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Arctic cut-off high drives the poleward shift
of a new Greenland melting record
M. Tedesco1,2, T. Mote3, X. Fettweis4, E. Hanna5, J. Jeyaratnam6, J.F. Booth6, R. Datta1,6,7 & K. Briggs8

Large-scale atmospheric circulation controls the mass and energy balance of the Greenland

ice sheet through its impact on radiative budget, runoff and accumulation. Here, using

reanalysis data and the outputs of a regional climate model, we show that the persistence of

an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a

poleward shift of runoff, albedo and surface temperature records over the Greenland during

the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the

maximum latitude of ridge peaks of the 5,700±50 m isohypse over the Arctic were

associated with the formation and persistency of a cutoff high. The unprecedented

(1948–2015) and sustained atmospheric conditions promoted enhanced runoff, increased the

surface temperatures and decreased the albedo in northern Greenland, while inhibiting

melting in the south, where new melting records were set over the past decade.
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A
tmospheric circulation affects the energy and mass
budgets of the Greenland ice sheet1–5 by controlling
cloud coverage and optical depth6, and by driving the

spatial distribution, and amount of surface melting and
accumulation7,8. Improving our understanding of the impact of
atmospheric circulation on the Greenland’s surface mass balance
is, therefore, crucial for the refinement of climate and ice-sheet
models, and will ultimately enable improved estimates of current
and future contributions to sea level, by the largest ice body in the
Northern Hemisphere.

Here we show that a poleward shift of melting record over the
Greenland ice sheet in 2015 was driven by the exceptional
atmospheric conditions characterized by new records in mean
zonal winds and jet stream wave amplitude associated with the
formation and evolution of a Arctic cutoff high.

Results
Atmospheric conditions and indicators. Our analysis of the
geopotential height at 500 hPa (Methods) shows that during July

2015 a persistent atmospheric ridge was centred over the Arctic
Ocean (Lincoln Sea, north of Greenland), with geopotential
height anomalies being up to 3.7 s.d.’s (s,B150 m) above the
1981–2010 long-term mean (Fig. 1a). The North Atlantic
Oscillation (NAO; Methods) and Greenland Blocking Index
(GBI, defined as the 500 hPa geopotential height area averaged
between 60–80� N and 20–80� W (ref. 9); Methods) have been
associated with extreme melting events over the Greenland9–12.
The summer average (June-July-August) value for NAO in 2015
of � 1.61 was close to the summer value in 2012 of � 1.59.
Differently from 2015, however, the atmospheric ridge in 2012
was centred over the Greenland ice sheet2,10 (Supplementary
Figs 1 and 2). The July monthly averaged NAO value set a new
record low of � 1.23 (since 1899), being 3.2s below the
1981–2010 mean (Fig. 1c). Concurrently, the GBI also set a
new record for the month of July (Fig. 1c; Supplementary Fig. 3b),
being 2.8s above the 1981–2010 mean. The June and August
conditions in 2015 were not as exceptional in 2012, with mean
June and August NAO values in 2015 being higher than the same
quantities in 2012 (Supplementary Fig. 3a).
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Figure 1 | Atmospheric conditions and selected quantities over the Arctic and over the Greenland ice sheet. (a) 500 hPa geopotential height composite

anomaly (m) for the month of July 2015, with respect to the 1981–2010 baseline period (using NCEP–NCARv1 reanalysis); (b) same as a, but for the

vector winds (ms� 1). (c) Time series of monthly averaged July NAO (red bars) and GBI (black line) indices (unitless) for the period 1950–2015. (d) Time

series of standardized anomalies for the zonal winds at 500 hPa (unitless) averaged over the months of June (light gray), July (red) and August (pale blue)

over the region bounded between 45–85� N and 100� W–0� E (included in the area marked by the dashed lines in a).
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Arctic cutoff high and new surface Greenland records. The
July 2015 high-pressure ridge over the Greenland evolved
from a cutoff high that formed along the eastern coast of
Greenland at the end of June (white circle in Fig. 2b). Over the
same period, the jet stream, here characterized through the
5,700±500 m 500 hPa isoheights13, broke into three positive
heights around the Northern Hemisphere (Fig. 2c). These
conditions reinforced the atmospheric ridge over the Greenland
ice sheet, which moved westward and persisted until mid-July
(Fig. 2b–e). This promoted new records for meltwater
production, runoff, albedo and surface temperature over
northwest Greenland (Fig. 3; Supplementary Fig. 4), as
simulated by the Modèle Atmosphérique Régionale1,3,7 (MAR;
Methods). The monthly averaged record setting values for
simulated albedo and surface temperature in northwest
Greenland for July 2015 were, respectively,B2.5s below and
above the 1981–2010 mean, while runoff was up to B3s above
the mean (Fig. 3). The spatial distribution of the 2015 surface

albedo anomaly simulated by MAR (Supplementary Fig. 5a–c)
indicates that the July 2015 negative anomaly was driven by an
albedo decrease at relatively high elevations, promoted by
the reduced summer snowfall (associated with anticyclonic
conditions) and by increased surface melting and runoff. The
same atmospheric conditions that promoted these new records
over the northern Greenland also inhibited melting in the south,
where enhanced melting and new records have been occurring
over the past recent years1,10. This had implications for the
surface mass balance of Greenland at both regional and ice-sheet
scales (Supplementary Fig. 6). The summer exposure of bare ice
and the presence of surface impurities have been suggested to be
driving the enhanced melting observed over the past B20 years1.
However, the 2015 summer atmospheric conditions promoted
the flow of cold air from the Arctic Ocean (Fig. 1b), favouring
the accumulation of fresh new snow with a high albedo along
western Greenland, hence offsetting the effects of bare ice
exposure (Supplementary Figs 5–7).
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Figure 2 | Spatial and temporal evolution of the jet stream conditions and wave amplitude. Jet stream is here characterized through the 5,700±50 m

500 hPa isoheights13. (a–f) Five day average geopotential height (m) at 500 hPa for the period 18th June to 22nd July 2015. For each day, the daily averaged

values for the 2 days before and after were averaged with the daily average value of that day. Crosses show the locations where geopotential height values

are 5,700±50 m. (g) Maximum latitude of ridge peaks computed from the 500 hPa 5,700±50 m isoheight for the period 1948–2015 over the region

bounded between 45–85� N and 100� W–0� E (included in the area marked by the dashed lines in Fig. 1b), averaged over the months of June (black), July

(red) and August (blue). Linear trends and significance levels are reported in the figure.
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Mean zonal winds and jet stream wave amplitude records. The
westward shift of the cutoff high between the end of June and
the beginning of July 2015 is associated with new records for both
the mean zonal winds at 500 hPa (Fig. 1d) and the maximum
latitude of ridging (Fig. 2g) over the region bounded
between 45–85� N and 100� W–0� E. The July-averaged value of
the 500 hPa zonal winds speed over the Greenland for latitudes
between 60� and 80� N was � 1.5 m s� 1 (here, the negative
sign indicates easterly flow), B3s below the mean. The two other
occurrences of easterly flow for the same quantity during the
1948–2015 period happened in 1950 and 2009. However, the
mean wind speed values were only B� 0.15 m s� 1 in both cases,
hence much smaller in magnitude than the 2015 record value.
The monthly mean maximum latitude of ridge peaks of the
5,700±50 m isohypse over the Atlantic sector (45–85� N and
100� W–0� E) also set the new record of 76.61� N (3.4s) in July
2015, exceeding the previous record of 74.92� N (2.9s) set in 2009
(Fig. 2g). The trend for the maximum latitude of the
ridge peaks for the period 1948–2015 for the month of July is
0.79±0.09� per decade. The same trends for the months of
June and August are, respectively, 0.41±0.14� per decade
and 0.35±0.19� per decade. Such trends are even larger
when considering only the satellite era (1979–2015), being up to
B2.4� per decade for the month of July and are confirmed by the
analysis of different global atmospheric reanalysis data sets
(Supplementary Fig. 8).

Discussion
The mechanisms that created and maintained the 2015 observed
ridge may be linked with forcing from very strong extratropical
cyclones14, to forcings from southern regions15 or to latent
heat release16. Another possibility is the local forcing related to
Arctic amplification13,17. Although recent melt records over the
Greenland have been linked to exceptional mid-tropospheric
atmospheric conditions, with episodes of atmospheric blocking
ridges being associated with Greenland’s melting extremes9,12,
little or no attention has been given to the impact of the
anticipated effects of Arctic amplification on the surface mass
balance of the Greenland ice sheet. In this regard, the 2015

records for both the 500 hPa zonal winds and the maximum
ridging latitude are consistent with the proposed effects on upper
level atmosphere characteristics associated with Arctic
amplification13,17.

The 2015 poleward shift of the surface melting record in 2015,
clearly indicates that improving our understanding of the
impact of exceptional atmospheric conditions on the spatial
distribution of extreme melting is crucial. Besides modulating the
contribution of Greenland to sea level through the volume of
meltwater production, the location of enhanced melting can
influence ocean/ice interaction processes and ocean circulation18,
and bio-productivity, by altering salinity and temperature
profiles of the surrounding ocean. Furthermore, the evolution
of surface melting strongly impacts the Greenland’s hydrological
system, with implications for the englacial and subglacial
systems, as well as ice discharge and dynamics19. Currently,
several general circulation global climate models and Earth
System models do not properly capture summer Arctic
atmospheric forcing8, limiting our capability to properly project
the evolution of the surface mass balance and melting under
future warming scenarios. Our work presented here demonstrates
a strong need to identify the mechanisms that create and
maintain strong cutoff highs. The new atmospheric records, and
the trends of mean zonal winds and wave amplitude of the jet
stream are consistent with the suggested effects of Arctic
amplification13,17. Recent studies provide theoretical arguments
that slowing zonal winds might be associated with larger
planetary wave amplitudes20 and that Arctic amplification
and/or sea-ice loss do intensify existing ridges, thereby
contributing to their persistence21,22. In the event studied here,
however, the exceptional melting followed the ridging, rather
than preceding it in alignment with other studies, indicating that
observations and models results do not support the above
mentioned expected effects of Arctic amplification23–27. Be that as
it may, understanding the impact of cutoff highs on the
Greenland’s surface mass balance, and studying the
mechanisms driving the trends and extremes of the anticipated
effects of Arctic amplification are crucial tasks in view of the
potential regional and global impacts long-time effects of
enhanced melting over Greenland.
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Figure 3 | Surface mass balance and energy balance quantities over the Greenland ice sheet. (a) Spatial distribution of the July 2015 MAR-simulated

runoff anomaly (unitless) over the Greenland ice sheet (1981–2010). The boxes in the map display the boundaries of the different drainage regions.

(b–g) Time series of standardized anomalies (unitless) for mean July runoff (black line), surface temperature (red bars) and surface broadband albedo

(cyan bars) for the period 1950–2015 over the different drainage basin regions identified in a, as simulated by the MAR model.
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Methods
NAO data set. For the NAO index, we used the Hurrell28 NAO values distributed
by the Climate Research Unit of the University of Anglia (http://www.cru.uea.
ac.uk/cru/data/nao/). The Hurrell NAO index is computed from the difference of
normalized sea-level pressure between Lisbon, Portugal and Stykkisholmur/
Reykjavik, and Iceland. More detail on the Hurrell NAO values can be found at
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-
nao-index-pc-based (ref. 28).

Reanalysis data. Geopotential heights and zonal winds at 500 hPa are obtained
from the National Centers for Environmental Prediction (NCEP)/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis data set. The NCEP/NCAR
data set consists of globally, gridded data sets, incorporating observations and
outputs from a numerical weather prediction model from 1948 to present29. Values
of the GBI are computed from the daily and monthly values of the NCEP/NCAR
500 hPa geopotential height values averaged over the area between 60–80� N and
280–340� E (ref. 9). ERA-Interim reanalysis data is used to complement the results
obtained with NCEP/NCAR and was downloaded from http://apps.ecmwf.int/
datasets/data/interim-full-daily/levtype=sfc/.

The MAR regional climate model. Simulations of surface quantities over the
Greenland ice sheet are performed using the MAR1,7,8 MAR is a modular,
hydrostatic, and compressible atmospheric model that uses the sigma-vertical
coordinate to better simulate airflow over complex terrain and the Soil Ice Snow
Vegetation Atmosphere Transfer scheme surface model. The snow model in MAR
is the CROCUS model30. The MAR model configuration used here has 25 terrain-
following sigma layers between the Earth’s surface and the top. The horizontal
resolution of the outputs used here is 20 km. The lateral boundary conditions are
prescribed every 6 h from NCEP/NCAR meteorological fields. Here we use daily
outputs obtained from the average of 120 s outputs produced by the model.
The temporal configuration for the runs is from 1948 to the present. The sea
surface temperature and the sea-ice cover are also prescribed every 6 h in the
model, using NCEP/NCAR reanalysis data29. No nudging or interactive nesting is
used in any of the experiments, with the atmospheric fields over the Greenland ice
sheet computed by the atmospheric module of MAR. The atmospheric model, in
turn, interacts with the CROCUS model, which provides the state of the snowpack,
and associated surface mass balance and energy balance quantities (for example,
albedo and runoff).

Code availability. MAR is an open-source code available to the scientific
community. The source code for the MAR version used in this study is available
at ftp://tedesco-dell.ldeo.columbia.edu/cryoftp/MARv3.5.2src_2015-03-18.tgz.
The codes used for analysing the reanalysis data are available upon request
from the authors.

Data availability. MAR outputs referenced in this study are publicly available at
ftp://tedesco-dell.ldeo.columbia.edu/cryoftp/. ERA-Interim data is available at
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. NCEP data is
available at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.
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