
This is a repository copy of Causes and consequences of large clonal assemblies in a 
poplar hybrid zone..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105219/

Version: Accepted Version

Article:

Macaya-Sanz, D., Heuertz, M., Lindtke, D. et al. (3 more authors) (2016) Causes and 
consequences of large clonal assemblies in a poplar hybrid zone. Molecular Ecology. 
ISSN 0962-1083 

https://doi.org/10.1111/mec.13850

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A
c

c
e

p
te

d
 A

r
ti

c
le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/mec.13850 
This article is protected by copyright. All rights reserved. 

Received Date : 13-Mar-2015 

Revised Date   : 02-Sep-2016 

Accepted Date : 06-Sep-2016 

Article type      : Original Article 

 

Causes and consequences of large clonal assemblies in a poplar hybrid zone 

 

David Macaya-Sanz1,2, Myriam Heuertz3, Dorothea Lindtke4,5, Giovanni G. Vendramin6, 

Christian Lexer4,7, Santiago C. González-Martínez1,3*  

 

1 Department of Forest Ecology and Genetics, INIA-Forest Research Centre, 28040 Madrid, 

Spain. 

2 Department of Biology, West Virginia University, Morgantown WV 26505, USA. 

3 BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France. 

4 Unit of Ecology and Evolution, Department of Biology, University of Fribourg, 1700 

Fribourg, Switzerland. 

5 Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. 

6 Institute of Biosciences and Bioresources, National Research Council, 50019 Sesto 

Fiorentino (Florence), Italy. 

7 Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of 

Vienna, A-1030 Vienna, Austria. 

 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

*Corresponding author: 

Santiago C. González-Martínez  

BIOGECO, INRA, ϲϵ ƌŽƵƚĞ Ě͛AƌĐĂĐŚŽŶ, 33610 Cestas, France 

Ph: +33 557122757, E-mail: santiago.gonzalez-martinez@pierroton.inra.fr  

 

Running head: Large clonal assemblies in poplar 

 

Key words: clonality, hybrid zone, specific ancestry, Populus spp., Iberian Peninsula  

 

Abstract  

Asexual reproduction is a common and fundamental mode of reproduction in plants. 

Although persistence in adverse conditions underlies most known cases of clonal 

dominance, proximal genetic drivers remain unclear, in particular for populations 

dominated by a few large clones. In this paper, we studied a clonal population of the 

riparian tree Populus alba in the Douro river basin (northwestern Iberian Peninsula) where it 

hybridizes with P. tremula, a species that grows in highly contrasted ecological conditions. 

We used 73 nuclear microsatellites to test whether genomic background (species ancestry) 

is a relevant cause of clonal success, and to assess the evolutionary consequences of clonal 

dominance by a few genets. Additional Genotyping-by-Sequencing (GBS) data were 

produced to estimate the age of the largest clones. We found that a few ancient (over a few 

thousand years old) and widespread genets dominate the population, both in terms of clone 

size and number of sexual offspring produced. Interestingly, large clones possessed two 

genomic regions introgressed from P. tremula, which may have favored their spread under 

stressful environmental conditions. At the population level, the spread of large genets was 
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accompanied by an overall ancient (>0.1 Myr) but soft decline of effective population size. 

Despite this decrease, and the high clonality and dominance of sexual reproduction by large 

clones, the Douro hybrid zone still displays considerable genetic diversity and low 

inbreeding. This suggests that, even in extreme cases as in the Douro, asexual and sexual 

dominance of a few large, geographically-extended individuals does not threaten population 

survival.  

 

Introduction 

Asexual reproduction is common in plant species, affecting ~80% of angiosperms (Klimes et 

al. 1997). Repeated evolution of clonal or partially clonal plants suggests that asexual 

reproduction is easily acquired through minor modifications of widespread plant traits 

(Sachs 2001). Assurance of plant persistence in unpredictable or recently-colonized 

environments has been proposed as the main explanation for the prevalence of clonality 

over sexual reproduction (Vallejo-Marin et al. 2010). Once established in a population, 

clonality can also be favored by functional specialization among ramets and better access to 

constrained resources (also called ͚foraging͛) (Vallejo-Marin et al. 2010; and references 

therein). In addition, asexual reproduction can limit sexual reproductive output due to 

competition of (normally vigorous) asexual sprouts with sexual propagules, accumulation of 

somatic mutational load on fertility traits and increased geitonogamy (i.e. mating between 

ramets; Ally et al. 2010; Barrett 2002; Eckert 2001). Moreover, the existence of large clonal 

assemblies will exacerbate these processes. Hence, sexual recruitment limitation is both a 

cause and a consequence of increased clonality and may create a detrimental feedback 

loop, ultimately resulting in loss of sexual function (Honnay & Bossuyt 2005).  
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Across evolutionary time scales, Rice (2002) found medium-term propagation 

success of clonal species, but also frequent extinction of phylogenetic branches derived 

from them. This is in accordance with theoretical models predicting selection to favor sex 

and recombination over clonality in the long term (Otto & Lenormand 2002). However, the 

evolution of highly clonal plant taxa, such as some seagrasses (Arnaud-Haond et al. 2012 

and reference therein) or tree species from the Salicaceae family, seems to oppose this 

finding. Within the Salicaceae, Populus species (e.g. Populus alba and P. tremuloides; Brundu 

et al. 2008; Slavov & Zhelev 2010) contain the largest natural terrestrial clones currently 

known (Mock et al. 2008; and references therein). In these species, the prevalence of 

clonality is variable depending on the population and geographical range. Clonal size can be 

estimated using the number of observed ramets or the spatial distribution of clones. Typical 

Pareto distributions of clone size, with few large and many small genets, have been 

reported in most plant species and populations that exhibit a clonal structure (Arnaud-

Haond et al. 2007). Nevertheless, extremely uneven size distributions, such as those found 

in Populus (e.g. Santos-del-Blanco et al. 2013 for P. alba in central Spain), are uncommon. 

The spread of particular genets may depend on extrinsic factors, such as ecological 

conditions that favor specific adaptive traits, but also on intrinsic genetic drivers such as the 

genetic ancestry of competing clones. The role of ecological conditions on clonal structure 

has been extensively reported. For instance, in Populus, several studies have pointed to the 

level of moisture and flood control by human-made infrastructures as factors affecting the 

rate of clonality and effective sexual recruitment (Gonzalez et al. 2010a for P.alba; Slavov et 

al. 2010; Vonlanthen et al. 2010). Because there is genetic variation for traits involved in 

asexual reproduction, as shown in greenhouse experiments (e.g. Stenvall et al. 2005; Yu et 

al. 2001), some genotypes should have better capacity for clonal spread under specific 
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environmental conditions. Clones with higher heterozygosity, in particular those 

introgressed by closely-related species, could display higher fitness due to heterosis and/or 

heterozygote advantage (Charlesworth & Willis 2009; Hedrick 2012). Conversely, 

introgression of genetically distinct populations/species may result in reduced fitness 

through breakdown of co-adapted gene complexes (i.e. outbreeding depression, Lynch 

1991). However, the role of genomic ancestry on clonal spread has never been thoroughly 

assessed in natural populations. 

The effects of prolonged asexual reproduction on populations, if any, are not clear. 

On the one hand, competition among genets eventually reduces genotypic richness and may 

impact on genetic diversity. Even though the effect of shrinking genotypic richness on 

genetic diversity is disputed (Balloux et al. 2003; Mock et al. 2008), it is a fact that loss of 

genotypes and their specific genetic combinations will lead to a reduction in functional 

diversity and may increase inbreeding. Concurrently, the uneven number of ramets per 

clone in populations that exhibit a few clones of large size could generate a mating bias 

towards larger clones, leading to a long-term decrease of effective population size and 

increased genetic drift. Nevertheless, in most situations, a higher rate of clonality (evaluated 

as the proportion between clonal and sexual reproduction) does not affect the asymptotic 

trend of inbreeding (FIS), but only slows down the process to reach Hardy-Weinberg 

equilibrium (Reichel et al. 2016). On the other hand, assuming that larger clones are also 

older, the lack of selection against deleterious mutations on sexual function may have 

eroded the sexual capability of large clones, neutralizing their plausible sexual dominance. 

Considering the plausible co-occurrence of these two opposing processes, it would be 

helpful to gain empirical knowledge on the effects of clonality and the inherent reduction of 
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genotypic richness on sexual mating bias and potential long-term consequences for genetic 

diversity, effective population size and inbreeding.  

 Natural hybrid zones of the highly clonal European poplars of section Populus (P. 

alba, P. tremula and their hybrids) are outstanding natural laboratories to study the 

influence of genomic background on adaptation, clonal spread, and reproductive isolation 

(van Loo et al. 2008; Stölting et al. 2013; Christe et al. 2016). These species display different 

ecological habits, with P. alba being a riparian lowland warm-temperate tree while P. 

tremula grows in its Mediterranean range at locations with boreal climate (high-altitude 

hillsides). Distinguishing P. alba from P. tremula is easy, based especially on the shape and 

pubescence of leaves and petioles; they are also distinguished by overall shape, bark and 

many other morphological features. However, ascertainment of hybrids is not always 

unambiguous, especially for second (F2 and BC1 backcrosses) and later generations, since 

hybrids do not usually show intermediate morphology for most traits, due to, for example, 

transgressive segregation or hybrid vigor (Rieseberg & Carney 1998). Intriguingly, clonality is 

highly variable across European poplar hybrid zones, from being relatively low in Central 

Europe (largest clone size < 200 m; van Loo et al. 2008) to very high, with large clones 

spreading over 150 km in the Iberian Peninsula (Santos-del-Blanco et al. 2013), providing 

room for comparative analyses in natural populations. While ecological causes of 

differences in clonal spread have been investigated in different Populus species (Slavov et al. 

2010; Vonlanthen et al. 2010), the role of genomic ancestry (in particular hybridization and 

introgression) remains unexplored despite early evidence of fitness differences between 

hybrids and parental species in natural populations (e.g. Schweitzer et al. 2002; van Loo et 

al. 2008) and agronomic trials (e. g. Marron et al. 2010).  
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 In this work, we focus on a European poplar hybrid zone (located in the Douro river 

valley, northwestern Iberian Peninsula) that is characterized by large and geographically 

extended clonal assemblies (Santos-del-Blanco et al. 2013) and low levels of hybridization. 

Multi-locus genotypes from 73 nuclear microsatellite loci were used to identify clones and 

determine their age, as well as to discern their genetic background (as in Lindtke et al. 

2012). In addition, 0.507-1.249 Gbp (giga base pairs) of sequence data were obtained from 

the two largest clones by means of Genotyping-by-Sequencing to estimate their age with 

higher precision. We then tested the following hypotheses: (i) genomic background (species 

ancestry) is associated with clonal success; and (ii) ancient large clones have higher sexual 

reproductive success, ultimately affecting overall population demography and/or increasing 

inbreeding. Our study provides novel insights into the demographic trajectories of highly 

clonal populations and, in particular, is relevant to the management and conservation of 

riparian forests in the face of environmental change. 

 

Material and Methods 

Study site and sample collection 

The Douro poplar hybrid zone occurs in the riparian forests that border the middle course of 

the Douro River and its tributaries, a river system in the Iberian Northern Plateau which 

flows westward to the Atlantic Ocean. Because of its ecological value and relatively low level 

of human intervention, the area has been proposed as a site of Community importance by 

the European Commission (codes: ES4170083 and ES4120068). Different Populus taxa grow 

naturally in this region (Populus alba, P. tremula, P. × canescens and P. nigra).  
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 Leaf tissue was collected from 533 poplar trees, whose positions were recorded 

using a GPS device. The sampling comprised the two pure species of section Populus (P. alba 

and P. tremula) and their natural hybrid (P. × canescens). Populus nigra was not included in 

the study because it belongs to section Aigeiros, which does not naturally hybridize with 

section Populus. Populus alba (N=360) and P. × canescens (N=145) samples were collected 

mainly along ~125 km of the hybrid zone, while P. tremula samples (N=28) were collected in 

stands located in the mountains nearby, where it is more abundant (Figure 1). Following 

previous studies (Macaya-Sanz et al. 2012), sampling was designed to cover a large 

geographical area while avoiding overrepresentation of local genets. Sampled stems 

(ramets) were spaced at intervals of least 100 meters in the core area (Douro middle course 

and the lower courses of major tributaries), and at intervals of at least 1,000 meters 

elsewhere. Despite the uneven sampling effort, all known stands in the surveyed area were 

represented in our sampling. 

 

Nuclear microsatellites  

DNA was isolated from ground dry tissue using the Invisorb® DNA Plant HTS 96 Kit (STRATEC 

MŽůĞĐƵůĂƌ͕ BĞƌůŝŶ͕ GĞƌŵĂŶǇͿ͕ ĨŽůůŽǁŝŶŐ ƚŚĞ ƉƌŽĚƵĐĞƌ͛Ɛ ƉƌŽƚŽĐŽů͘ TŚĞ ǁŚŽůĞ ƐĞƚ ŽĨ ƐĂŵƉůĞƐ 

was initially genotyped with 20 microsatellite (SSR) markers (see Table S1 in Supporting 

Information; Lexer et al. 2005). Once Multi-Locus Genotypes (MLGs) and Multi-Locus 

Lineages (MLLs; i.e. those ignoring somatic mutations) were resolved (see below), at least 

one sample of each MLL was genotyped with an additional set of 53 SSR markers spaced 

evenly along the poplar genome (137 samples and 73 markers total; Table S1 in Supporting 

Information). 
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The first set of markers (20 SSRs) was amplified following the protocols of Macaya-

Sanz et al. (2012). PCR fragment analysis was carried out with a 4300 DNA Analyzer (Li-Cor 

Biosciences, Lincoln, NE, USA), using internal standards to facilitate allele scoring. The 

second set of markers (53 SSRs) was resolved using protocols described by Lexer et al. 

(2005). Briefly, an M13 tail was attached to forward primers, and fragments were amplified 

using a touchdown PCR reaction. Allele sizes were resolved using an Applied Biosystems 

(ABI) 3100 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA) and FAM and JOE 

fluorescent dyes. 

 

Genotyping-by-Sequencing (GBS) 

To estimate the age of the two largest clones (MLL006 and MLL009, see Results) with higher 

precision, we genotyped nine ramets of each using Genotyping-by-Sequencing (GBS). One 

ramet of each clone was genotyped twice to control for technical error. DNA was digested 

using the MSeI and EcoRI enzymes and the libraries were prepared following the protocol 

described by Parchman et al. (2012) with slight modifications. Then, libraries were 

sequenced in a 150-cycle single-end run (V3 chemistry) on a MiSeq Illumina sequencer.  

 Sequences obtained by GBS were processed independently for each clone using the 

package Stacks version 1.4 (Catchen et al. 2011, 2013). After standard quality filtering, 

sequences were trimmed and cropped using Trimmomatic version 0.36 (Bolger et al. 2014). 

We split the reads into two sets of 60-bp length that were pipelined independently, yet 

merged for subsequent statistical analyses (see Table S2 in Supporting Information for 

number of reads and coverage per sample). The rationale for analyzing two sets of 60-bp 

fragments instead of only one set of longer fragments was to include more overall sequence 

data, given that Stacks needs all fragments to be trimmed and cropped to a unique length. 
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Moreover, it reduced the number of haplotype mismatches for subsequent analyses. We did 

not use the available P. trichocarpa or P. tremula reference genome sequences to assembly 

reads, given that the high presence of orthologous and paralogous genes, even in related 

species, would have induced spurious alignments potentially hindering the detection of true 

somatic mutations. Besides, given that the ten samples (including the technical replicate) 

belonged to the same clone, we expected high levels of similarity that would facilitate stack 

formation even without a reference genome. To control for PCR and MiSeq sequencer 

errors, the depth of stacks (m parameters) was set high (to six for the first set of 60 bp and 

to four for the second one). The other parameters (M, N, max_locus_stacks) were set to two 

and the deleveraging and removal algorithms were enabled to control the merging of 

haplotypes from paralogous loci. After these steps, 1.249 Gbp of aligned sequence (20,810 

stacks) for MLL009 and 0.507 Gbp of aligned sequence (8,451 stacks) for MLL006 were 

available for further analyses. 

 

Multilocus genotypes (MLGs) and multilocus lineages (MLLs)  

The first set of 20 SSR loci allowed for initial MLG assignment, as provided by GIMLET 

software (Valiere 2002). A further analysis of divergence among MLGs permitted to collapse 

ramets with somatic variants into sexually derived genets (MLL assignment), following 

Arnaud-Haond et al. (2007). The rationale of this assignment method rests in the fact that 

the divergence among MLGs derived from asexual reproduction should be much lower (i.e. 

involving only few somatic mutations) than that among sexually-produced MLGs (i.e. after 

recombination of two distinct genomes). When computing pairwise genetic distances 

between MLGs, a bimodal distribution is expected, where the smaller peak at shorter 

genetic distances represents those MLG pairs that are differentiated by only a few somatic 
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mutations and that can thus be grouped within the same MLL (Figure S1 in Supporting 

Information). Finally, the geographical distribution of MLLs and MLGs was plotted to 

examine visually the spatial distribution of clones. Geographical representation of the whole 

population and the largest clonal assemblies was carried out with a GIS (ArcMap version 9.2; 

ESRI, Redlands, CA, USA).  

 

Age of large clones 

The number of somatic mutations within a genet is correlated with its age. Thus, given a 

sufficient number of molecular markers, genetic divergence within genets can be used to 

estimate clone age (assuming neutrality). Seventy-three nuclear microsatellite loci were 

used to estimate the age of the two largest clones, MLL006 and MLL009, based on seven 

and eight ramets with somatic mutations, respectively. In addition, a GBS run was 

conducted on nine ramets plus a technical replicate for each of these two clones to obtain 

complementary age estimates using a larger set of markers. We did not provide age 

estimates based on clone size (estimated as maximum geographic distance between ramets) 

because expansion of clones in a riparian ecosystem is likely anisometric. Moreover, long-

distance translocation of propagules by water has been documented in poplars (Barsoum et 

al. 2004).   

Somatic mutations were counted directly for SSRs and the ancestral state was 

identified based on allele frequencies. For GBS data, the stacks for each clone were 

screened for low-frequency polymorphisms. Then, only those SNPs with a frequency below 

or equal to 0.1 based on at least 5 ramets (to account for missing data and allele dropout; 

Andrews et al. 2016) were considered probable somatic mutations. Besides, to reduce the 

possibility of calling a spurious SNP produced by the merging of paralogous sequence, only 
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stacks with a single SNP were considered. The number of mismatches in low frequency SNPs 

(presence vs. absence in genotypes), as defined above, between technical replicates was 

used as a baseline to control for spurious calls. Then, the number of somatic mutations in 

the genet was calculated by taking the maximum number of mismatches in low frequency 

SNPs found among all the pairwise comparisons between ramets, and subtracting from it 

the baseline calculated from the technical replicates. Note that this number represents a 

conservative estimate, as we have established stringent conditions to detect somatic 

mutations and, moreover, missing data have probably prevented some somatic mutations 

from being detected in specific pairwise comparisons.     

The accumulation of mutations since the common ancestor in different ramet 

lineages within a MLL is a Poisson process (Thomson et al. 2000). Hence, the number of 

independent somatic mutations should follow a Poisson distribution. We note that this 

number must be estimated counting each somatic mutation just once, even when they may 

be present in several ramets. The expected number of somatic mutations is then equal to 

µloc × TMRCA (Thomson et al. 2000), where µloc is the mutation rate scaled to twice the 

number of loci and TMRCA the time to the most recent common ancestor, i.e. an 

approximation of the clone age (Thomson et al. 2000). Mutation rate per year for SSRs was 

obtained from MSVAR (see below) considering a generation time of 40 years (as in Macaya-

Sanz et al. 2012). For sequences obtained by GBS, we used a previous estimation for P. 

tremula (2.5E-9 per year; Ingvarsson 2008). An Infinite Allele Mutation (IAM) model was 

assumed, which is reasonable, considering the much larger number of loci than mutations 

for both SSRs and GBS and the low probability of a somatic mutation occurring twice at the 

same site.  
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Genomic background of large clones and locus-specific ancestry 

Genome-wide ancestry for each MLL was estimated by computing admixture proportions 

(Q) using an admixture model with correlated allele frequencies in STRUCTURE vs. 2.3.2.1 

(Pritchard et al. 2000; Falush et al. 2003), and by applying the linkage model to obtain 

ancestry estimates per locus, i.e. locus-specific ancestries (LSAs). As this model incorporates 

information from linked markers for ancestry estimation, only 72 markers with known 

genomic position were used (listed in Table S1). Setting the number of clusters (K) to two, 

the probabilities that zero, one, or both alleles at each locus have P. alba ancestry (ss1, 

ss2+ss3, or ss4) were estimated. Following Lexer et al. (2010) and Lindtke et al. (2012), 

͚ƐƉĞĐŝĨŝĐ ŚŽŵŽǌǇŐŽƐŝƚǇ͛ ;ƐƐϭ ʹ ss4) and ͚ŝŶƚĞƌƐƉĞĐŝĨŝĐ ŚĞƚĞƌŽǌǇŐŽƐŝƚǇ͛ ;ƐƐϮнƐƐϯ ʹ [ss1+ss4]) 

were calculated and plotted using R (R Development Core Team 2009). BƌŝĞĨůǇ͕ ͚ƐƉĞĐŝĨŝĐ 

ŚŽŵŽǌǇŐŽƐŝƚǇ͛ refers to the statistical support for both allele copies at a locus having 

ancestry from one of the species, P. alba or P. tremula͕ ǁŚĞƌĞĂƐ ͚ŝŶƚĞƌƐƉĞĐŝĨŝĐ 

ŚĞƚĞƌŽǌǇŐŽƐŝƚǇ͛ refers to the support for each allele copy at a locus having ancestry from the 

same vs. different parental species (see details in Lindtke et al. 2012). 

 To identify loci with unusual introgression in the ten largest clones but not the 

remaining MLLs, LSA was computed as (ss2+ss3)/2 + ss4 (so that interspecific heterozygosity 

is taken into account; values ranging from 0 to 1). Loci with unusual introgression were 

identified by first assigning ranks for LSA to MLLs, separately for each locus (rank function in 

R, taking average ranks for ties). Then, for each locus, ranks were summed for the ten 

largest clones (either in terms of number of ramets or spatial extension), and for the 

remaining clones. Loci with the 5% highest or lowest values in large clones but not so in the 

remaining clones were determined as outliers. This procedure was repeated ten times 

leaving one large clone out at each time (jackknife resampling), and only loci identified in all 
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subsets were considered as robust outliers. As LSA scores can be affected by uncertainty in 

genotype, e.g. due to low genetic differentiation between parental species or missing data, 

the analysis was repeated (but without the jackknife resampling) using discrete values of the 

ancestral genotype instead of continuous LSA (LSAGs; i.e. scores of 0, 0.5, or 1 for the three 

possible genotypes given their maximum posterior probability). Finally, to determine the 

expected number of outlier loci in the ten largest clones, 1,000 permutations of clone size 

(keeping genotypes) were generated. 

 

Mating success of large clones 

Parental relationships among MLLs were estimated using COLONY 2.0 (Jones & Wang 2010) 

and FRANz 2.0.0 (Riester et al. 2009, 2010). While the COLONY approach employs a 

maximum likelihood method to assess relatedness, not considering in any way the actual 

genet size, FRANz considers ramet number as prior information. Three parallel medium-

length runs were carried out on COLONY using the full-likelihood method with medium 

precision and without allele frequency updating, and considering allelic dropout and marker 

genotyping error rates of 0.01 (and no inbreeding as the species are dioecious). We set the 

prior probability of finding a father or mother in the population to 0.5, but did not give prior 

information about sibship size. All genets were considered as offspring and candidate 

mothers and fathers at the same time, as the gender of most genets was unknown. Since 

the age of genets was not known either, directionality of parentage relationships (i.e. which 

is the parent and which is the offspring) could not be directly inferred. Nevertheless, the 

focus of these analyses, i.e. the identification of parents with several offspring, should not 

suffer from this issue. For FRANz runs, we considered a maximum number of fathers in the 

population of 1,000,000 (to simulate infinite) and genotyping error of 0.01, and ran 20,000 
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iterations, including ramet number as a prior. Both pedigree reconstruction methods were 

computed based on a subset of 56 loci, discarding those that were physically linked or had 

low polymorphism (Table S1 in Supporting Information). Finally, we tested for correlations 

between the number of sexual offspring and genet size (measured as number of ramets and 

as spatial extension, i.e. geographical maximum distance between ramets) using Spearman 

rank tests.   

 

Clonal population structure and demographic history 

To evaluate clonal diversity, we calculated the following population descriptors of clonal 

structure: genotypic richness (RͿ͕ SŝŵƉƐŽŶ͛Ɛ ĞǀĞŶŶĞƐƐ ;V), and the additive inverse of the 

slope of the log-scaled Pareto distribution (ɴ) (Arnaud-Haond et al. 2007). Population 

genetic descriptors were computed at MLL level using the full set of 73 SSRs. SPAGeDi 1.3 

software (Hardy & Vekemans 2002) was used to estimate genetic diversity (measured as 

expected heterozygosity, HE), inbreeding coefficient at the population level (FIS), and genetic 

differentiation (FST) between P. alba and P. × canescens. HP-Rare 1.0 (Kalinowski 2005) was 

used to calculate total and rarified allelic richness, and rarified number of private alleles.  

Demographic history was inferred using MSVAR vs 1.3 software on MLLs and 

assuming neutrality of molecular markers (Beaumont 1999; Storz & Beaumont 2002). 

MSVAR produces more reliable inferences when the population size change is large, 

fluctuations are ancient and the population size declines (Girod et al. 2011), which was our 

case (see Results). Both linear and exponential models of population size change were 

considered. Changes during short periods are prone to be proportional to population size, 

thus exponential curves are expected to fit better, while changes through longer periods are 

more related to environmental or evolutionary shifts, which often behave linearly 
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(Beaumont 1999). Only SSRs with perfect repeats under a Stepwise Mutation Model (44 loci; 

listed in Table S1 in Supporting Information) and one ramet per MLL were used in MSVAR 

runs. Five independent MCMC simulations were performed for each scenario, with 4.5E9 

iterations each, of which 2E9 were treated as burn-in. Priors and hyperpriors were 

determined by a series of preliminary runs, following the instructions of the software 

developers: starting current and ancestral population size were set to 1E4 and starting 

mutation rate was set to 1E-4 for all loci; starting time since decline or expansion was set to 

3E6. Prior distributions were all rectangular (i.e. uniform distribution) with the following 

moments (provided in decimal logarithmic scale, as in the input of the software): both 

population size distributions had a mean of 4 and variance of 2.5; mutation rate 

distributions had a mean of -4 and a variance of 2; and time since decline or expansion 

distributions had a mean of 6.5 and a variance of 2.5. Generation time was set to 40 years, 

following Macaya-Sanz et al. (2012). We allowed the program to update the values of the 

starting parameters. Finally, the CODA package (Plummer et al. 2006) in the R environment 

(R Development Core Team 2009) was used to summarize MCMC outputs and evaluate 

chain convergence using the Gelman-Rubin statistic (Gelman & Rubin 1992). 

 

Results 

 

MLGs, MLLs and age of large clones  

Nuclear microsatellites resolved 132 multilocus genotypes (MLGs) among 533 samples in 

the Douro poplar hybrid zone, of which 95 were of P. alba (out of 360 samples), 20 were 

hybrids (admixture proportion Q between 0.1 and 0.9; out of 145 samples), and 17 were of 

P. tremula (out of 28 samples). When putative somatic mutations were taken into account, 
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only 82 multilocus lineages (MLLs) were recognized in P. alba and 13 in the hybrid 

individuals, while each MLG was assigned to a different MLL in P. tremula. The low number 

of MLLs was due to the presence of a few large clones, extending over dozens to more than 

a hundred kilometers (Table 1 and Figure 1, and Figure S2 in Supporting Information).  

Considering the accumulation of somatic mutations since the common ancestor and 

mutation rates, the age of MLL009 (the largest clone) was estimated to 7,117 (CIs: 3,553-

12,734) years using SSRs. The age estimation of MLL006 (the second largest clone) was 

estimated to 4,414 (CIs: 1,620-9,608) years. Based on GBS data, age estimates using the 

same method were 4,828 years (CIs: 2,691-8,416 years) for MLL009 and 7,438 years (CIs: 

3,375-14,500 years) for MLL006, based on 1.249 Gbp and 0.507 Gbp of aligned sequence, 

respectively. Although age estimates differ between markers (but notice that CIs overlap for 

both clones), we can conclude that at least some of the living clones today are several 

millennia old. 

 

Genomic background of large clones and locus-specific ancestry 

Genomic background of P. × canescens corresponded mainly to first generation hybrids (F1) 

and backcrosses to P. alba, although the exact hybrid generation was difficult to determine. 

Many P. alba individuals displayed weak introgression from P. tremula, represented by a 

soft cline from putatively first-generation backcrosses to pure P. alba (Figure 2). In contrast, 

only few genets of P. tremula (3 out of 17) showed introgression from P. alba. Unidirectional 

introgression of this type has been repeatedly reported in poplar hybrid zones.  

Four loci showed extreme LSA scores in the ten largest clones, but not in the rest of 

the MLLs (two loci for the ten clones with the largest spatial extension and three loci for 

clones with the largest number of ramets; one locus common to both sets).  Three of these 
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loci remained robust outliers after jackknife resampling, but only two loci, GCPM1274 

(chromosome I) and ORPM374 (chromosome VIII), additionally had extreme LSAG scores. 

However, observing this number of loci with extreme LSA scores in large clones only can be 

expected by chance, as shown by permutations of clone size while keeping genotypes 

(Figure S3 in Supporting Information). Thus, although GCPM1274 and ORPM374 can be 

regarded as robust outliers for increased P. tremula ancestry in large clones, the presence of 

outliers should also be expected by chance, without selection acting on these loci.  

Locus GCPM1274 is located in close proximity (<10 kb) of two annotated genes: a 

glutaredoxin (GRX), with an antioxidant function, and a myosin-like protein, with an IQ 

calmodulin binding-motif, and a third one of unknown function (based on P. trichocarpa 

genome assembly version 3). Locus ORPM374 is also located close (<10 kb) to two genes: 

one annotated as an ATP-citrate synthase, ŝŶǀŽůǀĞĚ ŝŶ KƌĞďƐ͛ ĐǇĐůĞ͕ and the other with a 

domain similar to an iron-sulfur binding protein C terminal. This motif is found in genes 

involved in the circadian regulation in cyanobacteria. Interestingly, genes encoding a 

phytochrome and an Iojap protein, related to protein synthesis down-regulation during 

starvation, are also located nearby (<15 kb) to locus ORPM374. 

 

Mating success of large clones 

Parental assignments by COLONY and FRANz were highly correlated (PĞĂƌƐŽŶ͛Ɛ ĐŽƌƌĞůĂƚŝŽŶ 

coefficient of 0.95). Large clones had a higher number of sexual offspring than smaller 

clones in the population, with the exception of MLL006 (a putative F1-hybrid; see Figure 2), 

whose number of offspring was comparatively small in relation with its size (Table 1). 

Considering COLONY parental assignments (Table S3), the four largest clones (3.6% of the 

MLLs), with more than ten ramets each, were the parents of 60 offspring (57.1%). 
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Spearman͛Ɛ rank tests showed significant correlations between clone size (estimated as 

number of ramets) and offspring number, both considering all genets (ʌ = 0.377; P < 0.001) 

and the ten largest ones (ʌ = 0.768; P < 0.01; Figure S4 in Supporting Information). However, 

correlations were not significant when clone size was estimated as the maximum distance 

between ramets (all genets: ʌ = 0.088; P = 0.58; ten largest genets: ʌ = 0.540; P = 0.11; 

Figure S4). For many individuals (40 clones, i.e. 35.7%), no parent was found among the 

sampled trees, probably because the parents were located outside of the sampling area, 

were overlooked by our sampling scheme, or were already dead.  

 

Clonal population structure and demographic history 

Due to the occurrence of very large clones, genotypic richness was low and clonal structure 

uneven in the Douro hybrid zone (R = 0.228 and V = 0.532 for P. alba), despite appreciable 

levels of genetic diversity and allelic richness (HE = 0.405 and A͛ = 2.61 for P. alba; Table 2). 

Population inbreeding was also low but significantly different from zero (FIS = 0.051 and 

0.066 in P. alba and hybrids, respectively; Table 2). Demographic analyses using MSVAR (one 

ramet per MLL) showed a long-term decline in population effective size (Table 3, Figure S5 

in Supporting Information). The exponential decline model fitted better with observed data 

than the linear model (AIC of 23,776 vs 24,992). Nonetheless, the comparatively small 

difference between AIC values indicates that neither of the models is significantly superior. 

Both models indicated a soft but persistent population size decline during the last hundreds 

of thousands of years, with current effective population size reduced to about one tenth of 

the ancestral size. Nevertheless, current effective size was still considerable (~2,240 for the 

exponential model; Table 3). These calculations considered a generation time of 40 years. 

Given the high levels of asexual reproduction in the population, the existence of ancient 
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clones (see above) and that genet turnover was probably even lower in former times (e.g. 

during glacial times, see Macaya-Sanz et al. 2012), larger generation times and a more 

ancient population decline cannot be excluded. 

 

Discussion 

Origin of large and ancient clonal assemblies in the Douro basin 

A few large, ancient and widespread clones, together with many small ones with more 

restricted geographical distribution, characterized the Douro hybrid zone. The two largest 

genets were a male pure P. alba (MLL009) and a female hybrid (MLL006) (189 and 124 

ramets, respectively), and their origin may date back to several thousand years (at least 3-4 

millennia at 95% probability). Large and widespread clones have been repeatedly reported 

in Populus species (e.g. Ally et al. 2008; Brundu et al. 2008), including for the Douro area 

(Santos-del-Blanco et al. 2013), but their age has only rarely been estimated, except for the 

P. tremuloides ͚PĂŶĚŽ͛ ĐůŽŶĞ reported to be almost ten thousand years old (Mock et al. 

2008). Outside Populus spp., age estimates of particularly old clones are more frequent: 

May et al. (2009) claimed an age in excess of 13,000 years for a Quercus palmeri clone living 

in Southern California and clones of the bushes Lomatia tasmanica and Larrea tridentate 

were estimated to be 43,600 and 11,700 years old, respectively (Lynch et al. 1998; Vasek 

1980). 

The Douro hybrid zone is located in a region (the Castilian Plateau) where human 

activity dates back to ancient times. Nevertheless, the spread of Populus clones in the region 

by humans is an unlikely explanation. Although riverbank reforestation with poplars has 

surely been conducted in historic times, the estimated age of some of the large clones (over 

2,000 years) exceeds the times when social civilization could have fostered this regional 
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expansion, during the Romanization of the Iberian Peninsula. Moreover, there is not any 

associated economical use that could have contributed to ancient human-mediated spread 

of Populus clones in the region. Exclusive root-sucker expansion is not a sufficient 

alternative explanation to human-mediated spread, given the wide extension of large clones 

(close to 160 km for the largest, MLL006). However, the translocation of twigs by water 

currents is known to be a successful long-distance propagation mechanism in species of 

genera Salix and Populus (Barsoum et al. 2004; and references therein). The Douro River 

and its tributaries are large watercourses in the study area, and the constant flow of water 

can transport propagules across long distances. Large birds, such as the locally abundant 

storks, could also have effectively contributed to translocate twigs (used for nesting), 

although, to our knowledge, no study has assessed the magnitude of this dispersal mode 

yet.  

Several processes may have created opportunities for expansion of current large 

clones in detriment of sexual reproduction. First, environmental fluctuations, which are 

common in riparian habitats, could have hampered sexual reproduction more than asexual 

propagation, which depends less on ecological factors. In addition, clonal reproduction is 

often more abundant in range margins and more stressful environments (Honnay & Bossuyt 

2005; Kawecki 2008; Silvertown 2008), as is the case in the Douro basin (as compared to 

central European poplar hybrid zones; see below). Second, ancient geological events, such 

as the transition from the Pliocene to the Pleistocene glaciations, may have promoted clonal 

spread in the Douro hybrid zone (Macaya-Sanz et al. 2012). Populus alba evolved during the 

late Tertiary and early Quaternary, under more humid subtropical conditions (Eckenwalder 

1996). Climate desiccation and cold temperatures could therefore have hindered sexual 

reproduction in this species, in particular in the Douro basin, which was severely affected by 
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the last glaciation (but not under ice; Alberti et al. 2004). Moreover, during colder periods, 

geographical isolation may have imposed limitations on gene flow among isolated genets. 

Third, in more recent times, human activities have certainly affected the ecology of P. alba 

in this region, which is highly susceptible to natural disturbances. Indeed, river flood 

regulation is directly involved in failure of sexual recruitment in P. alba (Gonzalez et al. 

2010b), as well as in other Populus species (e.g. P. nigra; Barsoum 2001).  

 

The role of genomic background in clonal success 

Hybrid clones were neither overrepresented among large clones (Table 1; two hybrids out of 

ƚĞŶ ůĂƌŐĞ ĐůŽŶĞƐ ŝŶ Ă ƉŽƉƵůĂƚŝŽŶ ŽĨ ϭϯ ŚǇďƌŝĚƐ ŽƵƚ ŽĨ ϭϭϮ MLLƐ͖ FŝƐŚĞƌ͛Ɛ ĞǆĂĐƚ ƚĞƐƚ͗ P = 0.236) 

nor significantly larger than pure P. alba (average size estimated as maximum distance 

between ramets: hybrids, 2016 ± 1333 (SE) m; P. alba, 939 ± 334 (SE) m; Kruskal-Wallis test: 

P = 0.775; two largest clones, MLL006 and MLL009, excluded), suggesting a lack of impact of 

overall genomic background on clonal spread. However, more frequent asexual 

reproduction in hybrids has been reported in other case studies (e.g. Narcissus; Marques et 

al. 2011), including some in Populus (Schweitzer et al. 2002; Van Loo et al. 2008), and, given 

the limited number of hybrids in our study, this result should be considered with caution. 

Large clones, however, displayed two genomic regions with unusual genetic ancestry 

(when evaluating collectively the ten largest clones, see Results). Locus GCPM1274 showed 

strong introgression by one P. tremula allele, even in otherwise pure P. alba backgrounds 

(e.g. MLL002). GCPM1274 also displayed highly distorted genotype proportions in a 

controlled backcross of a F1 hybrid to P. alba, with segregation of the P. tremula alleles 

dominating (Macaya-Sanz et al. 2011), and lies close (< 10kb) to candidate genes for 

adaptive traits. The poplar telomeric region of chromosome I adjacent to GCPM1274 is rich 
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in NBS class resistance genes (Kohler et al. 2008) and in expressed small RNAs (Klevebring et 

al. 2009). Moreover, this locus is located in close proximity to a glutaredoxin (GRX) gene. 

Plant glutaredoxins have pivotal roles in plant redox biology (Rouhier 2010) and are 

associated with increased tolerance to drought (e.g. Guo et al. 2010). Locus ORPM374 is 

located in a gene-rich arm of chromosome VIII, in close proximity to four annotated genes, 

two of them involved in circadian cycling, and the other two in cell basal energy regulation. 

Our findings are limited to a low number of highly-successful clones and genomic 

regions (not higher than those expected by chance, as shown by permutation tests), and 

thus are difficult to generalize. Nonetheless, they suggest that localized regions of specific 

ancestry, rather than overall genomic background, may play a role in clonal spread under 

stressful environmental conditions. Similar results have been reported in sunflower where 

regions of unusual heterozygosity in hybrids underlie increased salt-tolerance (Lexer et al. 

2004). Also, recent results on Central European hybrid zones of P. alba and P. tremula point 

to important effects of heterospecific ancestry on hybrid survival and persistence (Christe et 

al. 2016). 

 

Population effects of large, geographically-extended clones 

Large, geographically-extended clones dominated sexual reproduction in the Douro hybrid 

zone, as shown by a significant correlation between clone size and number of descendants 

(Figure S4 in Supporting Information). Sexual dominance results from both greater 

opportunities for mating each season (due to the larger number of ramets) and the 

continued contribution to reproduction along several seasons, since clone size is correlated 

with age.  
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Sexual dominance of large clones has two important implications. (i) Ageing sterility 

does not seem to have affected these relatively ancient clones yet. Somatic mutation load 

can reduce sexual performance, but this is a slow process. Ally et al. (2010) calculated that it 

would take between 500 and 20,000 years to lose male sexual function through 

depauperation of pollen quality and quantity. Furthermore, in cases of very large clones, as 

found here, it is expected that the time needed for development of sterility will be 

somewhat longer, as mutations need to accumulate throughout most ramets. (ii) At the 

genet level, uneven sexual reproduction reduces the effective population size as it increases 

the variance of reproductive success (Balloux et al. 2003), thus potentially raising genetic 

drift and affecting population demography (see below). Interestingly, in the Douro hybrid 

zone, although significantly higher than zero, population-level inbreeding (FIS = 0.051) was 

lower than in other (less-clonal) European poplar hybrid zones (FIS = 0.143-0.173) and we did 

not observe significant reductions of genetic diversity (see Table 2). Thus, the sexual 

dominance of the largest clones in this region does not seem to be pervasive enough to 

increase inbreeding or reduce genetic diversity at the population level, even after several 

thousand years of clonal reproduction and despite the existence of large, geographically-

extended clones. This is in agreement with mathematical models and simulations showing 

departures from Hardy-Weinberg equilibrium only for populations with extremely rare 

sexual reproduction or in transient states (Balloux et al. 2003; Halkett et al. 2005; Reichel et 

al. 2016). Nevertheless, Bayesian simulations with MSVAR showed a long-term population 

size decline in the Douro hybrid zone. High levels of genetic diversity and low inbreeding at 

the population level (Table 2) suggest that long-term effective population size decline is due 

to outcompeting of other genets by larger clones rather than to increased inbreeding due to 

their sexual dominance. AĐĐŽƌĚŝŶŐ ƚŽ EƌŝŬƐƐŽŶ͛Ɛ IŶŝƚŝĂů SĞĞĚůŝŶŐ ‘ĞĐƌƵŝƚŵĞŶƚ ŵŽĚĞů (Eriksson 
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1997), genotype richness in clonal populations is expected to decrease as the stand ages 

and some clones die, due to the vegetative expansion of the remaining clones. This pattern 

has frequently been observed in herbaceous plants (Barsoum et al. 2004; and references 

therein) and explains the usual left-skewed shape of the ramet number per genet 

distribution (i.e. many small and a few large genets; Arnaud-Haond et al. 2007).  

 

Long-term consequences of clonal dominance by few genets 

The balance between the sexual and asexual contribution to reproduction is perturbed 

when ecological conditions change, until a new balance is established. In general, rates of 

clonality can increase or decrease, but some authors point also to extreme situations where 

equilibrium is not recovered. Honnay & Bossuyt (2005) argued that environmental 

conditions precluding effective sexual reproduction can move a population to a tipping 

point for irreversible extinction of sexual function. Our results suggest that effective 

population size is contracting in the Douro poplar hybrid zone, with a few large clones 

dominating sexual reproduction. However, we did not find significant levels of inbreeding or 

substantial losses of genetic diversity, suggesting that population persistence is not 

threatened by demographic decline (see above).  

New ecological conditions fostered by climate change could either increase or 

prevent asexual reproduction, shifting the Douro population to a new equilibrium. On-going 

processes such as increasing river regulation, growing aridity and temperature, or the 

introduction of exotic invasive plants and pathogens will likely impede sexual reproduction 

more severely than asexual reproduction and could push this population to the verge of sex 

extinction (as observed in Sardinian P. alba; Brundu et al. 2008), thus enhancing 

demographic decline and reducing population resilience. Two mechanisms may underpin 
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this process: the loss of less-adapted genotypes by intraspecific competition with larger 

clones; and the accumulation of somatic mutations that erode the sexual system in 

ƐƵĐĐĞƐƐĨƵů ĐůŽŶĞƐ͕ ĂƐ ƉƌĞĚŝĐƚĞĚ ďǇ ƚŚĞ ͚ƐŽŵĂƚŝĐ ŵƵƚĂƚŝŽŶ ƚŚĞŽƌǇ͛ (Klekowski 1997). 

Alternatively, new ecological conditions could also challenge the large clones that have 

thrived in former ecological conditions, opening new niches to smaller or new genets, and 

re-balancing the genotype numbers. Within this perspective, climatic changes and other 

ecological disturbances may indeed help to prevent the long-term dominance of few genets 

in clonal long-living organisms, in a similar fashion to (although on a different scale than) 

short-term ecological oscillations maintaining standing genetic variation in natural 

populations.  
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Figure legends: 

 

Figure 1 Location of individuals sampled within the Douro poplar hybrid zone including the 

main river course, its major tributaries and nearby mountains. Circles represent Populus 

alba, triangles P. × canescens, and stars P. tremula. Red symbols represent large MLLs (>10 

ramets), while black symbols represent small ones ;чϭϬ ƌĂŵĞƚƐͿ͘ Two enlarged windows of 

the core sampling area (A and B) are also provided to facilitate individual identification. 

 

Figure 2 Genomic background of genets (112 multilocus lineages, MLLs) sampled in the 

Douro poplar hybrid zone. MLLs are represented in the following order from bottom to top: 

the ten largest clones, P. tremula, P. × canescens, P. alba. (a) Genotypes with high scores for 

interspecific heterozygosity are in blue, while low scores are in brown. In (b), high and low 
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scores for specific homozygosity, i.e. P. tremula and P. alba ancestry, are indicated in blue 

and brown, respectively. Loci are ordered following their genomic position, within 

chromosomes. Two genomic regions with increased introgression of P. tremula alleles in the 

ten clones (GCPM1274 in chromosome I and ORPM374 in chromosome VIII) are indicated 

with a green box. Note that chromosome XVII is not represented. STRUCTURE Q values 

(ancestry proportions) are also shown (in the side graph). 

 

 

Table 1 Representative clones (MLLs) found in the Douro poplar hybrid zone, including large 
clones. N: Number of ramets; Extension: longest distance between ramets within clones; Q: 
ancestry proportion based on 72 SSRs (Q = 1 for pure P. alba); Offspring: number of 
descendants detected by either COLONY or FRANz software (see main text for details); Noff: 
average number of ramets ĨŽƌ MLL͛Ɛ offspring (assigned by COLONY). Pa: P. alba; Pc: P. × 

canescens. NA: not applicable. The last two rows report averaged values and standard 
deviation (within parentheses) for the rest of P. alba and P. × canescens MLLs.  
 

MLL Species N 

Extension 

(km) 

Q 

Offspring 

COLONY Noff FRANz 

MLL009 Pa 189 99.5 0.99 29 1.93 21 

MLL006 Pc 124 158.6 0.48 7 1.71 2 

MLL025 Pa 26 74.6 0.99 23 1.52 23 

MLL073 Pa 17 5.6 0.97 1 1.00 2 

MLL002 Pa 8 22.6 0.91 0 NA 0 

MLL074 Pa 7 10.7 0.92 1 1.00 1 

MLL011 Pa 6 4.1 0.99 13 1.23 8 

MLL049 Pa 5 17.5 0.99 0 NA 0 

MLL057 Pc 5 0.6 0.84 0 NA 2 

MLL083 Pa 5 2.6 1.00 0 NA 2 
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MLL126 Pa 3 4.9 0.93 5 4.60 2 

MLL086 Pa 2 1.5 1.00 5 2.20 4 

MLL053 Pa 2 5.2 0.98 0 NA 4 

MLL111 Pa 2 17.1 0.94 0 NA 2 

MLL058 Pa 1 NA 1.00 3 1.33 2 

MLL030 Pa 1 NA 0.96 0 NA 1 

MLL120 Pa 1 NA 0.91 8 1.25 4 

Rest of P. alba 
1.3 

(0.5) 
NA 

0.98 

(0.02) 

0.08 

(0.32) 
NA 

0.22 

(0.42) 

Rest of P. × 

canescens 

1.5 

(0.7) 
NA 

0.69 

(0.10) 

0.00 

(0.00) 
NA 

0.55 

(0.52) 
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Table 2 Clonal structure and genetic diversity in the Douro poplar hybrid zone compared to other European poplar hybrid zones studied to 
date, recomputed from van Loo et al. (2008) and Lexer et al. (2010) for Danube clonal structure and population genetics parameters, 
respectively, and Castiglione et al. (2010) for Ticino hybrid zone (all parameters). Population genetic statistics are based on MLLs only. NA: Not 
available. Bold font indicates tests significantly different from zero (P<0.01). 
 

  Douro Danube Ticino 

  P. alba 

P. × 

canescens 

P. tremula P. alba 

P. × 

canescens 

P. tremula P. alba 

P. × 

canescens 

P. tremula 

Clonal structure           

Number of ramets N 360 145 28 222 185 NA 23 26 NA 

Number of MLGs G͛ 95 20 17 NA NA NA NA NA NA 

Number of MLLs G 82 13 17 169 123 NA 11 22 NA 

Genotypic richness R 0.228 0.090 0.593 0.760 0.663 NA 0.455 0.840 NA 

Simpson evenness V 0.532 0.112 0.617 0.891 0.911 NA NA NA NA 

Log-scaled Pareto 

distribution 
     

     

Additive inverse of the ɴ 0.081 0.012 0.899 2.203 1.581 NA NA NA NA 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

slope 

Coefficient of 

determination 
r

 2 0.722 0.374 0.988 0.911 
0.935 NA NA NA NA 

Genetic parameters           

Allelic richness A 4.92 3.78 4.38 7.18 12.91 7.18 4.72 8.89 5.17 

Rarefacted allelic richnessa A͛ 2.61 3.11 3.29 3.46 3.99 3.43 2.80 3.67 3.01 

Number of private allelesb Ap͛ 0.65 0.52 1.53 1.03 1.07 1.81 0.91 0.64 0.95 

Genetic diversity HE 0.405 0.551 0.517 0.508 0.596 0.533 0.428 0.590 0.479 

Inbreeding coefficientc FIS 0.051 0.066 0.215 0.143 0.180 0.205 0.173 0.124 0.269 

 

a Rarefied to 10 chromosomes. 
b Considering also P. tremula alleles. 
c Computed using within-species allele frequencies as reference. 

 
 
 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

 
Table 3 Posterior density of main demographic parameters, calculated by MSVAR using 
Bayesian simulations under a linear and an exponential model. L1 and L2 indicate the 0.025 
and the 0.975 quantiles of the marginal posterior distributions. N0: current effective 
population size, N1: ancestral population size, µ: mutation rate per generation, and t1: time 
(in years) since population started to decline or expand. ɽ, the mutation-scaled population 
size, is computed indirectly from the posterior distributions of N and µ. 
 
 

 Linear model Exponential model 

 L1 Mean L2 L1 Mean L2 

N0 54.20 1,733.80 55,847.02 71.94 2,243.88 69,823.24 

ɽ0 0.1311 0.2764 0.4782 0.1970 0.3367 0.5232 

N1 1,309.18 42,169.65 1,358,313.45 1,644.37 53,579.67 1,694,337.80 

ɽ1 2.234 6.449 13.843 2.4464 6.9630 13.8898 

µ 2.254E-6 6.998E-5 2.203E-3 1.991E-6 6.109E-5 1.888E-3 

t1 2.911E4 1.019E6 3.648E7 1.148E4 3.908E5 1.352E7 

 
 
 
Supporting Information: 

 

Table S1 Nuclear microsatellites, including locus code, chromosome and genetic position, 

and the marker subsets used in the different data analyses.  

 

Table S2 Basic statistics per sample for GBS data: number of reads, coverage and number of 

stacks.  
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Table S3 General information on MLLs sampled, including the code of an exemplary ramet, 

the species (Pa for P. alba, Pc for P. × canescens, and Pt for P. tremula), the number of 

ramets, the spatial extension of the MLL, the number of offspring assigned by COLONY, the 

identity of both parents assigned by COLONY, and the number of offspring assigned by 

FRANz. 

 

Figure S1 Distribution of pairwise genetic similarity between MLGs, measured as percent of 

identical alleles. Note that the distribution has more than two modes due to the population 

including two different species. The mode with less percentage of similarity corresponds to 

the pairwise comparisons between species, the mode in the middle to the pairwise 

comparisons within species, and the small mode with higher genetic similarity represents 

the comparison between MLGs within the same MLL. 

 

Figure S2 Geographic distribution of ramets for clones MLL009 (a), MLL006 (b), MLL025 (c) 

and MLL073 (d). Color key indicates the genotype (i.e. MLG) of each ramet.  

 

Figure S3 Distribution of expected number of loci with extreme LSA scores in a subset of 10 

clones, but without extreme values in the remaining clones, as identified by 1,000 

permutations (without replacement). Gray bars indicate lower 5% and upper 95% quantiles 

of the distribution. The dotted and dashed lines show the observed number of loci with 

extreme LSA scores in the 10 largest clones in terms of spatial extension and number of 

ramets, respectively. 
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Figure S4 Correlation between genet size and number of offspring, either estimated as 

number of ramets (a) or as maximum distance between two ramets (b). Only the ten largest 

clones are represented. A linear trend is also provided.  

 

Figure S5 Posterior distributions of main population parameters obtained by MSVAR in an 

exponential size-change scenario. Solid line corresponds to current values, and dashed line 

to ancestral values. 
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