This is a repository copy of Identification of a novel N-acetylmuramic acid (MurNAc) transporter in Tannerella forsythia.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105230/

Version: Accepted Version

Article:

https://doi.org/10.1128/JB.00473-16

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Identification of a novel N-acetylmuramic acid (MurNAc) transporter in
\textit{Tannerella forsythia}

Angela Ruscitto1, Isabel Hottmann2, Graham P. Stafford4, Christina Schäffer3, Christoph Mayer2* and Ashu Sharma1*

1Department of Oral Biology, University at Buffalo, Buffalo, New York, United States

2Interfaculty Institute of Microbiology and Infection Medicine Tübingen, IMIT, Department of Microbiology & Biotechnology, University of Tübingen, Germany

3Department for NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria

4Oral and Maxillofacial Pathology, University of Sheffield, Sheffield, United Kingdom

Running title: MurNAc utilization in \textit{Tannerella forsythia}

* To whom correspondence may be addressed:

E-mail: sharmaa@buffalo.edu (A.S.) or christoph.mayer@uni-tuebingen.de (C.M.)
ABSTRACT

Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo *de novo* synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide-repeating unit of the peptidoglycan backbone. *T. forsythia* relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of *T. forsythia* involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the *Escherichia. coli* MurQ etherase involved in the conversion of MurNAc-6P to GlcNAc-6P. The genes encoding these components were identified on a three gene cluster spanning Tanf_08γ75 to Tanf_08γ85 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08γ75, Tanf_08γ80, and Tanf_08γ85, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08γ75 and Tanf_08γ80 genes together *in trans*, but not individually rescued the inability of an *E. coli* mutant deficient in the PTS (phosphotransferase system)-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in *E. coli* caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08γ75 and Tanf_08γ80 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the *Bacteroidetes* phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria.
IMPORTANCE

In this study we report the identification of a novel transporter for peptidoglycan amino-sugar N-acetylmuramic acid (MurNAc) in the periodontal pathogen T. forsythia. It has been known since the late 1980s that T. forsythia is a MurNAc auxotroph relying on environmental sources for this essential sugar. Most sugar transporters, and the MurNAc transporter MurP in particular require a PTS phosho-relay to drive the uptake and concurrent phosphorylation of the sugar through the inner membrane in Gram-negative bacteria. Our study uncovered a novel type of PTS-independent MurNAc transporter, and although so far unique to T. forsythia, may be present in a range of bacteria both of the oral cavity and gut especially of the phylum Bacteroidetes.

INTRODUCTION

Tannerella forsythia is a Gram-negative, obligate anaerobe strongly associated with periodontitis, which affects the soft and hard tissues supporting the teeth ultimately leading to tooth loss (1, 2). This bacterium is frequently found with the oral bacterial pathogens Treponema denticola and Porphyromonas gingivalis, together forming a pathogenic consortium termed the “red complex” (3), which in turn is part of a much wider dysbiotic microbiota that is thought to cause this widespread inflammatory disease (4). Strikingly, unlike other bacteria, T. forsythia depends on exogenous N-acetylmuramic acid (MurNAc) for growth (5). It was observed 27 years ago by Wyss that the cultivation of T. forsythia required spent broth from Fusobacterium nucleatum (5), or the presence of free MurNAc (6, 7) in the medium. Since MurNAc together with N-acetylglucosamine (GlcNAc) forms the peptidoglycan amino sugar backbone in all
bacteria this indicated that *T. forsythia* is unable to synthesize its own peptidoglycan amino sugars. The reasons for this auxotrophy for the amino sugar MurNAc became evident after the close inspection of the *T. forsythia* genome sequence which became available in 2005 (8, 9). It was noted that the MurA and MurB enzyme homologs required for the de novo synthesis of MurNAc and GlcNAc are not present in the bacterium (10). In addition, the bacterium lacks GlmS, GlmM, and GlmU enzymes for biosynthesis of GlcNAc. Furthermore, evidence collected by analyzing genomes of *T. forsythia* strains deposited at the Human Oral Microbial Database indicated that this bacterial species lacks a canonical phosphotransferase (PTS) type MurNAc transporter (MurP), which in *E. coli* and related Gram-negative bacteria is required for MurNAc uptake and concomitant phosphorylation (11). PTS-type sugar transporters generally mediate the uptake and phosphorylation of sugars; a prototypical PTS system consists of an enzyme I EI, a histidine protein HPr, the sugar-specific components EIIA and EIIB, and a transmembrane sugar-specific transporter protein EIIC (12). The lack of PTS systems in *T. forsythia* suggests that this bacterium utilizes an alternative transport system to utilize exogenous MurNAc from the environment.

Our *in silico* investigation of the *T. forsythia* genome revealed genes coding for putative peptidoglycan degradation and recycling functions (10), among these was a homolog (Tanf_08385; accession no. WP_046825532) of the *E. coli* MurQ (13) etherase and two adjacent genes encoding a putative integral membrane protein (Tanf_08375; WP_046825530.1) and a putative sugar kinase (Tanf_08380; WP_046825531.1). Here we report the preliminary characterization of a novel PTS-independent transport system for MurNAc uptake comprising Tanf_08375 and
Tnf_08380 proteins in T. forsythia, which we propose be named TfMurT and TfMurK respectively, and T. forsythia MurQ etherase (TfMurQ) involved in the metabolic conversion of MurNAc-6P to GlcNAc-6-P.

MATERIALS AND METHODS

Bacterial strains and growth conditions

The T. forsythia ATCC 43037 wild-type and mutant strains used in this study were grown anaerobically in BF broth, or on agar plates as described previously (14). Escherichia coli strains were grown in Luria-Bertani broth (LB) aerobically at 37°C. E. coli strains were also grown in minimal M9 media (15) supplemented with either 0.2% glucose, 0.2% glycerol, or 0.025% MurNAc, where needed. E. coli ΔmurQ and ΔmurP mutants were from the Keio collection at the Yale Coli Genetic Stock Center (http://cgsc.biology.yale.edu). All strains and plasmids used in this study are summarized in Table S1 (supplementary material).

Molecular biology techniques

Standard molecular cloning techniques were performed according to (16). All cloning experiments were performed using the electrocompetent recA mutant cloning strain E. coli Stellar (Clontech laboratories, CA, USA).

Reverse transcription-polymerase chain reaction
Total RNA was isolated from bacteria using the RNeasy kit (Qiagen). Single-stranded cDNA was synthesized using reverse transcriptase (Invitrogen Superscript III) and random hexamer primers as per the manufacturer’s protocol. The synthesized cDNA was amplified by PCR with primer sets spanning target genes \textit{murQ}, \textit{murT}, and \textit{murK} (Fig. 5b): region ‘a’ with TF1067F/TF1068R; region ‘b’ with TF1068F/TF1069R; region ‘c’ with TF1067F/TF1069R. Primer sequences are listed in Table S2 (supplementary material).

Production of recombinant TfMurQ protein

Recombinant plasmid pET-TfMurQ was constructed by cloning a TfMurQ ORF fragment in-frame with a C-terminal 6xHis-tag of the pET30a expression vector (Novagen). Briefly, a PCR fragment amplified with primers TF1069-F and TF1069-R (Table S2) from \textit{T. forsythia} ATCC 43037 genomic DNA was digested with NdeI and XhoI and cloned via NdeI/XhoI sites into pET30a to generate pET-TfMurQ. Subsequently, \textit{E. coli} BL21/DE3 strain carrying the pET-TfMurQ plasmid was grown in LB medium with kanamycin (50 µg/ml) at 30°C to an OD$_{600}$ of 0.3. Protein expression was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG; final concentration of 1 mM) for additional 3 h at 30°C. Bacteria were collected by centrifugation at 7,000 X g for 10 min, washed with PBS twice, and lysed by sonication for 30 s. Lysates were centrifuged at 10,000 X g for 20 min and supernatants were collected. Supernatants were loaded onto a column containing 500 µl of HIS-Bind resin (Qiagen) and the column was equilibrated with 10 ml of washing buffer (50 mM NaH$_2$PO$_4$, 300 mM NaCl, 20 mM imidazole, pH 8.0). Bound recombinant protein was eluted with 1 ml of elution buffer.
(50 mM NaH$_2$PO$_4$, 300 mM NaCl, 250 mM imidazole, pH 8.0) and dialyzed extensively against phosphate-buffered saline, pH 7.2 at 4°C. The dialyzed protein fraction was analyzed by SDS-PAGE on 12% gels stained with Coomassie Brilliant Blue R250.

Detection of etherase catalyzed reaction intermediate

Etherase activity was assessed by utilizing MurNAc-6P as substrate in a Morgan Elson reaction (17). This etherase catalyzed reaction generates a chromogenic intermediate that can be detected by reacting with Ehrlich’s reagent dimethylaminobenzaldehyde, to yield a purple product. To detect the formation of this chromogen compound in an enzyme catalyzed reaction, an Ehrlich-Morgan-Elson assay was performed (18). Briefly, 2 µl of purified rTfMurQ enzyme (1, 2 or 4 µg protein) was added to 20 µl of MurNAc-6P (10 mM in water and the reaction mixture was incubated for 60 min at 45°C. After addition of 100 µl of Ehrlich’s reagent, incubation was continued for 20 min at 37°C.

Radioactive etherase assay

The 32P-radiolabeled substrates MurNAc-6P and GlcNAc-6P, respectively, were prepared according to a published protocol (19) with minor modifications. Aqueous solutions of 50 mM MurNAc or GlcNAc, respectively, were added to a reaction mixture containing 100 mM Tris-HCl, pH 7.6, 10 mM MgCl$_2$, 100 mM ATP, 140 kBq of [γ-32P]ATP and 20 µg recombinant Clostridium acetobutylicum MurK protein in a total volume of 100 µl and the reaction was incubated overnight at 37°C. To start the etherase assay,
a reaction mixture containing 15 µl of MurNAc-6-P, 0.4 µg of rTfMurQ and 100 mM Tris-
HCl, pH 7.6 in a total volume of 50 µl was incubated at 37°. 2 µl of this mixture were
spotted immediately and after 15 and 30 min of incubation on a TLC plate (Silica 60
F254, Merck, Darmstadt, Germany). Reaction products were separated in a basic
solvent with n-butyl alcohol/ methanol/ 25% (w/v) ammonium hydroxide/ water (5:4:2:1).
The radioactive products were detected using a Typhoon Trio Biomolecular imager (GE
Healthcare).

Construction of expression vectors and complementation of E. coli ΔmurP
mutants and ΔmurQ

DNA fragments coding for T. forsythia MurT-MurK, MurT, MurK, and MurQ ORFs
were amplified with primer sets listed in Table S2 from T. forsythia ATCC 43037
genomic DNA, digested with NdeI and HindIII, and cloned into pTrc99 at NdeI/HindIII
restriction sites to generate the plasmids pTr-MurTK, pTr-MurT, pTr-MurK, and TfMurQ,
respectively. Plasmids were confirmed by sequencing. For complementation, E. coli
mutants were transformed with the plasmids above via electroporation (16).

MurNAc depletion assay

Bacterial cells from overnight cultures of E. coli murP mutant strain harboring either
pTrc99, pCS19YfeV, or pTr-MurTK were washed and diluted in M9 minimal medium to
an OD$_{600}$ of 0.05. Before the start of an assay, 10 ml of cell suspension from each
strain in triplicate was supplemented with glucose and MurNAc to final concentrations of 5.5 mM and 3.5 µM, respectively, as carbon sources. The cell suspensions were incubated with shaking at 37°C. At regular time intervals 0.6 ml aliquots were withdrawn, OD₆₀₀ determined and cell free supernatants were recovered by centrifugation and saved. MurNAc concentration in the cell free supernatants was then assayed according to a previously described colorimetric assay specific for N-acetyl amino sugars (17). Briefly, 0.1 ml of potassium tetraborate solution was added to 0.5 ml of sample (culture supernatant) followed by boiling for 3 min and cooling to room temperature. Subsequently, 3 ml of p-dimethylaminobenzaldehyde (DMAB) reagent (Sigma) was added and the tubes were placed in a water bath at 37°C for 20 min. Color developed was read at 585 nm and the amount of MurNAc was calculated from a standard curve of MurNAc in the range of 0.625 - 5 µM.

RESULTS

T. forsythia contains a putative MurNAc utilization locus

In silico analysis of the T. forsythia ATCC 43037 draft genome (JUET00000000.1; http://www.ncbi.nlm.nih.gov/nuccore/JUET00000000.1/) identified a three-gene locus (Tanf_0875-Tanf_0885) in the contig_8 DNA sequence (NZ_JUET01000082) that included genes coding for an inner membrane protein (Tanf_08375; WP_046825530.1), a putative sugar kinase (Tanf_08380; WP_046825531.1) and a putative MurQ-type etherase (Tanf_08385; WP_046825532). This region is 97% identical to a DNA region of T. forsythia strain 92A2 spanning BFO_0041 to BFO_0044 (NC_016610;
Interestingly, the Tanf_08γ75-Tanf_08γ85 gene cluster is located immediately downstream of a putative peptidoglycan recycling operon including a muropeptide permease AmpG homolog (Tanf_08γ65) (β0) (Fig. 1a). The product of the putative etherase gene (TfMurQ) shows 46% and 84%, identity with the N-acetylMuramic acid-phosphate (MurNAc-P) etherase MurQ of E. coli (gi:161γ0γ5γ) and predicted MurQ from Bacteroides fragilis (gi:76γ4706β0), respectively. The putative T. forsythia MurQ contains a SIS domain (sugar isomerase domain, accession no. cd04795) characteristic of phosphosugar isomerases and phosphosugar binding proteins.

MurT-MurK function as a PTS-independent MurNAc transporter

In E. coli and many other bacteria, free MurNAc is transported across the inner membrane and is simultaneously phosphorylated by the PTS-dependent MurP permease, which is the MurNAc-specific IIBC domain of the PTS system (11). Further processing of phosphorylated MurNAc through the action of MurQ leads metabolic products to either enter a glycolytic pathway for generating energy, or biosynthetic pathway for generating peptidoglycan amino sugar GlcNAc (18, 21) (Fig. 1b). As mentioned above, T. forsythia lacks a canonical PTS-type transporter complex and, thus utilizes alternative mechanism to transport and phosphorylate MurNAc. *In silico* analysis indicated that TfMurT is a membrane protein with ten putative membrane spanning helices (Fig. S1, supplementary material) while TfMurK is a putative sugar kinase with a predicted nucleotide binding domain commonly found in sugar kinases and heat shock proteins (NBD_sugar-kinase_HSP superfamily; accession no. cl17037).
Taken together, we predicted that in *T. forsythia* MurT functions as a MurNAc transporter and MurK functions as a MurNAc kinase (Fig. 1b).

To determine the functional role of TfMurT and TfMurK in MurNAc transport, we tested if providing the *T. forsythia* *murT* and *murK* genes in trans to an *E. coli* Δ*murP* mutant, would rescue the inability of the Δ*murP* mutant to utilize MurNAc as a sole carbon and energy source. The results showed that while the *E. coli* Δ*murP* mutant (CM10γ) complemented with a plasmid (pTr-MurTK) co-expressing TfMurT and TfMurK proteins grew on minimal agar supplemented with 0.025% w/v MurNAc (Fig. 2a, middle row) or broth (Fig. 2b), neither the mutant alone nor the mutant complemented with the empty plasmid pTcr99a grew on MurNAc. All strains grew on minimal agar with glucose used as a control. Additionally, as a positive control, complementation with native *E. coli* *murP* in trans via pCS19YfeV restored the growth defect of the *E. coli* Δ*murP* strain on MurNAc (Fig. 2a, middle row). Importantly, the growth of *E. coli* Δ*murP* in the presence of MurNAc was rescued with the combined expression of *T. forsythia* MurT/MurK, and was similar to the growth in the presence of native *E. coli* MurP. To investigate whether MurNAc transport requires TfMurT/TfMurK co-expression, complementation with either TfMurT or TfMurK in *E. coli* Δ*murP* was performed. The results showed that neither TfMurT nor TfMurK alone could confer to the mutant the ability to grow on MurNAc (Fig. 2a).

Next, since TfMurT and TfMurK proteins do not possess PTS-type signatures, we wanted to confirm that the TfMurT membrane protein and the TfMurK kinase function independently of a canonical PTS system. For this purpose, we provided the *T. forsythia* *murT*-*murK* genes in trans to an *E. coli* double mutant (CM133) with deletion of
the \(\text{murP} \) (\(yfeV \)) gene and the entire \(\text{pts} \) operon (\(\text{ptsH}1\text{crr} \)) coding for the components of the PTS system. CM133 was generated by P1 transduction to transfer \(\Delta \text{ptsH}1\text{crr}:\text{kan} \) mutation from JM-G77 to CM103. The results showed that complementation of CM133 with \(\text{murT-murK} \) restored the growth the mutant on MurNAc. As shown, CM133 grew on MurNAc containing agar (Fig. 2a) or broth (Fig. 2b) when complemented with the plasmid pTr-MurTK co-expressing TfMurT and TfMurK but did not grow on MurNAc when complemented with the plasmid pTr-MurT or pTr-MurK expressing either protein alone. As controls, complementation with native \(\text{murP} \) (pCS19yfeV) or empty vector did not rescue the growth of CM133 on MurNAc; growth was rescued only when glycerol (0.2%) was provided as the sole carbon source (N.B. this strain is unable to grow on glucose given its general PTS defect). The parent strain MC4100, from which CM103 and CM133 were derived, carrying either plasmid grew on glycerol as well as MurNAc (Fig. 2b). Together these data demonstrated that the products of TfMurT and TfMurK function independently of a PTS system for transport and utilization of MurNAc.

To confirm that this putative transport complex was indeed involved in MurNAc utilization, an experiment was designed where depletion of MurNAc by \(E. \text{coli} \) strains was assessed in a minimal medium with glucose or MurNAc as a carbon source. Under these conditions \(E. \text{coli} \Delta \text{murP} \) mutant carrying either an empty plasmid or plasmid expressing the \(E. \text{coli} \) MurP (pCS19YfeV) or the \(T. \text{forsythia} \) MurTK (pTr-MurTK) grew as expected and MurNAc depletion in the medium was not observed for \(E. \text{coli} \) cells bearing empty plasmid. However, significant depletion of MurNAc was observed in the case of \(E. \text{coli} \Delta \text{murP} \) mutant complemented with pTr-MurTK expressing TfMurT/TfMurK or pCS19YfeV expressing native \(E. \text{coli} \) MurP transporter (Fig. 3).
Taken together, these data demonstrate that TfMurK and TfMurT act in concert and TfMurT is a unique transporter for the utilization of exogenous MurNAc in *T. forsythia*.

*Tant_08385 encodes *T. forsythia* MurQ etherase and is co-transcribed with *murTK*

Since the MurQ etherase is important in the utilization of MurNAc in bacteria (Fig. 1b), we confirmed the activity of *Tant_08385* as a functional MurNAc-6-P etherase (TfMurQ). For this purpose, TfMurQ expressed as a His₆-tagged recombinant protein (rTfMurQ) in *E. coli* was purified to homogeneity by nickel affinity chromatography (Fig. S2, supplementary material), and confirmed the etherase activity using the Elson-Morgan enzymatic assay and conversion of MurNAc-6-P to GlcNAc-6-P by a radioactive assay using ³²P-labeled MurNAc-6-P (18). The Elson-Morgan assay showed that the purified rTfMurQ had etherase activity since a color change was seen with Ehrlich’s reagent when rTfMurQ was incubated with MurNAc-6-P (Fig. S3, supplementary material). Furthermore, rTfMurQ protein catalyzed the formation of a radioactive GlcNAc-6-P product when incubated with MurNAc-6-P in a TLC-based assay employing ³²P-labelled MurNAc (Fig. 4a). In addition, the functionality of TfMurQ was tested by *trans* complementation in an *E. coli* Δ*murQ* mutant. For this purpose, the *E. coli* Δ*murQ* mutant JW2421-1 was transformed with either an IPTG-inducible plasmid harboring the *Tf murQ* gene (pTr-MurQ), or an empty plasmid vector (pTrc99) and plated on minimal agar plates with glucose or MurNAc as the sole carbon source. Growth of the *E. coli* Δ*murQ* mutant JW2421-1 complemented with pTr-MurQ was rescued on minimal agar plates containing MurNAc (Fig. 4b). The *E. coli* Δ*murQ* mutant complemented with empty pTrc99 did not grow on MurNAc containing plates, but grew on media.
supplemented with glucose. In contrast, the *E. coli* parent strain BW25113 harboring pTrc99 grew on minimal media containing glucose and MurNAc as sole carbon source (Fig. 4b). These data suggested that Tanf_08385 is the *T. forsythia* MurQ etherase (TfMurQ) involved in the metabolic conversion of MurANc-6-P to GlcNAC-6-P. Next, we wanted to determine whether *mur* genes are co-transcribed. For this purpose, RNA from *T. forsythia* ATCC 43037 cells was extracted and co-transcription of the *mur* genes was analyzed using RT-PCR as outlined in Fig 5. The data demonstrated that the *T. forsythia* murT, murK, and murQ genes were transcribed as a single transcript (Fig. 5b), since PCR products of the expected size were obtained with primer pairs (Table S2, supplementary material) designed to bridge the ends between the open-reading frames (ORFs) of adjacent genes, and, thus, yielding amplification products only when co-transcription was occurring. Taken together, our data showed that the *murT*, *murK*, and *murQ* genes form an operon (*murTKQ*) involved in MurNAc utilization.

DISCUSSION

T. forsythia, a common pathogen present in dental biofilms, is implicated in periodontitis. Its role in the disease process has been confirmed in animal models (22) and it has been demonstrated that the bacterium’s ability to induce disease is enhanced when co-infected with other bacteria such as *Fusobacterium nucleatum* (23). Strikingly, *T. forsythia* depends on exogenous MurNAc, an essential peptidoglycan amino sugar, for growth. Its inability to *de novo* synthesize the peptidoglycan amino sugars MurNAc and GlcNAc was first described by Wyss (5), who noted that growth of *T. forsythia* could be rescued when spent media from cultures of *F. nucleatum* or free MurNAc was
supplied exogenously. Since, MurNAc is not known to be synthesized by the human
host, scavenging on peptidoglycan byproducts (muropeptides, anhydro-MurNAc)
released by cohabiting oral bacteria during their cell wall recycling is a plausible
mechanism by which *T. forsythia* obtains MurNAc *in vivo*. Therefore, growth and, thus,
the virulence potential of *T. forsythia* depend on its ability to obtain and utilize MurNAc,
or MurNAc-containing peptidoglycan fragments from the environment. To our
knowledge, no other bacterium has such a strict requirement for MurNAc. Moreover,
despite its clear ability to utilize exogenously supplied MurNAc, the *T. forsythia* genome
lacks homologs of PTS-type MurNAc transporters present in bacteria (12). In *E. coli*
and the majority of bacteria, the MurP PTS system is responsible for phosphorylation
and import of MurNAc (11, 21), and further utilization of MurNAc transported as
MurNAc-6P proceeds through the action of MurQ etherase (18). MurP contains both the
PTS domains EIIB and EIIC and requires Enzyme I, histidine protein HPr and the
phosphoryl transfer protein EIIA (EIIA\textsubscript{Glc}) for function. We searched the *T. forsythia*
ATCC 43037 genome for a similar PTS-type MurNAc transport system, but our search
identified no MurP or any of the PTS homologs in the genome of *T. forsythia*. However,
we identified a genetic cluster (Tanf_08_75-Tanf_08_85) in the genome that contained
ORFs for a membrane protein (TfMurT), a sugar kinase (TfMurK), and an etherase
(TfMurQ). This genetic cluster is located immediately downstream from a locus likely to
be involved in peptidoglycan recycling as suggested by the presence of an ORF for a
putative peptidoglycan permease AmpG in the locus (Fig. 1a). Since TfMurT and
TfMurK ORFs were present in close association with an ORF for a MurQ-like etherase
(TfMurQ), we hypothesized that MurT and TfMurK might be involved in MurNAc
transport and utilization functions. During peptidoglycan recycling in bacteria, MurNAc
is released as anhMurNAc (1,6-anhydro-MurNAc) and is phosphorylated to MurNAc-6P
by the kinase AnmK (13). MurNAc-6-P is converted by the MurQ etherase into GlcNAc-
6-P and both these sugars are reused for synthesis of new peptidoglycan or enter the
general carbohydrate metabolism (13).

In this study, we showed that expression of TfMurT and TfMurK bipartite pair in
an E. coli ΔmurP mutant restored bacterial growth in minimal media supplemented with
MurNAc. In addition, TfMurQ trans complementation in an E. coli ΔmurQ mutant
restored the ability to utilize MurNAc and the purified recombinant TfMurQ protein
converted MurNAc-6-P to GlcNAc-6-P in vitro. These data show that TfMurT and
TfMurK, coding for an integral membrane transporter and a putative MurNAc sugar
kinase, respectively, constitute a unique PTS-independent system for MurNAc transport
and phosphorylation. Furthermore, TfMurQ is involved in the metabolic conversion of
MurNAc-6-P to GlcNAc-6-P. The functionality of TfMurT and TfMurK was confirmed via
trans complementation in E. coli host. Deletion of these ORFs in T. forsythia was
potentially lethal as no mutants were recovered. While we predict that TfMurT and
TfMurK proteins are likely present in close association or direct physical interactions as
a bipartite pair (Fig. 1b) to carry out the function of transport and phosphorylation of
MurNAc, we have no experimental evidence to support this notion and the presence of
TfMurK as a cytoplasmic protein cannot be ruled out. Future studies will be needed to
biochemically characterize the structure-function relationship of MurT/MurK proteins.
Our preliminary attempts to obtain a soluble active form of 6xHis-tagged recombinant
TfMurK protein have been unsuccessful as the recombinant protein expresses in an
insoluble, inactive form, even after attempted refolding from insoluble material. Alternative expression approaches are underway to obtain the protein in the soluble form. TfMurT/TfMurK proteins do not possess PTS-type signatures and together represent a novel transport system for MurNAc in *T. forsythia*. PTS-independent sugar transporters, not as common as PTS-dependent systems, have been previously reported in bacteria. However, such systems have not been characterized at the molecular level. For instance, in streptococci (24, 25) and corynebacteria (26), there is evidence of PTS-independent glucose uptake. We predict that this mode of sugar uptake and utilization might be prevalent at least in the *Bacteroidetes* phylum of bacteria, since homologs of the *murT* and *murK* genes of *T. forsythia* are present in the genomes of a range of several gut *Bacteroides* spp. and oral *Prevotella* spp. (Fig. S4, supplementary material). Strikingly, *T. forsythia* and *Prevotella* spp. seem to have a minimal gene set as the others have extra genes in the cluster including kinases, ferredoxin, and a β-lactamase, which may reflect their unique niches. Thus, the TfMurTK system is the first evidence of a PTS-independent MurNAc transporter system to date and although so far unique to *T. forsythia*, may be present in a range of Gram-negative bacteria both of the oral cavity and gut.

ACKNOWLEDGEMENTS

We thank Tsuyoshi Uehara for his helpful discussion during the development stages of this study.

This work was supported in part by U. S. Public Health grants DE14749 and DE22870 (both to AS) and the Austrian Science Fund project P24317-B22 (to CS), AR is supported by a T32 Training grant (DE023526).
REFERENCES

Tannerella forsythia affects autoaggregation and posttranslational modification of
surface proteins. FEMS Microbiology Letters **318**:189-196.

21. Park JT, Uehara T. 2008. How bacteria consume their own exoskeletons (turnover and

54:106-116.

nucleatum* and *Tannerella forsythia* induce synergistic alveolar bone loss in a mouse
periodontitis model. Infect Immun **80**:2436-2443.

mutant of *Streptococcus mutans* unable to accumulate sugars via the

kinase-dependent catabolite repression in *Staphylococcus xylosus*. J Bacteriol
177:6144-6152.

glutamicum* by inositol permeases and glucokinases. Appl Environ Microbiol **77**:3571-
3581.
FIGURE LEGENDS

Fig. 1. *T. forsythia* MurNAc utilization locus and MurNAc utilization pathway. (A) Genetic organization of the MurNAc utilization locus Tanf_08γ70-Tanf_08γ85 (black) of *T. forsythia*. The genes associated with the locus encode a membrane protein TfMurT, a sugar kinase TfMurK, and an etherase TfMurQ. The locus Tanf_08γ45-Tanf_08γ65 (light gray) present immediately upstream is potentially involved in peptidoglycan recycling; Gtf - predicted glycosyltransferase; LytB - predicted amidase enhancer; AmpG - predicted muropeptide transporter; YbbC - hypothetical protein, (B) Schematic model of a MurNAc transport and utilization pathway in *E. coli* and *T. forsythia*. PEP, phosphoenolpyruvate; E1, enzyme E1; HPR, Histidine protein; EIIA; enzyme IIA.

Figure 2. Growth of *E. coli* strains MC4100 (parental strain), CM10γ (∆murP), and CM1γγ (∆murP, ∆pts) complemented with respective plasmids in M9 minimal agar and liquid medium with 0.2% glycerol, or 0.025% MurNAc. (A) Plate legend and growth of *E. coli* strains on agar. (B) Growth of *E. coli* strains in medium with MurNAc (Mu) or glycerol (Gl) measured at OD_{600}. Results of one out of three independent cultivations with similar outcome are given.

Figure 3. MurNAc depletion in minimal media incubated with *E. coli* ∆murP mutant complemented with respective plasmids. *E. coli* strains were incubated in minimal media supplemented with glucose and MurNAc and every 2 h post incubation spent medium for each strain was assayed for MurNAc using a chromogenic assay specific for N-Acetyl-aminosugars.
Figure 4. *T. forsythia* MurQ (TfMurQ) is a MurNAc-6-P etherase. (A) TLC analysis of MurNAc-6\(^{32}\)P-phosphate conversion by TfMurQ. MurNAc was radioactively phosphorylated at position C-6 by using recombinant *Clostridium acetobutylicum* MurK and γ-\(^{32}\)P-ATP. MurNAc-6\(^{32}\)P-phosphate was then incubated with purified rTfMurQ etherase and MurNAc-6\(^{32}\)P-phosphate to GlcNAc-6\(^{32}\)P-phosphate conversion was monitored. Samples from different time points (lanes 1, 2 and 3) were spotted on a TLC plate together with the standards MurNAc-6P (lane 4) and GlcNAc-6P (lane 5). The radioactive products were detected using a phosphoimager. (B) Complementation of an *E. coli* ΔmurQ mutant (JW2421-1) with TfMurQ. The *E. coli* ΔmurQ mutant, empty vector control (pTrc99), and complemented strain were plated on minimal agar with MurNAc (0.02% w/v) or glucose (0.2% w/v) as a control.

Figure 5. RT-PCR analysis with (A) primer sets spanning adjacent genes (fragments a, b, or c). (B) PCR products were separated on a 1% agarose gel. No reverse transcription (RNA only) controls were run in lanes 1, genomic DNA as template in lanes 2, and cDNA as template for each primer set in lanes 3. MW; DNA ladder.