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3D visualization of additive occlusion and tunable
full-spectrum fluorescence in calcite
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From biomineralization to synthesis, organic additives provide an effective means of

controlling crystallization processes. There is growing evidence that these additives are

often occluded within the crystal lattice. This promises an elegant means of creating

nanocomposites and tuning physical properties. Here we use the incorporation of

sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite

(CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that

these additives are incorporated within specific zones, as defined by the growth conditions,

and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and

lifetime imaging microscopy also show that the dyes experience unique local environments

within different zones. Our strategy is then extended to simultaneously incorporate mixtures

of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This

offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles

whose output can be tuned as required.
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T
he incorporation of guest species within host materials is
an attractive route to the formation of new functional
materials and promises the opportunity to tailor the

properties of composites at the nanoscale level1. Porous materials
such as zeolites, organic cages and metal organic frameworks
(MOFs) provide natural candidates for hosts, where occlusion of
partner molecules, or even nanoparticles, is beneficial in a variety
of applications, including storage and sorting2, catalysis3, lighting4

and delivery5. Organic macromolecules offering cavities, such as
cyclodextrins, have also been widely explored for use as biosensors
and drug delivery agents6. In all of these cases, the ability to
incorporate guest species depends on a match between the size,
structure and charge of the guest species and the host.

It is of course also possible to introduce guest species into
non-porous crystalline hosts, forming traditional solid
solutions7,8. Foreign ions with appropriate size and charge can
be exchanged for ions of the parent lattice, and judicious selection
of the dopant can create a material with new optical, magnetic
and electronic properties. Interestingly, this strategy can be
extended to the doping of single crystals with a wide range of
species, providing a versatile method for tailoring properties. One
of the best-studied systems is the biominerals, where occlusion of
biomacromolecules, either individually or as aggregates can lead
to superior mechanical properties9,10. Taking inspiration from
this biogenic strategy, a range of organic and inorganic particles
have been occluded within calcite (CaCO3), and located within
the lattice using microscopy techniques11–16. Again, these
occlusions can be used to endow the host with new properties,
such as increased hardness, magnetism and colour. Recent work
has also shown that occlusion of amino acids within ZnO crystals
can be used to tune the bandgap of this semiconductor17.

A particularly elegant approach to creating single-crystal
composites is through the incorporation of dye molecules, where
this can generate functional materials such as tunable lasers18,19.
One of the real strengths of this strategy, however, is that it also
provides a unique method for understanding additive/crystal
interactions and occlusion mechanisms. The signature colour or
fluorescence of the dyes immediately reveals their location,
while changes in emission spectra give information on their
environments within the crystal20,21.

Here we use the incorporation of fluorescent dyes to investigate
mechanisms of organic additive occlusion within calcite. While
calcite is one of the most widely studied crystals, due to its
excellence as a model system and its biological, environmental
and industrial importance, many questions remain concerning
the mechanisms by which additives control its growth. Our study
uses confocal fluorescence microscopy (CFM) to demonstrate
that organic additives can occlude within calcite in specific zones,
while fluorescence spectroscopy and fluorescence-lifetime
imaging microscopy (FLIM) reveal the existence of different
local environments within the crystals. These results are
compared with dye occlusion in amorphous calcium carbonate.
Having established the occlusion of individual dyes within calcite,
we then extend our study to create a functional material—white
fluorescent calcite—through the simultaneous incorporation of
red, blue and green fluorescent dyes, which together yield a
fluorescence cascade. This one-pot synthesis provides a low-cost
and versatile method for generating a biocompatible, fluorescent
material whose output can be tuned as required, and where
the host crystal ensures greater photostability by protecting the
occluded dyes from fluorescence quenchers, humidity and
oxidation.

Results
Crystal growth studies. Calcium carbonate was precipitated in
the presence of three fluorescent dyes (Supplementary Fig. 1).

A green-emitting dye HPTS (8-hydroxypyrene-1,3,6-trisulphonic
acid)—termed ‘GREEN’ throughout for simplicity, a blue-
emitting naphthalene-based dye HNDS (3-hydroxynaphthalene-
2,7-disulphonic acid)—termed ‘BLUE’ and a newly synthesised
orange-emitting perylene-based dye (N,N0-bis(ethyl-2-sulphonic
acid)-1,6,7,12-tetrakis(phenoxy-4-sulphonic acid)perylene-3,4,9,
10-tetracarboxylic acid-diimide)—termed ‘RED’ were selected for
their high solubility in water, and for their sulphonate function-
ality, which was expected to provide a strong interaction with
calcite22,23. Further investigation of the dye occlusion within
calcite and the relationship between occlusion and morphology
was carried out using GREEN. We then built on these data by
simultaneously occluding GREEN, BLUE and RED within micron
and nano-sized calcite, thereby generating calcite crystals with
tunable fluorescence spectra.

Zoning of GREEN fluorescent dye in calcite. CaCO3 was pre-
cipitated in the presence of GREEN by combining equimolar
solutions of CaCl2, and either Na2CO3 (5 or 25 mM) or NaHCO3

(3.5 mM). ACC is precipitated as the first phase under the
former, but not under the latter conditions. Composite calcite
crystals grown from [Ca2þ ]¼ [CO3

2� ]¼ 25 mM with [GREEN]/
[Ca2þ ]¼ 0.02 exhibited perfect rhombohedral morphologies and
showed the highest fluorescence intensity towards the upper face
(that is, that furthest from the glass substrate), indicating more
efficient occlusion at later growth stages (Fig. 1a–e). This was
confirmed from grey value line profiles, which showed that
fluorescence intensity increased from the centre of the crystal
towards the faces (Fig. 1e). Crystals additionally displayed a
characteristic lower intensity cross spanning opposite vertices,
where the CFM image presents a slice through the centre of the
crystal.

Rhombohedral crystals were also precipitated under con-
ditions of slower crystal growth ([Ca2þ ]¼ [CO3

2� ]¼ 5 mM and
[GREEN]/[Ca2þ ]¼ 0.02) (Fig. 1f–j), where the dye preferentially
located within one half of the crystals only. This is characteristic
of intra-sectoral zoning. Only a sub-volume of a single growth
sector (associated with symmetry-related crystal faces) takes up
the additive18,24, where this is attributed to preferential
association of an impurity with specific hillock steps25.
Inter-sectoral zoning, in contrast, describes the uniform
occlusion of dye within a particular growth sector. That soluble
additives can preferentially occlude within specific zones in calcite
single crystals is recognized for ions such as Mg2þ , Mn2þ , Sr2þ

(refs 26–28) and SO4
2� (ref. 29), where detailed investigations by

atomic force microscopy (AFM) have demonstrated preferential
binding of the smaller ions (Mg2þ and Mn2þ ) to the acute step
edges and the larger ions (Sr2þ and SO4

2� ) to the obtuse.
Correlation between the location of the dye and the crystal
morphologies (Fig. 2) demonstrates that GREEN preferentially
associates with the acute over the obtuse step edges of calcite. This
was corroborated by preliminary AFM studies (Supplementary
Fig. 2). It is also noted that the pattern of dye occlusion seen in
these crystals is not determined by their orientation on the
substrate. The crystals shown in Figs 1f–j and 2 are precipitated
under the same conditions but show different orientations.
Nevertheless, they exhibit identical occlusion patterns.

The crystals precipitated at [Ca2þ ]¼ [HCO3
� ]¼ 3.5 mM,

by comparison, showed quite different morphologies and dye
distributions. While the crystals formed at [Ca2þ ]¼ 5 mM
varied little in morphology or dye distribution with the initial
concentration of GREEN (Supplementary Fig. 3), the crystals
formed at [Ca2þ ]¼ 3.5 mM were sensitive to the dye concentra-
tion and showed edge truncations and the emergence of new,
roughened faces with increasing concentration of GREEN
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(Fig. 1k–o). CFM showed that the dye occlusion followed a
Maltese cross motif whose arms expanded in width with
increasing [GREEN] (Fig. 3). The fluorescence intensity was very
low in the growth sectors beneath the mirror-smooth {104} faces,
and was concentrated in growth sectors terminated by rough
facets. Such occupancy of symmetry-related sectors is indicative
of inter-sectoral zoning24. Modelling of the morphologies of
these crystals using the programme WinXMorph suggested that
the new faces were approximately parallel to {110} and {018}
faces30,31.

Optical properties of GREEN/calcite composites. The spectral
properties of GREEN in aqueous solution were established with
fluorescence spectroscopy, where broad excitation maxima were
observed at lex¼ 334 and 415 nm, and an emission maximum at
508 nm was observed on excitation at 415 nm (Fig. 4a). Occlusion
of GREEN in calcite crystals precipitated at [Ca2þ ]¼ [CO3

2� ]
¼ 5 mM resulted in a change in lem from 508 to 512 nm, and
additional peaks emerged at longer wavelengths with increasing
levels of incorporation (Fig. 4c). Changes in excitation and
emission spectra are frequently seen on the occlusion of
dyes within crystals due to changes in their conformations or
local environments18. For example, rhodamine19, aniline32 and
pyrene-based dyes19 occluded in K2SO4 show red shifts in the
emission maxima, while blue shifts of absorption maxima and
either red or blue shifts in emission maxima were observed for
dyes incorporated within potassium dihydrogen phosphate33,34.
Notably, however, in addition to a small shift in the primary
emission maximum, we also observe a significant increase in the
intensity of a secondary peak at 550–553 nm with increasing

levels of occluded dyes. This spectral change is often observed in
more concentrated solutions of dyes, and is attributed to
H-type p-stacking35–37. As HPTS is anionic under the reaction
conditions used, such stacking could be promoted by ion-
bridging by Ca2þ ions, and the contribution of p–p stacking. Our
data suggest, therefore, that both dye stacking and local
environmental changes may contribute to the spectral changes
observed here.

GREEN/calcite crystals were also investigated using FLIM to
gain information about the local environment of the dye within
the crystal lattice (Fig. 5). FLIM was conducted on GREEN/calcite
crystals prepared from [Ca2þ ]¼ [CO3

2� ]¼ 10 (Fig. 5a–d) and
2.5 mM (Fig. 5e–h), with [GREEN]/[Ca2þ ]¼ 0.02. Rhombohedral
crystals formed under both sets of conditions, where the 10 mM
samples were primarily (001) oriented (Fig. 5a). CFM micro-
graphs revealed different patterns of dye distribution, where the
crystals precipitated from 10 mM reagents exhibited more intense
fluorescence at the centre of the crystal as compared with the
vertices and edges, and an internal cross pattern (Fig. 5b). Those
formed at 2.5 mM, in contrast, exhibit preferential location of the
dye in one-half of the crystal only. In addition, the crystal shown
in Fig. 5f shows that dye is concentrated beneath the small, new
triangular faces formed at the crystal vertices.

The FLIM analysis also revealed changes in the fluorescence
lifetime according to the location of the dye (Fig. 5c,g). While
GREEN in the interior of the crystals precipitated at 10 mM had
average lifetimes of t¼ 4.1 ns, regions of lower intensity showed
shorter lifetimes of t¼ 3.2 ns (Fig. 5c,d). Crystals generated
from 2.5 mM reagents yielded t¼ 3.1 ns from the half-occupied
interior, t¼ 2.9 ns towards the surface of the crystal and
significantly shorter values of t¼ 2.3 ns from the small, triangular
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Figure 1 | GREEN/calcite host–guest composites. (a,f,k) Representative SEM micrographs of GREEN/calcite composite crystals precipitated

under the conditions (a–e¼ [Ca2þ ]¼ [CO3
2� ]¼ 25 mM and [GREEN]¼0.1 mM; f–j¼ [Ca2þ ]¼ [CO3

2� ]¼ 5 mM and [GREEN]¼0.1 mM; and

k–o¼ [Ca2þ ]¼ [HCO3
� ]¼ 3.5 mM and [GREEN]¼0.1 mM). (b,g,l) Three-dimensional (3D) representation of the morphologies of the crystals imaged in

c,h,m, with approximate faces labelled, and the growth sectors coloured in green. The þ and � labels denote obtuse and acute step morphologies,

respectively. (c,h,m) Confocal fluorescence micrographs of composite crystals grown under the conditions. (d,i,n) Orthogonal views (XY, YZ and XZ) of

composites obtained from z-stacked confocal micrographs, showing the distribution of dye in 3D (zþ direction is away from the substrate, XY is the

imaging plane) Colour scale: blue (low intensity) to red (high intensity); black, no signal; White, detector saturation. (e,j,o) Line profiles (e) and intensity

histograms (j,o) corresponding to the lines or regions shown on the orthogonal view images in (d,i,n) respectively. Scale bars, 15 mm (a); 10mm (f);

25mm (k); 20mm (c,h,m).
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facets showing the most intense fluorescence (Fig. 5g,h). These
results suggest that the incorporated dyes can occupy different
environments within the lattice, where this may reflect different
modes of incorporation. For comparison, dry and wet (in aqueous
solution) GREEN yielded fluorescence lifetimes of t¼ 0.6 and
5.4 ns, respectively (Supplementary Fig. 4).

GREEN occlusion in ACC. Further insight into dye occlusion
within CaCO3 was obtained by investigating incorporation
into ACC. ACC was precipitated from [Ca2þ ]¼ [CO3

2� ]¼ 25 mM
solution in the presence of GREEN. Characterisation of the
ACC particles using scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) showed that they were
50–100 nm in size, and the polymorph was confirmed by selected-
area electron diffraction, powder X-ray diffraction, Fourier
transform infra-red spectroscopy and Raman spectroscopy

(Supplementary Fig. 5). GREEN/ACC composites were fluor-
escent under ultraviolet excitation, demonstrating the retention of
GREEN within the particles (Supplementary Fig. 6). However,
quantitative analysis indicated that occlusion levels (0.0014 mol%)
were less than half those found in calcite (0.0034 mol%)
precipitated under identical conditions ([Ca2þ ]¼ [CO3

2� ]¼ 25
mM, [GREEN]/[Ca2þ ]¼ 0.004; Supplementary Figs 7 and 8).
No secondary emission peaks were observed by fluorescence
spectroscopy (unlike in the crystalline hosts), even at high
[GREEN].

The difference in fluorescence of GREEN occluded in ACC and
calcite was also demonstrated by allowing a small amount of
crystallization of ACC to calcite. While calcite crystals were not
distinguishable in the mineral powder by optical microscopy
(Fig. 6a), they were readily distinguished using CFM thanks to
their higher brightness as compared with the ACC background
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Figure 2 | Three-dimensional distribution of GREEN in GREEN/calcite composites. SEM (a) and optical (b) micrographs of a GREEN/calcite composite

grown under conditions [Ca2þ ]¼ [CO3
2� ]¼ 5 mM and [GREEN]¼0.1 mM oriented with crystallographic c axis on a glass slide. (c,d,e) z-stacks obtained

by fluorescence confocal microscopy rendered into three dimensions (3D) with accompanying model. The rendered 3D model was viewed as shown in the

optical image (c), orthogonally to {104} face (d) and down the crystallographic a axis (e). The occupied zones dominated by growth at acute steps are

shaded green on modelled images, and correspond well to confocal images. Scale bars, 20mm (a–e).
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Figure 3 | Changing GREEN distribution with changing initial [Dye]. (a,f) Representative SEM micrographs of GREEN/calcite composites grown
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(b,g) Three-dimensional (3D) representation of composites as imaged by CFM, with approximate faces labelled, and growth sectors coloured in green.

(c,h) Confocal fluorescence micrographs of composites from the same conditions. (d,i) Orthogonal views images (XY, YZ and XZ) of composites obtained

from z-stacked confocal micrographs effectively detailing the distribution of dye in 3D (zþ direction is away from the substrate, XY is the imaging plane).

Colour scale: blue (low intensity) to red (high intensity); black, no signal; white, detector saturation. (e,j) Image analyses in the form of line profiles (e) and
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(Fig. 6b). This difference was also observed on comparing the
average grey values from areas attributed to amorphous and
crystalline phases, where FLIM demonstrated lifetimes for dyes
associated with amorphous and crystalline hosts of t¼ 5.2 and
3.9 ns, respectively (Fig. 6c,d).

This behaviour was attributed to the very different environ-
ments provided by calcite and ACC, where the significant
levels of structural water in ACC38 provide a more hydrated
environment that may reduce the aggregation of the dyes. This
hypothesis was supported by FLIM data, where the fluorescence
lifetime associated with GREEN/ACC is almost identical
to that of aqueous GREEN (tACC¼ 5.2 ns cf. taq¼ 5.4 ns)

(Supplementary Fig. 4). That the ACC contained significantly
less GREEN than calcite crystals grown in the same concentration
of dye is also interesting and perhaps at first sight counter-
intuitive, given that the dye could be expected to occlude more
readily into the disorganised ACC structure than the crystalline
calcite phase. However, dye occlusion is a kinetically driven
process such that the mechanism by which occlusion occurs must
be considered together with the stability of the product. Our data
therefore demonstrate that binding of the dye to the calcite steps,
and subsequent overgrowth is a more efficient process than
co-precipitation with calcium and carbonate ions during the
formation of ACC.
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Full-spectrum white fluorescent calcite. The generality of
incorporating sulphonated fluorescent dyes in calcite was further
investigated by occluding BLUE and RED within calcite. CaCO3

was precipitated in the presence of both dyes under conditions
[Ca2þ ]¼ [CO3

2� ]¼ 5 mM and [Ca2þ ]¼ [HCO3
� ]¼ 3.5 mM

under various [Dye]/[Ca2þ ] conditions. BLUE did not modify
the typical rhombohedral morphology under either growth
condition, even at higher BLUE concentrations (Supplementary
Figs 9 and 10). RED caused plate-like overgrowths on
single-crystal cores at [Ca2þ ]¼ [CO3

2� ]¼ 5 mM and [RED]/
[Ca2þ ]¼ 0.02 (Supplementary Fig. 11) while rhombohedral
morphologies were observed at [RED]/[Ca2þ ]¼ 0.001. Very
low [RED] were also used for [Ca2þ ]¼ [HCO3

� ]¼ 3.5 mM
([RED]/[Ca2þ ]¼ 0.0003 and 0.0006), and generated some new,
small {001} faces, where this morphology is characteristic of
obtuse step blocking (Supplementary Fig. 10)39.

The optical properties of BLUE and RED within calcite were
also investigated. Broad excitation maxima were observed in
aqueous solution at lex¼ 308 and 324 nm for BLUE and 506 nm
for RED, while blue and orange emission maxima at 458 and
603 nm were observed on excitation of BLUE and RED at 308 and
506 nm, respectively (Fig. 4a). In dye/calcite composites formed at
[Ca2þ ]¼ [CO3

2� ]¼ 5 mM, little change was observed with
BLUE (Fig. 4b) while RED showed significant red shifts, where
the principle emission peak observed in solution was replaced by
lower energy peaks at 628–633 and 659–673 nm. As with GREEN,
this was attributed to stacking of the dye molecules (Fig. 4d).

To use dye incorporation to tune the fluorescence signal of the
host calcite crystals it was necessary to quantify the relative
occlusion efficiencies of the individual dyes. This was achieved by
quantifying the dye liberated from solubilized crystals. All dyes
showed an approximately linear increase in occlusion with the
initial [Dye]/[Ca2þ ], where a similar trend has been observed
with the occlusion of aspartic acid and glycine in calcite
(Supplementary Fig. 7)40. RED incorporated to the highest
extent, followed by BLUE and GREEN; under conditions of
[Ca2þ ]¼ [CO3

2� ]¼ 5 mM and [Dye]/[Ca2þ ]¼ 0.004, RED,
BLUE and GREEN are occluded to levels of E0.05, 0.02 and
0.002 mol%, respectively. This suggests that incorporation is
related to the number and distribution of the sulphonate groups
rather than the molecular weight of the dye. While these levels of
incorporation were too low to give significant lattice parameter
distortion or line broadening from high-resolution synchrotron
powder X-ray diffraction analysis (Supplementary Fig. 12), the
composite crystals exhibited visible fluorescence under ultraviolet
excitation (365 nm) (Supplementary Fig. 13).

Calcite was then precipitated in the presence of mixtures
of the three dyes, where their simultaneous incorporation
was anticipated to yield full-spectrum white fluorescence on
ultraviolet excitation (Fig. 7a). Owing to the different lex maxima
of the individual dyes, white fluorescence was expected due to a
fluorescence cascade; blue-emitted light from BLUE excites
GREEN, which in turn emits green light that excites RED
(Fig. 7b). Reaction conditions were selected based on the ratio of
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Figure 6 | Direct comparison of local GREEN environment by FLIM. (a) Optical micrograph of ACC after extended exposure to reaction solution.
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Scale bars, 20mm (a–c).
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the dyes in the reaction solution required to obtain suitable
incorporation levels of each dye at [Ca2þ ]¼ [CO3

2� ]¼ 5 mM.
To yield a white cascade the dyes must be present at levels where
a suitable proportion of emission photons, particularly from
BLUE and GREEN, is not absorbed. They therefore contribute
their respective colours to the net fluorescence. A range of
conditions were explored (Supplementary Table 1), and dye
mixture 5 yielded white fluorescent calcite as confirmed by optical
characterization (Supplementary Fig. 13).

The distribution of the three occluded dyes within the crystals
was determined using CFM (Fig. 7c). BLUE and RED showed
comparable patterns of localization as the single-dye studies
(Fig. 7d), while GREEN showed preferential localization in
regions dominated by RED, yielding net yellow fluorescence.
These effects can be attributed to favourable pyrene–naphthalene
and pyrene–perylene interactions, which result in mixed
p-stacking, and comparatively poor naphthalene–perylene
interactions41. Despite some inhomogeneities in the distri-
butions of the fluorescent dyes, however, the close proximity of
the dyes in the crystal and the formation of a fluorescence cascade
ensures bulk white fluorescence is achieved.

Fluorescent calcite nanoparticles. Finally, our concept of
fluorescent dye occlusion was extended to calcite nanoparticles.
These were formed via a modified carbonation method

(Supplementary Figs 14 and 15)42, and TEM and powder X-ray
diffraction analysis revealed 55 nm calcite particles (Fig. 8 and
Supplementary Fig. 16). The synthesis was performed in the
presence of individual or mixtures of dyes, and neither the
morphologies nor particle sizes were significantly affected by
the presence of dye. The calcite nanoparticles exhibited bright
fluorescence from both dried nanoparticles (Supplementary
Fig. 17) and ethanolic suspensions (Fig. 8c–g) on excitation
with ultraviolet light, where the emitted light was dependent on
the dye (or mixture of dyes) present during nanoparticle growth.
Quantification of the amounts of fluorescent dye occluded
revealed an identical trend to that seen for micron-scale calcite
(that is, RED4BLUE4GREEN) (Supplementary Table 2),
and no significant differences in the spectroscopic data were
observed as compared with the micron-scale calcite crystals.
The fluorescence lifetime of GREEN in nanoparticulate
calcite was t¼ 3.0 ns, which is comparable to values obtained
for internal regions of calcite single crystals grown from
[Ca2þ ]¼ [CO3

2� ]¼ 2.5 mM.

Discussion
There is a huge amount of literature on the influence of organic
additives on the precipitation of CaCO3, where these have focused
on the effect on crystal polymorph and morphology43. Owing to
the challenge of quantifying the amounts of organic molecules
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present within a carbonate-based crystal, much less is known
about whether association of the additives with the growing
crystals is accompanied by their incorporation into the crystal
lattice. It is well recognized that proteins are occluded within
calcite single-crystal biominerals, where these are quantified
by gravimetric analysis after dissolution of the mineral44. Our
study provides new insight into the occlusion of small organic
molecules (here fluorescent dyes) within calcite single crystals,
demonstrating the existence of zoning and the relationship
between occlusion and changes in crystal morphologies. It is
noted that proteins tagged with fluorescent dyes have been
occluded within polycrystalline and single-crystal calcite, but
zoning was not observed45. The dye Congo Red has also been
reported to occlude within calcite46, and a recent AFM study has
showed that this dye stabilizes the polar step edges along the
[010] direction of calcite (10.4)47.

Traditionally, the emergence of new crystal faces on calcite was
attributed to the additives preferentially adsorbing to, and
stabilizing these faces44,48–50. In situ AFM studies modified this
view and demonstrated that the morphological changes caused by
species such as aspartic acid arise due to the additives binding to
the {104} step edges51. Changes in the shape and separation of
these step edges then translate into changes in the macroscopic
morphology. It is now also recognized that the growth of
low-solubility crystals such as calcite is limited by the availability
of kink sites, such that once a stabilized growth unit has formed
on a step edge, it can readily propagate52–55. Impurities can
therefore interfere with this process by binding to kink sites as
they form, or during their propagation. Binding can be
considered irreversible (when the detachment rate is extremely
slow as compared with the rate of step propagation) or reversible,
where the residence time of the impurity at a kink site as
compared with the propagation rate of the steps will determine
how efficiently the dye is occluded.

Both the incorporation of GREEN and its effects on calcite
morphology vary systematically with the supersaturation of the
crystal growth solution. While uniform occlusion is observed at
[Ca2þ ]¼ [CO3

2–]¼ 25 mM and [GREEN]¼ 0.1 mM (Saturation
Index (SI)¼ 3.5), intra-sectoral zoning was observed at the lower
supersaturation conditions present at [Ca2þ ]¼ [CO3

2� ]¼ 5 mM
and [GREEN]¼ 0.1 mM (SI¼ 2.7) (Fig. 1). This demonstrates
that the dye binds to both the acute and obtuse steps, but that
binding is stronger to the acute sites. This transition also shows
that the binding of the dye to the kink sites is reversible, and that
the average residence time of a dye molecule at an acute kink site
is longer than at an obtuse step; this is additionally supported by
the low level of incorporation of GREEN. Notably, rhombohedral
crystals formed under both sets of conditions, which demon-
strates that a change in crystal morphology cannot be used as a
signature for additive occlusion within the crystal lattice.

At the higher supersaturation, there is an increased probability
of forming new kink sites, which creates more opportunities for
binding and incorporating impurities52. While these impurities
will necessarily block the propagation of the sites to which they
are adsorbed, adjacent active (unblocked) kink sites can continue
to grow until they permanently entrap the impurity. As kink sites
are on average closer together at higher supersaturations,
occlusion will be more effective. Faster growth also gives rise to
occlusion at both acute and obtuse steps. If growth is sufficiently
rapid as compared with the rate of detachment from the
obtuse step, little difference will be seen in the occlusion at the
acute and obtuse steps. As the supersaturation is reduced,
the average density of kink sites and the rate of completion of step
edges are reduced, and the average separation of the kink sites is
increased. Under these conditions the shorter residence time
of the dye at the obtuse step becomes important such that only
dyes bound to acute steps are resident long enough to become
occluded.
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More complex inter-sectoral zoning in the form of Maltese-
cross-type patterns was observed on further reduction of the
supersaturation to conditions of [Ca2þ ]¼ [HCO3

� ]¼ 3.5 mM
and [GREEN]¼ 0.1 mM (SI¼ 0.9). This was accompanied by
changes in the crystal morphologies such that they exhibited both
mirror-smooth {104} faces and highly roughened faces approxi-
mately parallel to {011} and {018} surfaces. Dye occlusion only
occurred in zones associated with the rough crystal faces, and
virtually no dye was located in zones associated with the smooth
{104} faces. Increase of the dye concentration (under otherwise
identical solution conditions) resulted in an increase in the
relative area of the rough surfaces, and a corresponding increase
in the volume of the sectors in which dye was localized, while
reduction in the dye concentration to [GREEN]¼ 0.01 mM gave
rhombohedra that only displayed slight dye occlusion at growth
sector boundaries (Fig. 3).

Under these conditions of low supersaturation, the average
number of kink sites on the {104} planes is small, such that there
are few opportunities for dye incorporation within these faces.
However, the dye molecules continue to occlude at the
boundaries between different growth sectors. The intersections
between zones (both inter-sectoral and intra-sectoral) typically
correspond to sites of increased lattice strain that can preferen-
tially trap impurities56,57. Our data also show that higher levels of
occlusion at the boundaries between growth sectors correlate with
changes in the crystal morphologies. Enhanced occlusion at these
sites disrupts the normal translation of the steps on the {104}
faces, thereby generating new, striated faces. As these are
stabilized by the adsorbed/occluded dye molecules, their growth
is slower than the smooth {104} faces such that their relative sizes
increases during crystal growth. It is also noted that calcite crystal
morphologies are the result of a complex interplay between
multiple variables. The ratio of Ca2þ to CO3

2� in the growth
solution, the pH and the ionic strength can all affect the growth
rate of calcite at fixed values of the supersaturation and that the
acute and obtuse steps can grow at different rates according to the
solution conditions56,58,59.

Our demonstration that the fluorescent dyes can occlude
within the calcite crystals by different mechanisms—binding to
kink sites (leading to occlusion within zones associated with
smooth {104} faces) or at the boundaries between growth sectors
(leading to occlusion within zones associated with rough faces)—
is also supported by the fluorescent lifetime measurements.
Occlusion associated with the {104} faces was characterized by
significantly longer lifetimes (t¼ 4.1–3.2 ns) than occlusion in the
rough faces (t¼ 2.3 ns). These values can also be compared with
the same dye in solution (taq¼ 5.4 ns) and in a dry state
(tdry¼ 0.6 ns). This provides a clear demonstration that dyes
occluded under high and low rates of growth occupy different
environments within the crystal.

To-date, information about the location of organic additives
within calcite has predominantly come from single-crystal60–62

and powder63 X-ray diffraction studies of biominerals and
synthetic crystals precipitated in the presence of additives.
Anisotropic lattice distortions are observed, which provide
insight into the orientation of the additives within the crystals.
It is noted, however, that calcite is elastically anisotropic and
more flexible along the c axis than the a axis40. Therefore, greater
distortion along the c axis does not necessarily mean that
the additive is located on planes perpendicular to the c axis.
Single-crystal X-ray diffraction data have also been correlated
with observed morphological changes to link additive adsorption
to calcite to occlusion60–62. However, the demonstration that
additives bind to {104} step edges has superseded this picture51.
Indeed, rough crystal faces on calcite—regardless of the
crystallographic assignment—comprise {104} faces on a

microscopic scale (Supplementary Fig. 18). Additives may also
reorient during occlusion, so their ultimate position within the
lattice does not necessarily reflect their binding mode to the
crystal surface. With the ability to visualize the additives within
the calcite crystals (X-ray diffraction will necessarily record an
average), our experiments provide unique insight into the
mechanism of additive occlusion, and show how this can
translate into morphological changes.

Adding to this discussion, it is also valuable to compare the
mechanisms that give rise to zoning in calcite with those that
operate for another common biomineral, calcium oxalate, which
readily exhibits zoning effects64–66. Unlike calcite—which only
displays smooth {104} faces—both calcium oxalate monohydrate
and dihydrate exhibit a number of crystallographically distinct
smooth faces. Significant differences in additive binding energies
to these faces have been reported, which will facilitate inter-
sectorial zoning67,68. A key feature of additive binding to calcite is
acute/obtuse step selectivity, which drives intra-sectorial zoning.
Studies of peptide binding to the different step edges present on
given calcium oxalate faces suggest that the energy differences are
much smaller67,68 than those estimated for aspartic acid binding
to the acute and obtuse steps on calcite51. This makes intra-
sectorial zoning less likely for calcium oxalate than calcium
carbonate.

Having established that red-, blue- and green-emitting dyes in
calcite can be individually incorporated within calcite crystals,
we extended this approach to the simultaneous occlusion of all
three dyes. While crystals exhibiting multiple luminescence
signals have been generated previously due to the sector-
dependent emission of certain dyes21, our approach enables the
fluorescence signal from the crystals to be precisely tuned by
simply altering the ratio of dyes in the initial solution. This
strategy was also used to create calcite nanoparticles with tunable
fluorescence, where it is noted that dye occlusion in calcite
was more efficient than in ACC. These nanoparticles provide
some clear advantages over semiconductor quantum dots in
applications such as in vivo imaging, where they are
biocompatible and degradable, and the spectral properties are
independent of the surface chemistry and particle size. Calcite
also has advantages over silica as a host material in that
degradation products are water-soluble and easily ejected from
organism. Silica, in contrast, yields water-insoluble degradation
products that may exhibit cytotoxicity on accumulation69.

This work provides new insight into the mechanisms by which
organic additives occlude within calcite, and demonstrates that in
common with small ions such as Mg2þ and Mn2þ , organic
molecules can concentrate within specific zones. This effect was
dependent on the growth conditions, such that uniform occlusion
was observed at high supersaturations, while intra-sectoral zoning
occurred at lower supersaturations. The latter shows that despite
the size and rigid conformation of the dye molecules, occlusion
under these solution conditions is governed by preferential
adsorption to acute step edges. Our experiments also provide a
new understanding of the relationship between additive occlusion
and the morphological development of calcite, and show that dye
occlusion within the growth sectors associated with the {104}
faces can occur without any shape change. Significant changes in
crystal morphologies were observed at low supersaturations and
high [Ca2þ ]/[CO3

2� ] ratios, however, where this was associated
with a change in the incorporation mechanism; occlusion
occurred in the growth sectors associated with new, rough crystal
faces. These results highlight the complexity of additive/crystal
interactions, and demonstrate that significant care must be taken
when using indirect techniques to assess additive occlusion
mechanisms. Finally, we extended our strategy to occlude
multiple dyes within calcite crystals, where this enabled us to
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generate biocompatible nanoparticles with tunable fluorescence.
These fluorescent nanocomposites provide interesting potential
host–guest materials for applications such as optical brighteners,
pigments and bioimaging agents, where stabilized fluorophores
are required.

Methods
Materials. HNDS (BLUE), HPTS (GREEN), ethanol, sodium hypochlorite
solution (10–15%), calcium chloride dihydrate, anhydrous sodium carbonate,
anhydrous sodium bicarbonate, taurine, phenol, potassium carbonate, anhydrous
pyridine, anhydrous N,N-dimethylformamide and ethylenediamine tetraacetic acid
disodium salt (Na2.EDTA) were used as purchased from Sigma-Aldrich. Sulphuric
acid was used as purchased from Fluka. 1,6,7,12-tetrachloroperylene-3,4,9,
10-tetracarboxylic acid dianhydride was used as purchased from Santa Cruz
Biotechnology. Deionized (DI) water was used as obtained from in-house Millipore
Q system (o2 p.p.m. total organic content (TOC) and 18.2 MO).

Stock solutions. Aqueous solutions of CaCl2.2H2O (7.3505 g in 250 ml DI water
for 200 mM), Na2CO3 (5.2994 g in 250 ml DI water for 200 mM) and NaHCO3

(4.2003 g in 250 ml DI water for 200 mM) were prepared in 250 ml volumetric
flasks and stored in glass bottles. A unit of 100 mM aqueous Na2CO3 or CaCl2
solution was prepared by adding 10 ml 200 mM aqueous stock solution to 10 ml DI
water, yielding 20 ml of final solution. Dye solutions were prepared by the addition
of 20 ml DI water to solid dye (0.0139 g BLUE for 2 mM; 0.021 g GREEN for 2 mM;
and 0.0052 g RED for 0.2 mM solution) in a glass vial. All solutions were filtered
through a syringe-driven polycarbonate filter (0.22 mm) before use.

Buffers. An aqueous solution of Na2.EDTA dihydrate ((Na2.EDTA.2H2O); 9.306 g
in 250 ml DI water for 100 mM) was prepared in a 250 ml volumetric flask and
stored in a glass bottle. An aqueous solution of potassium borate (pH 10.4) buffer
(1 M) was prepared in a 500 ml glass beaker under constant stirring. The correct
mass of boric acid (30.915 g for 500 ml 1 M solution) was added to B300 ml DI
water. Under constant monitoring of the pH, potassium hydroxide pellets were
carefully added until all potassium hydroxide and boric acid had dissolved and the
pH was 10.4. The solution was then decanted into a 500 ml volumetric flask and the
volume made up to 500 ml with DI water before being stored in a clean glass bottle.

Calcite/dye composite preparation. Calcite growth studies were divided into
three groups: [Ca2þ ]¼ [CO3

2� ]¼ 25 mM; [Ca2þ ]¼ [CO3
2� ]¼ 5 mM; and

[Ca2þ ]¼ [HCO3
� ]¼ 3.5 mM. Calcite single crystals were grown in beakers by

direct mixing. Beakers were charged with different final volumes of reaction liquor
to obtain sufficient mass of final calcite/dye composites for analysis (at least
100 mg). To achieve this, total volumes of 100, 500 and 800 ml were used for
[Ca2þ ]¼ 25, 5 and 3.5 mM, respectively. Each beaker had two clean glass
substrates for microscopic analysis. All experiments were prepared with
dilutions of aqueous stock solutions ([CaCl2]¼ 200 mM, [Na2CO3]¼ 200 mM,
[NaHCO3]¼ 200 mM, [BLUE] (HNDS)¼ 2 mM, [GREEN] (HPTS)¼ 2 mM and
[RED]¼ 0.2 mM). Where concentrations of dye were higher than those present in
the stock, the solid dye was added to the beaker before addition of DI water.

For example, for [Ca2þ ]¼ [CO3
2� ]¼ 5 mM and [GREEN]¼ 0.1 mM

([GREEN]/[Ca2þ ]¼ 0.02), 12.5 ml CaCl2 stock, 25 ml GREEN stock and 450 ml
DI water were mixed in a clean 1 L beaker. The solution was stirred with a clean
glass rod to ensure full mixing was achieved. To initiate the reaction, 12.5 ml
Na2CO3 stock was added under stirring. The beaker was covered with Parafilm and
left for 3 days. The crystallization liquor was removed. Extracted glass substrates
holding calcite crystals were bleached by submersion in 3.33–5% NaOCl solution,
followed by rinsing with DI water and ethanol. Crystals on the surface of the beaker
were then rinsed with DI water to remove remaining crystallization liquor. Crystals
were scraped off the surface of the beaker in the presence of 5 ml EtOH with a
spatula. When all product crystals are removed from beaker surfaces, the ethanol/
crystal suspension was filtered out using Millipore vacuum filtration system
(0.45 mm polycarbonate membrane). Dried crystals were bleached in 1 ml 10–15%
NaOCl solution over for 24 h in centrifuge tubes. Bleached crystals were then
collected by centrifugation (10 min, 8,000g), rinsed in DI water twice, then ethanol
twice and allowed to dry. The procedure was followed for all experiments, where
volumes of stock solutions and water were altered as appropriate for each
experiment. In [Ca2þ ]¼ [HCO3

� ]¼ 3.5 mM with equimolar NaHCO3,
no immediate precipitation was observed and crystallization was allowed to occur
for 7 days.

Sample preparation for quantitative studies. Approximately 10 mg bleached,
dry calcite/dye composites were precisely measured and dissolved in 3 ml 100 mM
aqueous Na2.EDTA solution. The precise known mass is important for calculating
mol% or wt% values of dye. A volume of 100 ml of each dissolved composite
solution in Na2.EDTA was added to individual wells of a 96-well plate with 100 ml
1 M potassium borate buffer (pH 10.4) was added to each well to control pH.
The concentration of previous incorporated dye was determined by fluorescence

spectroscopy with a well plate reader (Perkin Elmer EnVision 2103) and a
calibration curve of known concentration of each dye.

White calcite preparation. White calcite samples were precipitated from
[Ca2þ ]¼ [CO3

2� ]¼ 5 mM experiments. They were performed as per other
experiments, except instead of the addition of a single-dye solution, various
mixtures of dyes were prepared (Supplementary Table 1)

Sample preparation FLIM. Samples for FLIM were prepared by direct mixing on
clean glass substrates (microscope glass coverslips washed in piranha solution). All
samples were prepared from 350 ml final volume of crystallization liquor. This
optimized the yield and size (10–20 mm) of crystals grown directly on the substrate.
Carbonate-based sample preparation was favoured due to the low signals obtained
from bicarbonate-prepared samples. Different conditions ([Ca2þ ]¼ [CO3

2� ]
¼ 2.5, 5 and 10 mM) with equimolar Na2CO3 were used, with [GREEN]/[Ca2þ ]
¼ 0.0002, 0.002 and 0.02 for each [Ca2þ ]. Crystallization was undertaken from a
1:1 mixture of a CaCl2/GREEN solution and a Na2CO3 solution. These stocks were
prepared immediately before the reaction took place.

For example, in the experiment [Ca2þ ]¼ [CO3
2� ]¼ 5 mM and [GREEN]/

[Ca2þ ]¼ 0.02, one vial was charged with 20 ml CaCl2 stock (100 mM), 20ml
GREEN stock (2 mM) and 160ml DI water, while a second was charged with 20 ml
Na2CO3 stock (100 mM) and 180ml DI water to yield two vials of total 200 ml
volume in each. Next, 175 ml of CaCl2/HPTS solution was carefully added by
pipette to a glass substrate, followed by 175 ml of Na2CO3 solution to initiate the
reaction. To yield a total of 350 ml, 1:1 volumes were used to ensure sufficient
mixing on reaction initiation since nominal agitation methods (stirring, vortexing
and so on) were not possible in this configuration. Crystallization occurred over
16 h in a closed Petri dish to avoid excessive evaporation before washing with water
and ethanol.

Calcite nanoparticle synthesis. Calcite nanoparticles were generated using a
carbonation method described previously38. A volume of 50 ml DI water was
degassed/decarbonated by refluxing at 80 �C in a three-necked round bottom flask
under N2 flow for 6 h (Supplementary Fig. 15a). A unit of 0.44 g CaO, formed by
calcination of pure CaCO3 at 900 �C for 8 h, was added. Stirring, heating and N2

bubbling was continued for 15 min to facilitate Ca(OH)2 formation before ageing
the solution in a closed vessel at room temperature for 16 h (Supplementary
Fig. 15b). Enough mass of dye was then added to yield either 1 mM GREEN,
0.02 mM BLUE or 0.005 mM RED (or a mixture of all three in the same ratio as for
white calcite described above) and allowed to mix with aged Ca(OH)2 for 10 min
until fully dissolved. Carbonation was then undertaken by bubbling a 3:1 mixture
N2:CO2 through the solution at an overall flow rate of 1 l min� 1 under stirring at
room temperature (Supplementary Fig. 15c). Reaction profile was monitored with
pH and occurred in two stages: (1) very slow decrease in pH from initial pH
12.7–12.8 to 12.5 as CO2 dissolved and buffered by OH� in solution; and (2) rapid
decrease from pH 12.5 to 7 as CO2 dissolved but all Ca(OH)2 transformed to
CaCO3 (Supplementary Fig. 16). Reaction was stopped when pH¼ 7 by removing
gas supply and closing the system. Dry, clean nanoparticles were obtained by
centrifugation and twice washing with ethanol, before suspension in sodium
hypochlorite (5%) solution for 2 h and further centrifugation and drying steps.

ACC synthesis. ACC was generated by direct mixing of 200 mM CaCl2 and
Na2CO3 solutions in the presence of aqueous dye (GREEN) solution of various
concentration to yield a final [Ca2þ ]¼ [CO3

2� ]¼ 25 mM. For example, for
[GREEN]/[Ca2þ ]¼ 0.04 sample, a vial was charged with 2.5 ml 200 mM CaCl2
solution, 10 ml 1 mM GREEN solution and 5 ml DI water. To initiate the
reaction, 2.5 ml of 200 mM Na2CO3 solution was added, after which the vial was
immediately sealed and vigorously shaken for 5 s before filtering through 0.45 mm
pore polycarbonate membrane using a vacuum-driven filtration system (Millipore).
Removal of water and subsequent drying with ethanol effectively quenched the
reaction, preventing crystallization. ACC samples, which were subjected to partial
crystallization, were prepared by the same methodology except vigorous shaking
occurred for 30 s instead of 5 s. Samples were dried by vacuum and stored on
desiccant and removed only immediately before analysis. The polymorph was
confirmed by selected-area electron diffraction, powder X-ray diffraction (which
just showed two broad peaks at 2yE32� and 46�), Fourier transform infra-red
spectroscopy (which showed a peak at 3,200 cm� 1 from water and the absence of a
v4 peak at 714 cm� 1) and Raman spectroscopy (a single broad peak is seen at
1,085 cm� 1) (Supplementary Fig. 11).

RED dye synthesis. The synthetic protocol for red fluorescent sulfonated dye
N,N0-bis(ethyl-2-sulphonic acid)-1,6,7,12-tetrakis(phenoxy-4-sulphonic acid)
perylene-3,4,9,10-tetracarboxylic acid-diimide was derived from a published report
(Supplementary Fig. 19)70.

1: 0.5 g (0.94 mmol) 1,6,7,12-Tetrachloroperylene-3,4,9,10-tetracarboxylic acid
dianhydride and 0.26 g (2.06 mmol) 2-aminoethane sulphonic acid (taurine) are
added to 5 ml anhydrous pyridine and heated to 80 �C under reflux and vigorous
stirring for 15 h. A dark red precipitated was collected by filtration and washed
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repeatedly with ethyl acetate. Liquid chromatography/mass spectroscopy (LC/MS)
(m/z): [Na2Mþ ] calculated for Na2C52H34N2O14S2: 785.85, found 786 (dissolved in
NaOH).

2: 0.25 g (0.335 mmol) 1, 0.4 g (2.89 mmol) anhydrous K2CO3 and 0.26 g
(2.8 mmol) phenol are added to 10 ml anhydrous N,N-dimethylformamide and
heated to 110 �C under reflux and stirring for 15 h. After cooling, 50 ml 1 M
aqueous HCl, cooled to 4 �C is added to yield a dark red suspension, which is
isolated by filtration and washed repeatedly with ethyl acetate. LC/MS (m/z): [Mþ ]
calculated for C52H34N2O14S2: 974.15, found 977.4.

3: 0.25 g (0.256 mmol) 2 is added to 2 ml concentrated sulphuric acid under
stirring and heating at 25 �C for 24 h. A volume of 20 ml DI water is added before
dialysis against DI water for 2 days to yield aqueous suspension of 3 in DI water.
Solid product is obtained via freeze drying. LC/MS (m/z): [Mþ ] calculated for
C52H34N2O26S6: 1293.97, found 1296.9.

Confocal fluorescence microscopy. CFM was conducted using a Zeiss LSM510
Upright Confocal Microscope of samples grown directly on clean glass substrates,
under oil immersion where required. Low-magnification images were obtained to
demonstrate dye distribution across the population of composites, and higher-
magnification z-stacks were performed on at least three individual crystals per
sample. Lasers and filters were selected based on their suitability to the excitation
and emission maxima of the dye. Intensities of different lasers were required due to
different dye quantum yields and overall final mol% in composites. Image
rendering and analysis was conducted in ImageJ.

Scanning electron microscopy. SEM was conducted using an FEI NanoSEM
Nova 450 from samples grown directly on clean glass substrates. Samples were
mounted on aluminium stubs with double-sided Cu tape. All samples were coated
with 2 nm Ir conductive layer before analysis.

Transmission electron microscopy. TEM was conducted using an FEI Tecnai
TF20 FEG-TEM fitted with an Oxford Instruments INCA 350 EDX system/80 mm
X-Max SDD detector and a Gatan Orius SC600A CCD camera operating at 200 kV.
Samples were loaded onto carbon-coated Cu grids.

Fluorescence spectroscopy. Fluorescence spectroscopy was conducted using a
Perkin Elmer LS 55 operated with WinLab software. Suspensions or solutions were
analysed in a quartz cuvette, whereas dry samples were mounted on grease-coated
glass slides so that they could be situated directly under the incident beam, and that
they remained in place when the sample was tilted to optimize the emissive signal.

Quantitative analysis. Quantitative analysis was conducted of EDTA-solubilized
samples of known mass against a calibration curve of known [Dye] in 96-well
plates (Greiner Black mClear) to facilitate mol% dye versus CaCO3 calculations.
Plates were analysed with a Perkin Elmer EnVision 2103.

Photography and wide-field microscopy. Photographs were taken with a Nikon
SLR camera under normal light and ultraviolet (365 nm) from a Spectroline
ultraviolet lamp in a viewing cabinet. Wide-field optical and fluorescence images
were taken with a Nikon SMZ1500 with DS-Fi1 camera peripheral and NIS
Elements BR 3.2 64-bit image controller software.

Liquid chromatography/mass spectroscopy. LC/MS was conducted on a Bruker
HCT-Ultra, with data analysis undertaken using Compass Open Access in-built
software. Samples were prepared in water and analysed in high-mass mode against
a positively charged column.

Fluorescence-lifetime imaging microscopy. FLIM in the time-correlated
single-photon counting (TCSPC) mode allows the fluorescence lifetime of species
to be determined. Relaxation of a population of excited fluorescent molecules
follows an exponential decay. By counting the number of photons arriving at a
detector after an excitation pulse at picosecond resolution, a decay curve can be
plotted and the lifetime value extracted. The lifetime value is expected to be
dependent on the immediate environment of fluorophores. When TCSPC is
combined with a scanning microscope set-up, an image with fluorescence lifetimes
as pixel values is obtained, which is invaluable for interpreting the effect of dye
environment within a crystal.

Single-photon fluorescence lifetime imaging was performed at the OCTOPUS
imaging cluster at the Central Laser Facility located at the Research Complex at
Harwell, UK. Briefly, an acousto-optical beam splitter was used to select 488 nm
excitation light from the output of a picosecond pulsed supercontinuum light
source operating at 78 MHz repetition rate (SuperK Extreme, NKT). Optical
transmission and confocal fluorescence images of calcite doped with GREEN were
acquired with a Leica TCS SP8 confocal microscope using a 60� 1.4 numerical
aperture oil immersion objective. For lifetime imaging of the same field of view, the
fluorescence emission was detected with hybrid detectors and a TCSPC module
(PicoHarp 300, PicoQuant) recorded the photon arrival times at each pixel of the

image. Acquisition and analysis of lifetime images was handled by SymPhoTime
software (PicoQuant). For regions of interest, a global fluorescence decay was
obtained by combining the time-tagged photons from these pixels. A single
exponential decay model was fit to each global decay, yielding a single-fluorescence
lifetime. Data analysis was undertaken on Fiji (ImageJ).

Atomic force microscopy. AFM was conducted using a Bruker Multimode 8 with
a Nanoscope V controller. The experiments were performed in both contact mode
and tapping mode using silicon nitride cantilevers (model SNL-10, Bruker). Seeded
growth experiments were performed using crystals grown on a glass slide cleaned
with piranha solution. Seed crystals were grown by the ammonia diffusion method
in [Ca2þ ]¼ 10 mM. Growth solutions were prepared using stock solutions of
CaCl2, NaCl, GREEN, NaHCO3 and Na2CO3. The growth solutions used to
produce the data presented in Supplementary Fig. 2 had a [NaHCO3]¼ 4.8 mM,
[NaCl]¼ 85.8 mM and [CaCl2]¼ 2.4 mM. [GREEN}¼ 0, 0.01 and 0.1 mM were
investigated in these preliminary AFM experiments.

High-resolution powder X-ray diffraction. This procedure was the same as that
used in a previous publication36. High-resolution powder X-ray diffraction
measurements were carried out at the dedicated high-resolution powder diffraction
beamline (I11) at the Diamond Synchrotron Radiation Facility (Diamond Light
Source Ltd, Didcot, UK). The beamline is equipped with a crystal monochromator
(a liquid nitrogen-cooled double-crystal silicon monochromator) and a crystal
analyser at the incident and diffracted beams, respectively. The optics of the
diffracted beam consists of nine (111) Si crystal analysers and the use of the
advanced analysing optics yielded diffraction spectra of superior quality that
exhibited intense and extremely narrow diffraction peaks with an instrumental
contribution to the peak widths not exceeding 0.004�. Instrument calibration and
wavelength refinement were performed with silicon standard samples from the
National Bureau of Standards and Technology (NIST; Gaithersburg, MD, USA).
Powders for analysis were loaded into 0.7 mm borosilicate glass capillaries, and to
avoid intensity spikes from individual crystallites, the samples were rotated during
measurements at a rate of 60 r.p.s. using high-resolution multi-analyser crystal
diffraction scans, with scan times of 1,800 s. Spectra were recorded at room
temperature.

Normal-resolution powder X-ray diffraction. Normal-resolution powder X-ray
diffraction measurements were carried out on Phillips X’Pert MPD with Cuka
(l¼ 0.15418 nm) radiation. Scans were taken across different ranges depending on
the sample as a scan rate of 2� per min with 10 mm slits on a spinning Si wafer
sample holder.

Crystal morphology modelling. Modelling of crystal morphologies for generating
graphical descriptions of approximate faces was conducted on WinXMorph.

Data availability. All data that support the findings of this study are available in
the Research Data Leeds Repository ‘David C. Green (2016): Dataset for 3D
Visualisation of Additive Occlusion and Tunable Full-Spectrum Fluorescence in
Calcite. University of Leeds. [Dataset].’ with the identifier http://doi.org/10.5518/97
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