(i, j) receives more than one grant from different

CMs, the associated AS(i) accepts the one that appears in

the RR priority and drops unaccepted grants and the packet

is transferred to its corresponding CM (event 5 ). Note that,

a matched LI link is marked as reserved to avoid clashes.

It automatically gets excluded from the arbitration set of the

remaining active VOQs in other IMs.

Mapping requests, grant phase and the output arbitration are

all independent. They can be pipelined and run in a parallel

way. While a scheduling cycle ends and cells leave the PBC

modules, the buffers reservation of freshly mapped requests

takes over. Packets that arrive to the output stage of the Clos-

network find their ways to their OPs. Although simple to

implement and practical, the distributed control end up routing

packets of the same flow across several CMs. Packets remain

in the internal buffers until it is their turn to exit the fabric



(output scheduling phase). This obviously results in out-of-

order packets delivery. We choose to alleviate packets from

getting disordered rather than proceeding to a resequencing

process at the egress line cards. A centralized control used

along with an appropriate scheduling sounds a promising

solution.

C. Centralized control

In the context of buffered switching architectures, a dis-

tributed scheduling is a straightforward option. The scheduling

phases might be pipelined for faster execution. More impor-

tantly, the distributed approach do not bound the scalability of

the switch as a dispersed arbitration decouples the architecture

from the control plane and proves more effective for large

high-performance switch design. All the same the distributed

scheduling do not assure in-order packets delivery. Instead of

adding re-ordering buffers to the first or last stage of the Clos-

network [7] [9], we alter the organization of the input buffers

in IMs and we proceed to a frame scheduling rather than a

packet-per-packet scheduling.

IMs are organized into Virtual Output Module Queues

(VOMQs), where packets are enqueued according to their

destination OMs. VOMQs are shared memories that can

receive packets from up to n input ports at a time and send

up to m packets to the different CMs. The choice for VOMQ

queueing is done in accordance with the frame scheduling

itself. The idea is as follows: We always forward a flow of

packets through the same path to avoid any resequencing logic

within the flow. The approach is similar to hash-based routing

solutions, where several hash functions are used to assign

routes to the different packet flows. However, the ultimate

purpose of the two schemes are different (load-balancing for

the hash-based routing versus ordered packets delivery for the

frame scheduling). The arbitration in the PBClos switch is

made of two phases: The input scheduling which consists on

sending packets from the VOMQs to the internal buffers in the

PBC modules and the output scheduling that concerns with

forwarding packets from CMs to their OPs.

1) Input scheduling: Fig.4 gives an example for the frame

scheduling in a 9 × 9 PBClos switch. m consecutive packets

in a VOMQ make a frame. Unlike previous proposals [8] [1]

[3], where dedicated crosspoint buffers with variable capacity

are available, the current switch design imposes several con-

straints: In a PBC module, the number of internal buffers per

LC link (i.e. OMs) is very limited. A buffer can accommodate

only one packet. Besides, the buffering space is logically

shared between all LI links (i.e. IMs). We use a central

controller to track the buffers availability in all CMs. For every

input module, the controller marks as eligible, VOMQs with

full frames for which there is enough space in the PBC fabric.

Ties are broken in a RR fashion and only one input queue is

elected at a time. The selected VOMQ broadcasts packets to

CMs.

2) Output scheduling: In [1], authors described a MMM

switch with fully buffered CMs, dedicated Crosspoint Queues

(CQs) and a centralized batch scheduling. In addition to the

VOMQs selection, the scheduler processes the output schedul-

ing. It chooses k non-empty CQ one from every set of internal

buffers of an output link LC. The scheduler applies the same

configuration to all CMs and packets are dequeued from the

CQs in the different CMs. In this way, a batch is reconstructed

again at the corresponding OM. We use physically separate

CQs in the PBC fabric to keep the memory requirements

low. Subsequently, we can embed the output schedulers and

get more compact CMs. We call column of CQs, the set of

internal buffers that belong to an LC. CQs might be located

anywhere in the column since the access to the buffering space

is logically shared between all IMs. Moreover, we impose no

restriction on how to locate the CQs in the different CMs.

Instead of entrusting the output scheduling to the central

controller, we use simple and distributed output schedulers

as we described in IV-B. Packets of the same batch arrive

to internal buffers at the same time slot. To maintain in-

sequence packets delivery, we employ a First-Come-First-

Served (FCFS) output scheduling policy.

PBC #0

PBC #2

OM #0

OM #2

PBC #1

OM #1IM #1

Output 

scheduling

Input 

scheduling
IM #0

IM #2

Fig. 4: Example of batch scheduling in the PBClos

V. PERFORMANCE ANALYSIS

In this section we evaluate the throughput and delay per-

formance of the PBClos switch under different scenarios and

we compare them with MSM switch and different MMM

architectures that have been described in [1], [7] and [8].

All simulations are implemented in an event-driven switch

simulator. The switch size is 256, if not explicitly mentioned

and the simulation time is 106 time slots. Statistics start to

be collected from the 105 time slots to ignore any transient

behaviour of the simulation. The current switch is interesting

in the way it provides more degrees of design freedom.

Varying the number of internal buffers helps monitoring the

cost, complexity and performance of the switch. Considering

full number of crosspoint buffers in the CMs and two different

scheduling schemes, maps the switch to two previous pro-

posals: Three-Stage Buffered Clos-network Switch (TSBCS)

[1] (if the frame-based scheduling is used) and Scheduled
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Fig. 5: Delay performance for 256× 256 switch under Bernoulli i.i.d traffic.
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Fig. 6: Delay performance for 256× 256 switch under Bursty uniform traffic.

Fabric (SF) [3] [10] with crosspoints size b = 1 (if distributed

scheduling is adopted). We use the notation PBClos-centr for

the switch with a frame-based scheduling and PBClos-dist

for distributed scheduling. MMM is the switching architecture

suggested in [8] and xbuff is the size of its crosspoint buffers.

The first set of simulations is performed for uniform traffic:

Bernoulli arrivals with evenly distributed destinations and uni-

form arrivals of bursts with a default burst size of 10 packets.

Bursty traffic can be modeled as an on-off process. The burst

of packets that comes to a switch input port during the on

period is in destination to the same output port. Destinations

among bursts are uniformly distributed among output ports.

The delay performance presents the sojourn time of packets

through the switch fabric. It is estimated by averaging over

all queueing delays measured during the simulation. Fig.5(a)

shows results for Bernoulli i.i.d arrivals. PBClos has delay

performance that is in between what MSM and MMM provide.

The switch performs poorly under light loads, but deals better

with medium to high loads. With distributed scheduling, the

switch offers lower latency than when a frame-based scheme is

used. The reason is that VOMQs need wait for full frames be-

fore they are eligible for scheduling. Fig.5(b) is a clearer view

of the delay-throughput curves shown in Fig.5(a). Increasing

the number of crosspoint buffers contributes towards higher

throughput. For 256× 256 switch, setting B to B = k/2 = 8

queues/LC link and using a distributed arbiters, make PBClos

achieve 90% throughput versus 95% for the SF. On the other

hand, we save half of the buffering amount used in the middle

stage of the SF architecture.

Using the same number of internal buffers per output link

in CMs and a frame-based scheduling, PBClos provides full

throughput and slightly higher delay than TSBCS. Fig.6(a)
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Fig. 7: Delay performance under hot-spot traffic.
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Fig. 8: Throughput stability of 256× 256 switch under non uniform traffic, B = k/2.

shows that under uniformly destined bursty traffic, PBClos

outperforms MSM and MMM [8]. Note that a frame-based

scheduling with as few as 4 internal buffers per LC link

achieves full throughput as presented in Fig.6(b). On the

whole, we observe that the variation of the average latency of

the PBClos switch is smooth. It is not affected by the switch

valency while that of MSM is much influenced.

The uniform arrival patterns do not reflect a real traffic. They

just help trace the switching architecture’s response assuming

the best case scenario. For the next set of evaluations, we

consider non-uniform traffic: hot-spot, skewed [2] and diago-

nal traffic. Fig.7(a) depicts the latency of switches under hot-

spot traffic. The bufferless architecture do not adopt well with

non-uniform traffic. CRRD with 4 iterations achieves as low

throughput as 70%. The experimental results show that holding

k/2 buffers/LC in the central-stage modules of the PBClos

switch, still provides high throughput performance.

In Fig.7(b), we compare the performance of the PBClos

varying the switch valency under hot-spot packet arrivals.

Unlike a distributed scheduling, the frame-based scheme is not

as efficient under light to medium loads as it is under heavy

loads. It results in an initial waiting time that is proportional to

the switch size (the central scheduler waits for the construction

of larger frames). The distributed scheduling is insensitive

to the switch size, but its throughput saturates at 90% for a

64×64 switch and 97% for a 256-ports switch. In Fig8(a) and

8(b), we plot the throughput of switches respectively under

unbalanced and diagonal traffic. The throughput of PBClos

increases as we increase the number of crosspoint buffers

in the central modules. We observe that the throughput is

marginally affected when a distributed packets scheduling is

adopted. Under diagonal traffic, both scheduling approaches



make the switch achieve equally high throughput even when

B = k/2.

VI. CONCLUSION

In this paper, we proposed a practical and cost-effective

multistage switching architecture (PBClos) that relies on

partially-buffered crossbars with capacity-limited queues. PB-

Clos comes in between buffeless and fully-buffered archi-

tectures, and takes the best of both designs. We evaluated

the switch performance using multiple, independent single-

resource schedulers that work in a pipeline. In spite of its

good performance, the distributed scheme do not guarantee

an ordered packets delivery. Thus, we suggest a frame-based

scheduling that distributes packets of a flow over all CMs of

the Clos and builds back a frame at the OMs avoiding the

need for costly resequencing buffers. This discipline cumulates

the delay when the switch is light-loaded. However it gives

good performance and proves to be scalable under heavy

loads. Work in progress includes research on how to lower the

initial delay of the frame-based scheduling. We also investigate

alternatives to shared memory in the input stage to simplify

the hardware structure of the switch.
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