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A Lyapunov approach to control of microgrids

with a network-preserved differential-algebraic model

Claudio De Persis Nima Monshizadeh Johannes Schiffer Florian Dörfler

Abstract— We provide sufficient conditions for asymptotic
stability and optimal resource allocation for a network-
preserved microgrid model with active and reactive power
loads. The model considers explicitly the presence of constant-
power loads as well as the coupling between the phase angle
and voltage dynamics. The analysis of the resulting nonlinear
differential algebraic equation (DAE) system is conducted by
leveraging incremental Lyapunov functions, definiteness of the
load flow Jacobian and the implicit function theorem.

I. INTRODUCTION

Driven by considerable societal and political efforts to

reduce carbon emissions, the electric energy grid is un-

dergoing a period of unprecedented changes. One major

turning point is the replacement of conventional bulk power

generation plants by numerous small-scale renewable energy

sources (RES). While the former are interfaced to the high-

voltage network through synchronous generators (SGs), the

latter are usually connected to the distribution networks via

power electronic devices called inverters. As inverters have

very different physical properties from SGs, RES-dominated

networks also exhibit significantly different dynamics than

their conventional counterparts. Consequently, the transition

to an RES-based energy mix calls for fundamental paradigm

shifts in the operation of electric power systems.

In this regard, the microgrid (MG) concept has been

identified as a key element of future power networks [1]–

[3]. A MG is an electrically connected subset of a distri-

bution network that possesses an own control and energy

management infrastructure. Therefore, a MG can also operate

in islanded mode, i.e., disconnected from the larger utility

grid. Hence, by design, MGs offer several promising features

such as reduction in losses, smooth integration of RES, and

increased network resiliency [1], [2].

Another main feature of MGs compared to conventional

distribution networks is that - assuming an adequate MG
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control architecture is in place - they can provide ancil-

lary services (e.g., frequency, voltage and load-generation

control) [1]. These services were traditionally delivered by

large SGs via centralized or fully decentralized control

architectures [4]. Yet, as outlined above, this is not a feasible

option in networks with large share of small-scale RES.

Motivated by this fact, the present paper aims at designing

a MG control architecture that enables MGs to provide

ancillary services. To this end, we focus on the problems of

frequency and voltage stability combined with optimal power

injections and frequency restoration. These problems are

highly relevant in MGs [1] and have thus recently attracted

significant interest. However, existing work is limited by the

facts that it is conducted under the assumption of decoupled

frequency and voltage dynamics [5]–[8], constant impedance

loads [9]–[11] or without explicit representation of electrical

network interconnections and loads [12].

Building upon [10], [13], the present paper overcomes

the abovementioned limitations by considering a heteroge-

neous and structure-preserving differential algebraic equation

(DAE) model of an inverter-based MG. Such model has

several advantages. First, the load buses are explicitly repre-

sented, rather than absorbed into the network impedances

through Kron reduction [9] Second, it allows to suitably

represent constant-power-controlled loads. Third, it does not

rely on the prevalent mathematically convenient assumption

of decoupling voltage magnitude and phase angle dynamics,

(not valid in heavily loaded grids) [5]–[8], [10], [13], [14].

We assume that the grid-forming inverters (i.e., the

units responsible for frequency and voltage regulators) are

equipped with the standard active and reactive primary

droop controllers [3]. Inspired by [5] and recent incremental

Lyapunov and passivity-based methods [11], [15], we aug-

ment this basic control layer with a distributed-averaging PI

controller that permits to restore the grid frequency to its

nominal value while minimizing a quadratic criterion for the

active power injections. Such a distributed architecture could

provide a flexible alternative to the centralized operation

of MGs discussed in [1], [3]. For the resulting closed-

loop system, we derive a sufficient condition for asymptotic

stability that relies on a local definiteness assumption of

the load flow Jacobian common in voltage collapse studies

[16]–[18]. The analysis is inspired by classic DAE analysis

tools in power systems [19], [20], energy function methods

[21], and center-of-inertia coordinates [22] blended with with

some recent DAE extensions [13] and incremental Lyapunov

methods [11] tailored to power systems. The proofs are

omitted due to lack of space and will be presented elsewhere.



Notation For i ∈ {1, 2, . . . , n}, by col(ai) we denote the

vector
[

a1 a2 . . . an
]T

. We also use col(A,B) to denote the

matrix
[

AT BT
]T

for given matrices A and B. For a given

vector a ∈ R
n, the diagonal matrix diag(a1, a2, . . . , an) is

denoted in short by [a]. The symbol 1 denotes the vector of

ones with appropriate dimension.

II. PRELIMINARIES ON DAE SYSTEMS

In this section, based on [13], [19], we briefly recap some

notions from stability theory of differential algebraic systems

used to establish part of the results of the present paper. We

are concerned with autonomous semi-explicit DAE systems

of the form
ẋ = f(x, y), (1a)

0 = g(x, y), (1b)

where x ∈ R
n, y ∈ R

m and f : R
n × R

m → R
n,

g : Rn × R
m → R

m are twice continuously differentiable

functions. The maximal domain of a solution of (1) is

denoted by I ⊆ R≥0. Furthermore, we consider only

solutions
(

x(x0, y0, t), y(x0, y0, t)
)

of (1) with admissible

initial conditions (x0, y0) ∈ R
n×R

m satisfying the algebraic

constraint

0 = g(x0, y0). (2)

We make the following assumptions on the system (1).

Assumption 1: The system (1) possesses an equilibrium

point (x∗, y∗) ∈ R
n × R

m.

Definition 1: Let Ω ⊂ R
n × R

m be an open connected

set. The algebraic equation (1b) is regular if the Jacobian of

g with respect to y has constant full rank on Ω, that is,

rank (∇yg(x, y)) = m ∀(x, y) ∈ Ω.

If (1b) is regular on Ω, then we say that the DAE system (1)

is regular onΩ.
Assumption 2: Let Ω ⊂ R

n × R
m be an open connected

set containing (x∗, y∗). The DAE system (1) is regular onΩ.
By [19, Theorem 1], existence and uniqueness of solutions

of (1) in Ω over an interval I ⊆ R≥0 for any
(

x(x0, y0, t),
y(x0, y0, t)

)

∈ Ω satisfying (2) is guaranteed by Assump-

tion 2. We refer the reader to [13], [19] for Lyapunov-

LaSalle-type stability results of DAE (1).

III. MODEL OF MG, INVERTERS, AND LOADS

A. Modeling of AC MG circuitry

We consider a structure-preserving inverter-based MG

model composed of load and generation buses. We restrict

our attention to a system-level model, in which distributed

power units interfaced to the network via power electronics

are represented as controllable voltage sources, and the

interconnecting circuitry is modeled by constant impedances.

The latter corresponds to the standard quasi-steady model

of power lines and transformers employed in most power

systems and MG analysis; see [23] for a detailed derivation

of this model. The topology of the grid is represented by

a connected and undirected graph G(V, E) with vertex set

(or buses) V = {1, 2, . . . , n}, and the edge set E is the set

of unordered pairs {i, j} of distinct vertices i and j. By

associating an arbitrary ordering to the edges, the node-edge

incidence matrix D ∈ R
|V|×|E| is defined element wise as

dil = 1, if node i is the sink of the lth edge, dil = −1,
if i is the source of the lth edge and dil = 0 otherwise.

We assume that the line admittances are purely inductive,

and two nodes {i, j} ∈ E are connected by a nonzero real

susceptance Bij < 0. The set of neighbors of the ith node

is denoted by Ni = {j ∈ V | {i, j} ∈ E}. The voltage phase

angle and magnitude at node i ∈ V are denoted by θi ∈ R

and Vi ∈ R≥0, respectively. The relative phase angles are

denoted in short by θij := θi − θj , {i, j} ∈ E . The electrical

frequency at the ith node is given by θ̇i = ωi ∈ R.

With the above notation, the active and reactive power

flows at each node i ∈ V are given by

Pi =
∑

j∈Ni

|Bij |ViVj sin(θij), (3a)

Qi = |Bii|V
2
i −

∑

j∈Ni

|Bij |ViVj cos(θij), (3b)

with Bii =
∑

j∈Ni
Bij + B̂ii and where B̂ii≤0 is the shunt

susceptance at the ith node. This shunt susceptance repre-

sents either a constant impedance load or the magnetizing

susceptance of a transformer. As we are mainly concerned

with dynamics of generation units, we express all power

flows in generator convention [24]. In this paper we do not

make the prevalent decoupling assumption separating active

power and phase angles from reactive power and voltage

magnitudes [5]–[8], [13]. This mathematically convenient

assumption is valid near an operating point with a flat voltage

profile but only poorly justified otherwise.

B. Modeling of MG devices

We consider a MG model consisting of inverter-interfaced

units at buses VI and PQ loads with a constant demand

of active and reactive power at buses VL = V \ VI . The

inverters follow the standard droop control equations trading

off frequency and active power and voltage and reactive

power (after filtering power measurements) [9]

θ̇i = ωi,

TP,iω̇i = −(ωi − ω∗)−KP,i(Pi − P ∗
i ) + uP,i,

(4)

TQ,iV̇i = −(Vi − V ∗
i )−KQ,i(Qi −Q∗

i ),

for each i ∈ VI := {1, 2, . . . , nI}. Here, ω∗ ∈ R>0

is the nominal (synchronous) frequency and Pi and Qi,

given by (3a), (3b), are the active, respectively reactive,

power drawn from node i. Similarly, P ∗
i and Q∗

i denote the

(positive) active and reactive power setpoints. The term uP,i

accounts for a secondary control input to be designed later

in Section V. The parameters KP,i, KQ,i, TP,i, and TQ,i are

strictly positive gains. Consider constant power loads that

satisfy the following algebraic power balance equations

0 =Pi − P ∗
i , (5)

0 =Qi −Q∗
i , (6)



where Pi and Qi, given by (3a), (3b), denote the active and

reactive power demand at node i ∈ VL = V \ VI . Again P ∗
i

and Q∗
i are generally nonzero constant setpoints for active

and reactive power demand; e.g., a resistive-inductive load

has P ∗, Q∗ < 0. The cardinality of VL is denoted by nL.

C. Specifications on optimal synchronous motion

We are interested in a motion of a MG evolving exactly

at nominal frequency and possessing an optimal resource

allocation with regards to active power generation. We define

a synchronous motion of the ith bus by

θi(t) = θi = θ0i + ω∗t , i ∈ V,

ωi(t) = ωi = ω∗ , i ∈ VI ,

Vi(t) = V i , i ∈ V,

where θ0i ∈ R is the initial condition of θi and V i ∈ R>0 is

the constant voltage magnitude. Recall that ω∗ ∈ R>0 is the

synchronous frequency. Along any synchronous motion, the

dynamics of the inverter at the ith node, i ∈ VI , satisfy

θ̇i = ω∗ , (7)

0 = −KP,i(P i − P ∗
i ) + uP,i , (8)

0 = −(V i − V ∗
i )−KQ,i(Qi −Q∗

i ) , (9)

where P i =
∑

j∈Ni
|Bij |V iV j sin(θij). In addition to an

operation at the nominal frequency ω∗, it also is desirable to

allocate the synchronized power injections P i in an optimal

manner, e.g., to ensure a cost-efficient system operation.

From (8), it is clear that the latter can be achieved via a

suitable choice of uP,i. Observe that by summing over all

equations (5) for i ∈ VL and (8) for i ∈ VI , and leveraging
∑

i∈V P i = 0, we obtain the supply-demand balancing

condition

0 =
∑

i∈VI

uP,i

KP,i

+
∑

i∈VI

P ∗
i +

∑

i∈VL

P ∗
i . (10)

Clearly, from (10), along any synchronized motion the

secondary control inputs uP,i have to balance the mismatch

between power injections P ∗
i , i ∈ VI , and load demands

P ∗
j , j ∈ VL. Observe that, as soon as |VI | ≥ 2, there is no

unique assignment of source injections uP,i to achieve this

objective. Here we aim for an optimal resource allocation

such that the synchronized control signals uP = col(uP,i)
minimize the quadratic cost function

uP = argminu∈R
nI

∑

i∈VI

1

2
riu

2
i , (11)

subject to the power balance constraint given by (10) and

where ri ∈ R>0 is the cost coefficient of the ith inverter.

Following the standard Lagrange multipliers method, the

optimal control uP,i that minimizes (11) subject to the

constraint (10) is computed as

u⋆
P,i = −

(

1

riKP,i

)

∑

j∈V P ∗
j

∑

j∈VI

1
rjK

2

P,j

.

By substituting the above expression into (8), we obtain the

steady-state injection as

P i−P ∗
i =

u⋆
P,i

KP,i

= −

(

1

riK
2
P,i

)

∑

j∈V P ∗
j

∑

j∈VI

1
rjK

2

P,j

, i ∈ VI .

To simplify the notation in the forthcoming analysis, we

select the droop gains as KP,i =
1
ri

for all i ∈ VI so that

u⋆
P,i = ū⋆

P = −

∑

i∈V P ∗
i

∑

i∈VI

1
KP,i

∀i ∈ VI . (12)

Under this choice of gains, we observe that all steady-state

secondary control inputs need to be identical: u⋆
P,i = ū⋆

P for

all ∈ VI . We will later on make explicit use of this criterion

in our design of a dynamic feedback controller for uP,i(t).

IV. CHOICE OF COORDINATES, REGULARITY, &

LYAPUNOV FUNCTION CANDIDATES

A. Compact model formulation

The MG model (3), (4), (5) and (6) reads compactly as

θ̇I = ωI , (13a)

TP ω̇I = −(ωI − ω∗
I )−KP (PI − P ∗

I ) + uP , (13b)

TQV̇I = −(VI − V ∗
I )−KQ(QI −Q∗

I), (13c)

0 = PL − P ∗
L, (13d)

0 = QL −Q∗
L, (13e)

where θI = col(θi), ωI = col(ωi), PI = col(Pi), QI =
col(Qi), P

∗
I = col(P ∗

i ), Q
∗
I = col(Q∗

i ), VI = col(Vi), uP =
col(uP,i), TQ = diag(TQ,i), TP = diag(TP,i), and KP =
diag(KP,i) for i ∈ VI . In addition, PL = col(Pi), QL =
col(Qi), P ∗

L = col(P ∗
i ), and Q∗

L = col(Q∗
i ) for i ∈ VL.

Finally, θ = col(θi) for i ∈ V . For simplicity, in the sequel,

we set TP and TQ to the identity matrix.

For the subsequent analysis, it is useful to derive

compact representations for both the active and reactive

power flows P and Q. To this end, we set Γ(V ) =
diag(γ1(V ), . . . , γm(V )), γk(V ) = |Bij |ViVj , with k ∈
{1, 2, . . . ,m} being the index corresponding to the edge

{i, j}. Then, the vector of the active power flows reads as

P = DΓ(V )sin(DT θ), (14)

where D = [dij ] is the incidence matrix of G (see Subsec-

tion III-A), and sin(·) is defined element-wise. By partition-

ing the incidence matrix as D = col(DI , DL) we obtain

from (14)

PI = DIΓ(V )sin(DT θ), PL = DLΓ(V )sin(DT θ).

To write the reactive power in a compact form, let the matrix

A be defined as

Aij =

{

−|Bij | cos(θij) i 6= j

diag(|Bii|) i = j.



For clarity, we use the more informative notation

A(cos(DT θ)) rather than A, where cos(·) is defined

element-wise. Then it is easy to observe that

Q = [V ]A(cos(DT θ))V, (15)

The vector Q of reactive injections can be partitioned as
[

QI

QL

]

=

[

[VI ] 0
0 [VL]

] [

AII(·) AIL(·)
ALI(·) ALL(·)

] [

VI

VL

]

.

Next, we write the synchronous motion with the optimal

injections (12) compactly as θ = 1ω∗ + θ0, ωI = 1ω∗ =

ω∗
I , V = col(V i), and uP = −1

1
TP∗

1TK
−1

P
1

. We also call the

solution ((θ, ωI , V ), uP ) with uP given by (12) the optimal

synchronous motion which together with (13) satisfies

θ̇I = 1ω∗, (16a)

0 = −KP (P I − P ∗
I )− 1

1
TP ∗

1TK−1
P 1

, (16b)

0 = −(V I − V ∗
I )−KQ(QI −Q∗

I), (16c)

0 = PL − P ∗
L, (16d)

0 = QL −Q∗
L, (16e)

where V = col(V I , V L) and

P = DΓ(V )sin(DT θ0), Q = [V ]A(cos(DT θ0))V ,

with P = col(P I , PL), and Q = col(QI , QL). We recall

that the (optimal) synchronous motion is identified by any

solution (θ, ωI = 1ω∗, V ) satisfying (16). For the existence

of such motion we refer the reader to Assumption 3 below.

B. Choice of coordinates

For our analysis it is convenient to map the synchronous

motion to an equilibrium of the system thereby transform-

ing the synchronization problem into a standard stability

problem. Inspired by the center-of-inertia coordinates in

classic power system multi-machine stability studies [22],

we define the average of the phase angles of the inverters as

the reference, i.e., θref = 1
nI

1
T θI . Let δi := θi − θref for

each i ∈ V . In addition, let δI , δL, and δ denote the vector

notation of δis with i ∈ VI , i ∈ VL, and i ∈ V , respectively.

Equivalently, in compact formulation

δI = θI − 1θref = ΠθI ,

δL = θL − 1θref = θL −
1

nI

11
T θI ,

where Π := (I − 1
nI

11
T ). Hence, we have that

δ̇I = ΠωI . (17)

Note that the expressions for active and reactive power only

depend on the relative phase angles, namely DT θ. Since

DT θ = DT (δ + 1θref) = DT δ, (18)

equations (14) and (15) can be equivalently expressed as

P = col(PI , PL) = DΓ(V )sin(DT δ), (19a)

Q = col(QI , QL) = [V ]A(cos(DT δ))V. (19b)

By replacing (13a) with (17), the system (13) becomes in

the new coordinates

δ̇I = ΠωI , (20a)

ω̇I = −(ωI − ω∗
I )−KP (PI − P ∗

I ) + uP , (20b)

V̇I = −(VI − V ∗
I )−KQ(QI −Q∗

I), (20c)

0 = PL − P ∗
L, (20d)

0 = QL −Q∗
L, (20e)

where the power injections P and Q are given by (19).

Furthermore, a synchronous motion (θ, ωI , V ) will be then

mapped to the point (δ, ωI , V ) with a constant phase angle

vector δ = col(δI , δL) satisfying

δI = ΠθI = Πθ0I ,

δL = θL −
1

nI

11
T θI = θ0L −

1

n
11

T θ0I .

The phase angle vector δ satisfies (due to (18))

DT δ = DT θ = DT θ0 . (21)

Thus, in the new coordinates the desired synchronous motion

(θ, ωI , V ) is mapped to the point (δ, ωI , V ) where ωI =
1ω∗, and δ as well as V are constant vectors.

Clearly, for uP = uP , (δ, ωI , V ) is an equilibrium point

of the system (20). Henceforth we focus on the stability of

(δ, ωI , V ) for system (20). To this end, we introduce:

Assumption 3: Fix ω∗. There exist DT δ ∈ (−π
2 ,

π
2 )

m and

V ∈ R
n
>0 such that (16b)–(16e) hold with

P = col(P I , PL) = DΓ(V )sin(DT δ), (22a)

Q = col(QI , QL) = [V ]A(cos(DT δ))V (22b)

C. Regularity of the algebraic equations

In this section, we investigate the regularity of the alge-

braic equations (20d)-(20e) of the system (20), where the

active and reactive power injections are expressed as in (19).

As discussed in Section II, regularity of the algebraic con-

straints (20d)-(20e) is a crucial property both to investigate

the existence/uniqueness of solutions and to study stability

properties of the overall system.

Let δij := δi − δj = θij and define the function

Z(δ, V ) =
∑

i∈V

Qi = V TA(cos(DT δ))V,

and observe that its gradient satisfies

∂Z

∂δL
= PL,

∂Z

∂VL

= [VL]
−1QL.

As we are interested in solutions satisfying V i > 0 in steady

state, the latter identity above is well-defined as long as

VL,i(t) > 0. Under this positivity condition, the algebraic

equations (13d) and (13e) can be written as

0 =
∂Z

∂δL
− P ∗

L,

0 =
∂Z

∂VL

− [VL]
−1Q∗

L,

⇔ 0 = g(x, y). (23)



with x = (δI , ωI , VI) and y = (δL, VL). Now let |D| denote

the matrix obtained from D by replacing all the elements

dik of D with |dik| [15]. Also let |D| be partitioned as

col(|DI |, |DL|). Then, we have the following lemma.

Lemma 1: Consider the system (20). The algebraic

equations (13d)-(13e) are regular in a neighbourhood of

(δ, ωI , V ) if

G(DT δ, V ) > 0, (24)

where G(DT δ, V ) is given by
[

Γ(V )[cos(DT δ)] [sin(DT δ)]Γ(V )|DL|
T [VL]

−1

[VL]
−1|DL|Γ(V )[sin(DT δ)] ALL(cos(D

T δ)) + [VL]
−2[Q∗

L
]

]

.

For the remaining analysis, we assume the following.

Assumption 4: Consider the system (20) with Assump-

tion 3. The desired synchronous motion is such that (24)

is satisfied.

In view of (18), (21), condition (24) is the same as

condition G(DT θ, V ) > 0, which implies regularity of (13d),

(13e) in a neighborhood of (θ, ωI , V ). Hence, recalling from

Section II, Assumption 4 implies that the DAE system (13),

and therefore the DAE system (20), admits a unique solution

over an interval I ⊆ R≥0.

D. Storage function candidate

In this section, we carry out a dissipativity analysis of

the system (20). The dissipativity of (20), besides being an

interesting property per se, is used in Section V to show

that the solutions of (20) interconnected with a suitable

controller converge to the optimal synchronous motion. For

this purpose, we introduce the function

U(δ, ωI , V ) =
1

2
ωT
I K

−1
P ωI + Z(δ, V ).

Observe that the first term is associated with a virtual

kinetic energy, and the second term is equal to Z given

by V TA(cos(DT δ))V corresponding to the electromagnetic

energy stored in the lines. For these reasons, this type of

storage function candidate is typically referred to as energy

function in the literature [21]. Note that its gradient satisfies

∂U

∂ωI

= K−1
P ωI ,

∂U

∂δ
= P,

∂U

∂V
= [V ]−1Q.

For the later convergence/stability analysis of an optimal

synchronized motion, it is convenient to shift the critical

points of U to (δ, ωI , V ). Hence, an appropriate incremental

extension of U can be constructed as the Bregman distance

between a point (δ, ωI , V ) and an optimal synchronous point

(δ, ωI , V ) [11]. To this end, we define the incremental

storage function U as follows

U(δ, ωI , V ) = U(δ, ωI , V )− U(δ, ωI , V )

−
∂U

∂δ

∣

∣

∣

∣

T

−

(δ − δ)−
∂U

∂ωI

∣

∣

∣

∣

T

−

(ωI − ωI)− (Q∗
I)

T
ln(VI)

+ 1
TK−1

Q VI − (V ∗
I )

TK−1
Q ln(VI)− (Q∗

L)
T
ln(VL).

(25)

The following result establishes a crucial dissipation property

of the system (20).

Lemma 2: Consider the MG model (20), (19a), (19b) with

Assumption 4. The time derivative of U along the solution

(δ, ωI , V ), initialized in a neighborhood of (δ, ωI , V ), satis-

fies the following dissipation equality

U̇(δ, ωI , V ) = −
∂U

∂ωI

T

KP

∂U

∂ωI

−
∂U

∂VI

T

[VI ]KQ

∂U

∂VI

+
∂U

∂ωI

T

(uP − uP ), (26)

for a nonzero interval of time I ⊆ R≥0.

Note that the above dissipation inequality (26) as an

algebraic identity is independent of the choice of uP (t), it

is oblivious regarding the regularity of the algebraic equa-

tions, and can be stated whether trajectories actually remain

bounded or not. In Section V, we leverage the dissipation

inequality (26), with the input-output pair (uP − uP ,
∂U
∂ω

) =
(uP−uP , ωI−ωI), to design an optimal frequency controller.

V. SECONDARY CONTROL AND CONVERGENCE TO THE

OPTIMAL SYNCHRONOUS MOTION

The optimal control u∗
P given in (12) requires each inverter

to know all the active power setpoints P ∗
i , i ∈ VI , active

power demands P ∗
i , i ∈ VL, and gains KP,i, i ∈ VI .

This global knowledge of parameters is unpractical and one

would like to design controllers that converges to the optimal

control in spite of a lack of knowledge of these parameters.

Integral controllers are known to provide feedforward control

actions in spite of unknown constant terms, but are typically

not able to guarantee convergence to a specific optimal

solution, as it is of interest here. To asymptotically provide

the optimal control uP given in (12), we consider a modified

integral control law [15], [5], [10]

ξ̇ = −Lcξ −K−1
P (ωI − ω∗

I ), uP = ξ, (27)

where Lc is the Laplacian matrix of a connected communi-

cation graph, say Gc = (V, Ec). The term ωI −ω∗
I regulates

the frequency to the nominal frequency, while the consensus

based algorithm −Lcξ aims at steering the input to the

optimal one given by (12). As a matter of fact, the consensus

part of the controller enforces an equilibrium where all the

components of the state ξ, and hence of u are the same, in

accordance with the optimal control (12).

Inspired by classic energy functions in power systems [21]

and their incremental interpretations in [10], [11], [15], we

propose the following incremental Lyapunov function

W(δ, ωI , V, ξ) = U(δ, ωI , V ) +
1

2
(ξ − ξ)T (ξ − ξ)

+
1

2
(δI − δI)11

T (δI − δI) (28)

where U is given by (25), the second term of W accounts

for the controller dynamics with ξ = u∗
P given by (12),

and the third term is added to render W strictly convex

in a neighborhood of the equilibrium point. In order to



establish convergence results, some suitable properties of W
are shown next.

First, following the calculations in the previous section,

it is easy to see that the partial derivatives of W vanishes

along the optimal synchronous motion (δ, ωI , V , ξ). Next,

the following lemma investigates strict convexity of W .

Lemma 3: Let W be given by (28). Then, we have

∂2W

∂(δ, ωI , V, ξ)

∣

∣

∣

∣

(δ,ωI ,V ,ξ)

> 0 (29)

if and only if the matrix




Γ(V )[cos(DT δ)] [sin(DT δ)]Γ(V )|D|T [V ]−1

[V ]−1|D|Γ(V )[sin(DT δ)] A(cos(DT δ)) + h(V )





(30)

is positive definite, where

h(V ) =

[

[VI ]
−2[Q∗

I +K−1
Q V ∗

I ] 0

0 [VL]
−2[Q∗

L]

]

. (31)

Notice that so far we have made two explicit assumptions

on the vectors V and DT δ = DT θ = DT θ0. The first one is

given by (24) which guarantees the regularity of the algebraic

equations, and the second one is provided by Lemma 3 and

implies strict convexity of the Lyapunov function W . We

now remark the following important implication relating the

two conditions:

Lemma 4: The inequality (29) implies the inequality (24).

Now the main result of this section is stated in the

following:

Theorem 1 (Main result): Consider the system (20),

(19a), (19b), in closed-loop with (27). Suppose that Assump-

tions 3 holds, and the matrix in (30) is positive definite.

Then any solution (δ, ωI , V, ξ) with δI(0) ∈ im(Π) locally

converges to (δ, ωI , V , ξ).
By the theorem above, the controller (27) regulates the

frequency to ω∗
I , and provides the optimal secondary control

inputs (12) at steady-state .

VI. CONCLUSIONS

The paper proposed a dissipativity-inspired Lyapunov

based analysis of inverter-based MGs with constant active

and reactive power loads. The inverters follow the standard

droop control equations and secondary controllers are added

to achieve zero steady state frequency deviation jointly with

optimal resource allocation at steady state. We envision that

the method can be used to analyze and design other closed-

loop differential-algebraic systems covering novel voltage

regulation algorithms for heterogeneous and nonlinear mi-

crogrid models and also power transmission systems.
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