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Abstract. Most verification approaches embed a model of program state
into their semantic treatment. Though a variety of heterogeneous state-
space models exists, they all possess common theoretical properties one
would like to capture abstractly, such as the common algebraic laws of
programming. In this paper, we propose lenses as a universal state-space
modelling solution. Lenses provide an abstract interface for manipulating
data types through spatially-separated views. We define a lens algebra
that enables their composition and comparison, and apply it to formally
model variables and alphabets in Hoare and He’s Unifying Theories of
Programming (UTP). The combination of lenses and relational algebra
gives rise to a model for UTP in which its fundamental laws can be
verified. Moreover, we illustrate how lenses can be used to model more
complex state notions such as memory stores and parallel states. We
provide a mechanisation in Isabelle/HOL that validates our theory, and
facilitates its use in program verification.

1 Introduction

Predicative programming [17] is a unification technique that uses predicates to
describe abstract program behaviour and executable code alike. Programs are
denoted as logical predicates that characterise the observable behaviours as map-
pings between the state before and after execution. Thus one can apply predicate
calculus to reason about programs, as well as prove the algebraic laws of pro-
gramming themselves [20]. These laws can then be applied to construct seman-
tic presentations for the purpose of verification, such as operational semantics,
Hoare calculi, separation logic, and refinement calculi, to name a few [2,8]. This
further enables the application of automated theorem provers to build program
verification tools, an approach which has seen multiple successes [1,23].

Modelling the state space of a program and manipulation of its variables is
a key problem to be solved when building verification tools [27]. Whilst rela-
tion algebra, Kleene algebra, quantales, and related algebraic structures provide
excellent models for point-free laws of programming [14,3], when one considers
point-wise laws for operators that manipulate state, like assignment, additional
behavioural semantics is needed. State spaces can be heterogeneous — that is
consisting of different representations of state and variables. For example, separa-
tion logic [6] considers both the store, a static mapping from names to values, and



the heap, a dynamic mapping from addresses to values. Nevertheless, one would
like a uniform interface for different variable models to facilitate the definition
and use of generic laws of programming. When considering parallel programs [21],
one also needs to consider subdivision of the state space into non-interfering re-
gions for concurrent threads, and their eventual reconciliation post execution.
Moreover, we have the overarching need for meta-logical operators on state, like
variable substitution and freshness, that are often considered informally but are
vital to express and mechanise many laws of programming [20,17,21].

In this paper, we propose lenses [12] as a unifying solution to state-space
modelling. Lenses provide a solution to the view-update problem in database
theory [13], and are similarly applied to manipulation of data structures in func-
tional programming [11]. They employ well-behaved get and put functions to
identify a particular view of a source data structure, and allow one to perform
transformations on it independently of the wider context.

Our contribution is an extension of the theory of lenses that allows their use
in modelling variables as abstract views on program state spaces with a uniform
semantic interface. We define a novel lens algebra for manipulation of variables
and state spaces, including separation-algebra-style operators [6] such as state
(de)composition, that enable abstract reasoning about program operators that
modify state spaces in sophisticated ways. Our algebra has been mechanised in
Isabelle/HOL [24] and includes a repository of verified lens laws.

We apply the lens algebra to model heterogeneous state space models within
the context of Hoare and He’s Unifying Theories of Programming [21,7] (UTP), a
predicative programming framework with an incremental and modular approach
to denotational model construction. Therein, we use lenses to semantically model
UTP variables and the predicate calculus’ meta-logical functions, with no need
for explicit abstract syntax, and thence provide a purely algebraic basis for
the meta-logical laws, predicate calculus laws, and the laws of programming.
We have further used Isabelle/HOL to mechanise a large repository of UTP
laws; this both validates the soundness of our lens-based UTP framework and,
importantly, paves the way for future program verification tools3.

The structure of our paper is as follows. In §2, we provide background ma-
terial and related work. In §3, we present a mechanised theory of lenses, in the
form of an algebraic hierarchy, concrete instantiations, and algebraic operators,
including a useful equivalence relation. This theory is standalone, and we believe
has further applications beyond modelling state. Crucially, all the constructions
we describe require only a first-order polymorphic type system which makes it
suitable for Isabelle/HOL. In §4, we apply the theory of lenses to show how differ-
ent state abstractions can be given a unified treatment. For this, we construct the
UTP’s relational calculus, associated meta-logical operators, and prove various
laws of programming. Along the way, we show how our model satisfies various
important algebraic structures to validate its adequacy. We also use lenses to
give an account to parallel state in §4.4. Finally, in §5, we conclude.

3 For supporting Isabelle theories, including mechanised proofs for all laws in this
paper, see http://cs.york.ac.uk/˜simonf/ictac2016
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x := v , x ′ = v ∧ y′ = y P ; Q , ∃ x0 • P[x0/x ′] ∧ Q[x0/x]

(P 2 b 3Q) , (b ∧ P) ∨ (¬b ∧ Q) P
∗

, νX • P ; X

Table 1. Imperative programming in the alphabetised relational calculus

2 Background and related work

2.1 Unifying Theories of Programming

The UTP [21] is a framework for defining denotational semantic models based
on an alphabetised predicate calculus. A program is denoted as a set of possible
observations. In the relational calculus, imperative programs are in view and
thus observations consist of before variables x and after variables x ′. This allows
operators like assignment, sequential composition, if-then-else, and iteration to
be denoted as predicates over these variables, as illustrated in Table 1. From
these denotations, algebraic laws of programming can be proved, such as those
in Table 2, and more specialised semantic models developed for reasoning about
programs, such as Hoare calculi and operational semantics. UTP also supports
more sophisticated modelling constructs; for example concurrency is treated in
[21, Chapter 7] via the parallel-by-merge construct P ||M Q, a general scheme for
parallel composition that creates two copies of the state space, executes P and
Q in parallel on them, and then merges the results through the merge predicate
M . This is then applied to UTP theory of communication in Chapter 8, and
henceforth to give a UTP semantics to the process calculus CSP [7,19].

Mechanisation of the UTP for the purpose of verification necessitates a model
for the predicate and relational calculi [16,29] that must satisfy laws such as those
in Table 2. LP1 and LP2 are point-free laws, and can readily be derived from
algebras like relation algebra or Kleene algebra [14]. The remaining laws, how-
ever, are point-wise in the sense that they rely on the predicate variables. Whilst
law LP3 can be modelled with KAT [2] (Kleene Algebra with Tests) by consid-
ering b to be a test, the rest explicitly reference variables. LP4 and LP5 require
that we support quantifiers and substitution. LP6 additionally requires we can
specify free variables. Thus, to truly provide a generic algebraic foundation for
the UTP, a more expressive model supporting these operators is needed.

(P ; Q) ; R = P ; (Q ; R) (LP1)

P ; false = false ; P = false (LP2)

while b do P = (P ; while b do P)2 b 3 II if ∀ x • x ′ /∈ fv(b) (LP3)

P ; Q = ∃ x0 • P[x0/x] ; Q[x0/x ′] (LP4)

x := e ; P = P[e/x] (LP5)

(x := e ; y := f ) = (y := f ; x := e) if x 6= y, x /∈ fv(f ), y /∈ fv(e) (LP6)

Table 2. Typical laws of programming
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2.2 Isabelle/HOL

Isabelle/HOL [24] is a proof assistant for Higher Order Logic. It includes a
functional specification language, a proof language for discharging specified goals
in terms of proven theorems, and tactics that help automate proof. Its type
system supports first-order parametric polymorphism, meaning types can carry
variables – e.g. α list for type variable α. Built-in types include total functions
α ⇒ β, tuples α × β, booleans bool, and natural numbers nat. Isabelle also
includes partial function maps α ⇀ β, which are represented as α ⇒ β option,
where β option can either take the value Some (v : β) or None. Function dom(f )
gives the domain of f , f (k 7→ v) updates a key k with value v, and function
the : α option ⇒ α extracts the valuation from a Some constructor, or returns
an underdetermined value if None is present.

Record types can be created using recordR = f1 : τ1 · · · fn : τn, where fi : τi

is a field. Each field fi yields a query function fi : R ⇒ τi , and update function
fi-upd : (τi ⇒ τi) ⇒ (R ⇒ R) with which to transform R. Moreover Isabelle
provides simplification theorems for record instances (| f1 = v1 · · · fn = vn |):

fi(| · · · fi = v · · · |) = v fi-upd g (| · · · fi = v · · · |) = (| · · · fi = g(v) · · · |)

The HOL logic includes an equality relation = : α⇒ α⇒ bool that equates
values of the same type α. In terms of tactics, Isabelle provides an equational
simplifier simp, generalised deduction tactics blast and auto, and integration of
external automated provers using the sledgehammer tool [5].

Our paper does not rely on detailed knowledge of Isabelle, as we present our
definitions and theorems mathematically, though with an Isabelle feel. Techni-
cally, we make use of the lifting and transfer packages [22] that allow us to lift
definitions and associated theorems from super-types to sub-types. We also make
use of Isabelle’s locale mechanism to model algebraic hierarchies as in [14].

2.3 Mechanised state spaces

Several mechanisations of the UTP in Isabelle exist [9,10,16,29] that take a
variety of approaches to modelling state; for a detailed survey see [29]. A general
comparison of approaches to modelling state was made in [27] which identifies
four models of state, namely state as functions, tuples, records, and abstract
types, of which the first and third seem the most prevalent.

The first approach models state as a function Var ⇒ Val, for suitable value
and variable types. This approach is taken by [25,16,8,29], and requires a deep
model of variables and values, in which concepts such as typing are first-class.
This provides a highly expressive model with few limitations on possible manip-
ulations [16]. However, [27] highlights two obstacles: (1) the machinery required
for deep reasoning about program values is heavy and a priori limits possible
constructions, and (2) explicit variable naming requires one to consider issues
like α-renaming. Whilst our previous work [29] effectively mitigates (1), at the
expense of introducing axioms, the complexities associated with (2) remain. Nev-
ertheless, the approach seems necessary to model dynamic creation of variables,
as required, for example, in modelling memory heaps in separation logic [6,8].
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Fig. 2. Lens algebraic hierarchy

The alternative approach uses records to model state; a technique often used
by verification tools in Isabelle [1,9,10,2]. In particular, [9] uses this approach
to create a shallow embedding of the UTP and library of laws4 which, along
with [25], our work is inspired by. A variable in this kind of model is abstractly
represented by pairing the field-query and update functions, fi and fi-upd, yield-
ing a nameless representation. As shown in [9,10,2], this approach greatly simpli-
fies automation of program verification in comparison to the former functional
approach through directly harnessing the polymorphic type system and auto-
mated proof tactics. However, the expense is a loss of flexibility compared to
the functional approach, particularly in regards to decomposition of state spaces
and handling of extension as required for local variables [27]. Moreover, those
employing records seldom provide general support for meta-logical concepts like
substitution, and do not abstractly characterise the behaviour of variables.

Our approach generalises all these models by abstractly characterising the
behaviour of state and variables using lenses. Lenses were created as an abstrac-
tion for bidirectional programming and solving the view-update problem [12].
They abstract different views on a data space, and allow their manipulation in-
dependently of the context. A lens consists of two functions: get that extracts a
view from a larger source, and put that puts back an updated view. [11] gives
a detailed study of the algebraic lens laws for these functions. Combinators are
also provided for composing lenses [13,12]. They have been practically applied
in the Boomerang language5 for transformations on textual data structures.

Our lens approach is indeed related to the state-space solution in [27] of using
Isabelle locales to characterise a state type abstractly and polymorphically. A
difference though is the use of explicit names, where our lenses are nameless.
Moreover, the core lens laws [11] bear a striking resemblance to Back’s vari-
able laws [4], which he uses to form the basis for the meta-logical operators of
substitution, freshness, and specification of procedures.

3 Lenses

In this section, we introduce our lens algebra, which is later used in §4 to give
a uniform interface for variables. The lens laws in §3.1 and composition oper-
ator of §3.3 are adapted from [12,11], though the remaining operators, such as
independence and sublens, are novel. All definitions and theorems have been
mechanically validated3.

4 See archive of formal proofs: https://www.isa-afp.org/entries/Circus.shtml
5 Boomerang home page: http://www.seas.upenn.edu/˜harmony/
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3.1 Lens laws

A lens X : V =⇒ S, for source type S and view type V , identifies V with a
subregion of S, as illustrated in Figure 1. The arrow denotes X and the hatched
area denotes the subregion V it characterises. Transformations on V can be
performed without affecting the parts of S outside the hatched area. The lens
signature consists of a pair of total functions6 getX : S ⇒ V that extracts a
view from a source, and putX : S ⇒ V ⇒ S that updates a view within a given
source. When speaking about a particular lens we omit the subscript name. The
behaviour of a lens is constrained by one or more of the following laws [11].

get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)

put s (get s) = s (GetPut)

PutGet states that if we update the view in s to v, then extracting the view
yields v. PutPut states that if we make two updates, then the first update is
overwritten. GetPut states that extracting the view and then putting it back
yields the original source. These laws are often grouped into two classes [12]:
well-behaved lenses that satisfy PutGet and GetPut, and very well-behaved lenses
that additionally satisfy PutPut. We also identify weak lenses that satisfy only
PutGet, and mainly well-behaved lenses that satisfy PutGet and PutPut but
not GetPut. These weaker classes prove useful in certain contexts, notably in
the map lens implementation (see §3.2). Moreover [11,12] also identify the class
of bijective lenses that satisfy PutGet and also the following law.

put s (get s′) = s′ (StrongGetPut)

StrongGetPut states that updating the view completely overwrites the state, and
thus the source and view are, in some sense, equivalent. Finally we have the class
of ineffectual lenses whose views do not effect the source. Our complete algebraic
hierarchy of lenses is illustrated in Figure 2, where the arrows are implicative.

3.2 Concrete lenses

We introduce lenses that exemplify the above laws and are applicable to mod-
elling different kinds of state spaces. The function lens (fl) can represent total
variable state functions Var ⇒ Val [16], whilst the map lens (ml) can represent
heaps [8]. The record lens (rl) can represent static variables [10,2].

Definition 1 (Function, Map, and Record lenses).

getfl(k) , λ f . f (k) putfl(k) , λ f v. f (k := v)

getml(k) , λ f . the(f (k)) putml(k) , λ f v. f (k 7→ v)

getrl(fi) , fi getrl(fi) , λ r v. fi-upd (λ x. v) r

6 Partial functions are sometimes used in the literature, e.g. [13]. We prefer total func-
tions, as these circumvent undefinedness issues and are at the core of Isabelle/HOL.
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The (total) function lens fl(k) focusses on a specific output associated with input
k. The get function applies the function to k, and the put function updates the
valuation of k to v. It is a very well-behaved lens:

Theorem 1 (The function lens is very well-behaved).

Proof. Included in our mechanised Isabelle theories3.

The map lens ml(k) likewise focusses on the valuation associated with a given
key k. If no value is present at k then get returns an arbitrary value. The map
lens is therefore not a well-behaved lens since it does not satisfy GetPut, as
f (k 7→ the(f (k))) 6= f when k /∈ dom(f ) since the maps have different domains.

Theorem 2 (The map lens is mainly well-behaved).

Finally, we consider the record lens rec(fi). As mentioned in §2.3, each record
field yields a pair of functions fi and fi-upd, and associated simplifications for
record instances. Together these can be used to prove the following theorem:

Theorem 3 (Record lens). Each fi : R ⇒ τi yields a very well-behaved lens.

This must be proved on a case-by-case basis for each field in each newly defined
record; however the required proof obligations can be discharged automatically.

3.3 Lens algebraic operators

Lens composition X # Y : V1 =⇒ S, for X : V1 =⇒ V2 and Y : V2 =⇒ S allows
one to focus on regions within larger regions. The intuition in Figure 3 shows
how composition of X and Y yields a lens that focuses on the V1 subregion of S.
For example, if a record has a field which is itself a record, then lens composition
allows one to focus on the inner fields by composing the lenses for the outer with
those of the inner record. The definition is given below.

Definition 2 (Lens composition).

putX#Y , λ s v. putY s (putX (getY s) v) getX#Y , getX ◦ getY

The put operator of lens composition first extracts view V2 from source S, puts
v : V1 into this, and finally puts the combined view. The get operator simply
composes the respective get functions. Lens composition is closed under all lens
classes ({weak,wb,mwb, vwb}-lens). We next define the unit lens, 0 : unit =⇒ S,
and identity lens, 1 : S =⇒ S.

7



Definition 3 (Unit and identity lenses).

put
0
, λ s v.s get

0
, λ s.() put

1
, λ s v.v get

1
, λ s.s

The unit lens view is the singleton type unit. Its put has no effect on the source,
and get returns the single element (). It is thus an ineffectual lens. The identity
lens identifies the view with the source, and it is thus a bijective lens. Lens com-
position and identity form a monoid. We now consider operators for comparing
lenses which may have different view types, beginning with lens independence.

Definition 4 (Lens independence). Lenses X : V1 =⇒ S and Y : V2 =⇒ S
are independent, written X ⊲⊳ Y , provided they satisfy the following laws:

putX(putY s v) u = putY (putX s u) v (LI1)

getX(putY s v) = getX s (LI2)

getY (putX s u) = getY s (LI3)

Intuitively, two lenses are independent if they identify disjoint regions of the
source as illustrated in Figure 4. We characterise this by requiring that the put

functions of X and Y commute (LI1), and that the put functions of each lens has
no effect on the result of the get function of the other (LI2,LI3). For example,
independence of function lenses follows from inequality of the respective inputs,
i.e. fl(k1) ⊲⊳ fl(k2) ⇔ k1 6= k2. Lens independence is a symmetric relation, and it
is also irreflexive (¬(X ⊲⊳ X)), unless X is ineffectual.

The second type of comparison between two lenses is containment.

Definition 5 (Sublens relation). Lens X : V1 =⇒ S is a sublens of Y :
V2 =⇒ S, written X � Y , if the equation below is satisfied.

X � Y , ∃Z : V1 =⇒ V2. Z ∈ wb-lens ∧ X = Z # Y

The intuition of sublens is simply that the source region of X is contained within
that of Y . The definition is explained by the following commuting diagram:

S

V1

X 66

Z
// V2

Yhh

Intuitively, Z is a “shim” lens that identifies V1 with a subregion of V2. Focusing
on region V1 in V2, followed by V2 in S is the same as focusing on V1 in S. The
sublens relation is transitive and reflexive, and thus a preorder. Moreover 0 is
the least element (0 � X), and 1 is the greatest element (X � 1), provided X
is well-behaved. Sublens orders lenses by the proportion of the source captured.
We have also proved the following theorem relating independence to sublens:

Theorem 4 (Sublens preserves independence).

If X � Y and Y ⊲⊳ Z then also X ⊲⊳ Z

We use sublens to induce an equivalence relation X ≈ Y , X � Y ∧ Y � X .
It is a weaker notion than homogeneous HOL equality = between lenses as it
allows the comparison of lenses with differently-typed views. We next prove two
correspondences between bijective and ineffectual lenses.
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Theorem 5 (Bijective and ineffectual lenses equality equivalence).

X ∈ ief-lens ⇔ X ≈ 0 X ∈ bij-lens ⇔ X ≈ 1

The first law states that ineffectual lenses are equivalent to 0, and the second that
bijective lenses are equivalent to 1. Showing that a lens is bijective thus entails
demonstrating that it characterises the whole state space, though potentially
with a different view type. We lastly describe lens summation.

Definition 6 (Lens sum).

putX⊕Y , λ s (u, v). putX (putY s v) u getX⊕Y , λ s.(getX s, getY s)

The intuition is given in Figure 5. Given independent lenses X : V1 =⇒ S and
Y : V2 =⇒ S, their sum yields a lens V1 × V2 =⇒ S that characterises both
subregions. The combined put function executes the put functions sequentially,
whilst the get extracts both values simultaneously. A notable application is to
define when a source can be divided into two disjoint views X ⊲⊳ Y , a situation
we can describe with the formula X ⊕ Y ≈ 1, or equivalently X ⊕ Y ∈ bij-lens,
which can be applied to framing or division of a state space for parallel programs
(see §4.4). Lens sum is closed under all lens classes. We also introduce two related
lenses for viewing the left and right of a product source-type, respectively.

Definition 7 (First and second lenses).

putfst , (λ(s, t)u.(u, t)) getfst , fst

putsnd , (λ(s, t)u.(s, u)) getsnd , snd

We then prove the following lens sum laws:

Theorem 6 (Sum laws). Assuming X ⊲⊳ Y , X ⊲⊳ Z, and Y ⊲⊳ Z:

X ⊕ Y ≈ Y ⊕ X X ⊕ (Y ⊕ Z ) ≈ (X ⊕ Y )⊕ Z

X ⊕ 0 ≈ X (X ⊕ Y ) # Z = (X # Z )⊕ (Y # Z )

X � X ⊕ Y fst ⊕ snd = 1

X ⊕ Y ⊲⊳ Z if X ⊲⊳ Z and Y ⊲⊳ Z

Lens sum is commutative, associative, has 0 as its identity, and distributes
through lens composition. Naturally, each summand is a sublens of the whole,
and it preserves independence as the next law demonstrates. The remaining law
demonstrates that a product is fully viewed by its first and second component.

9



4 Unifying state-space abstractions

In this section, we apply our lens theory to modelling state spaces in the context
of the UTP’s predicate calculus. We construct the core calculus (§4.1), meta-
logical operators (§4.2), apply these to the relational laws of programming (§4.3),
and finally give an algebraic basis to parallel-by-merge (§4.4). We also show that
our model satisfies various important algebras, and thus justify its adequacy.

4.1 Alphabetised predicate calculus

Our model of alphabetised predicates is α⇒ bool, where α is a suitable type for
modelling the alphabet, that corresponds to the state space. We do not constrain
the structure of α, but require that variables be modelled as lenses into it. For
example, the record lens rl can represent a typed static alphabet [9,10,2], whilst
the map lens ml can support dynamically allocated variables [8]. Moreover, lens
composition can be used to combine different lens-based representations of state.
We begin with the definition of types for expressions, predicates, and variables.

Definition 8 (UTP types).

(τ, α) uexpr , (α⇒ τ) α upred , (bool, α) uexpr

(α, β) urel , (α× β) upred (τ, α) uvar , (τ =⇒ α)

All types are parametric over alphabet type α. An expression (τ, α) uexpr is a
query function mapping a state α to a given value in τ . A predicate α upred

is a boolean-valued expression. A (heterogeneous) relation is a predicate whose
alphabet is α × β. A variable x : (τ, α) uvar is a lens that views a particular
subregion of type τ in α, which affords a very general state model. We already
have meta-logical functions for variables, in the form of lens equivalence ≈ and
lens independence ⊲⊳ . Moreover, we can construct variable sets using operators
0 which corresponds to ∅, ⊕ which corresponds to ∪, 1 which corresponds to
the whole alphabet, and � that can model set membership x ∈ A. Theorem 6
justifies these interpretations. We define several core expression constructs for
literals, variables, and operators, from which most other operators can be built.

Definition 9 (UTP expression constructs).

lit : τ ⇒ τ uexpr var : (τ, α) uvar ⇒ (τ, α) uexpr

lit k , λ s. k var x , λ s. getx s

uop : (τ ⇒ φ) ⇒ (τ, α) uexpr ⇒ (φ, α) uexpr

uop f v , λ s. f (v(s))

bop : (τ ⇒ φ⇒ ψ) ⇒ (τ, α) uexpr ⇒ (φ, α) uexpr ⇒ (ψ, α) uexpr

bop f u v , λ s. f (u(s)) (v(s))

A literal lit lifts a HOL value to an expression via a constant λ-abstraction, so
it yields the same value for any state. A variable expression var takes a lens and
applies the get function on the state space s. Constructs uop and bop lift functions

10



to unary and binary operators, respectively. These lifting operators enable a
proof tactic for predicate calculus we call pred-tac [16] that uses the transfer

package [22] to compile UTP expressions and predicates to HOL predicates, and
afterwards apply auto or sledgehammer to discharge the resulting conjecture.
Unless otherwise stated, all theorems below are proved in this manner.

The predicate calculus’ boolean connectives and equality are obtained by
lifting the corresponding HOL functions, leading to the following theorem:

Theorem 7 (Boolean Algebra). UTP predicates form a Boolean Algebra

We define the refinement order on predicates P ⊑ Q, as usual, as universally
closed reverse implication [Q ⇒ P], and use it to prove the following theorem.

Theorem 8 (Complete Lattice). UTP predicates form a Complete Lattice

This provides suprema (
⊔

), infima (
d

), and fixed points (µ, ν) which allow us to
express recursion. The bottom of the lattice is true, the most non-deterministic
specification, and the top is false, the miraculous program. Next we define the
existential and universal quantifiers using the lens operation put:

Definition 10 (Existential and universal quantifiers).

∃ x • P , (λ s. ∃ v.P(putx s v)) ∀ x • P , (λ s. ∀ v.P(putx s v))

The quantifiers on the right-hand side are HOL quantifiers. Existential quan-
tification (∃ x • P) states that there is a valuation for x in state s such that P
holds, specified using put. Universal quantification is defined similarly and sat-
isfies (∀ x • P) = (¬∃ x • ¬P). We derive universal closure [P] , ∀1 • P, that
quantifies all variables in the alphabet (1). Alphabetised predicates then form a
Cylindric Algebra [18], which axiomatises the quantifiers of first-order logic.

Theorem 9 (Cylindric Algebra). UTP predicates form a Cylindric Algebra;
the following laws are satisfied for well-behaved lenses x, y, and z:

(∃ x • false) ⇔ false (C1)

P ⇒ (∃ x • P) (C2)

(∃ x • (P ∧ (∃ x • Q))) ⇔ ((∃ x • P) ∧ (∃ x • Q)) (C3)

(∃ x • ∃ y • P) ⇔ (∃ y • ∃ x • P) (C4)

(x = x) ⇔ true (C5)

(y = z) ⇔ (∃ x • y = x ∧ x = z) if x ⊲⊳ y, x ⊲⊳ z (C6)

false ⇔

(

(∃ x • x = y ∧ P) ∧
(∃ x • x = y ∧ ¬P)

)

if x ⊲⊳ y (C7)

Proof. Most proofs are automatic, the one complexity being C4 which we have
to split into cases for (1) x ⊲⊳ y, when x and y are different, and (2) x ≈ y,
when they’re the same. We thus implicitly assume that variables cannot overlap,
though lenses can. C6 and C7 similarly require independence assumptions.
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From this algebra, the usual laws of quantification can be derived [18], even
for nameless variables. Since lenses can also represent variable sets, we can also
model quantification over multiple variables such as ∃ x, y, z • P, which is rep-
resented as ∃ x ⊕ y ⊕ z • P, and then prove the following laws.

Theorem 10 (Existential quantifier laws).

(∃A ⊕ B • P) = (∃A • ∃B • P) (Ex1)

(∃B • ∃A • P) = (∃A • P) if B � A (Ex2)

(∃ x • P) = (∃ y • Q) if x ≈ y (Ex3)

Ex1 shows that quantifying over two disjoint sets or variables equates to quan-
tification over both. Ex2 shows that quantification over a larger lens subsumes a
smaller lens. Finally Ex3 shows that if we quantify over two lenses that identify
the same subregion then those two quantifications are equal.

In addition to quantifiers for UTP variables we also provide quantifiers for
HOL variables in UTP expressions, ∃ x • P and ∀ x • P, that bind x in a closed
λ-term. These are needed to quantify logical meta-variables, which are often
useful in proof. This completes the specification of the predicate calculus.

4.2 Meta-logical operators

We next move onto the meta-logical operators, first considering fresh variables,
which we model by a weaker semantic property known as unrestriction [25,16].

Definition 11 (Unrestriction).

x ♯P ⇔ (∀ s, v • P(putx s v) = P(s))

Intuitively, lens x is unrestricted in P, written x ♯P, provided that P’s valuation
does not depend on x. Specifically, the effect of P evaluated under state s is the
same if we change the value of x. It is thus a sufficient notion to formalise the
meta-logical provisos for the laws of programming. Unrestriction can alterna-
tively be characterised as predicates whose satisfy the fixed point P = (∃ x • P)
for very well-behaved lens x. We now show some of the key unrestriction laws.

Theorem 11 (Unrestriction laws).

−
U1

0 ♯P

x � y y ♯P
U2

x ♯P

x ♯P y ♯P x ⊲⊳ y
U3

(x ⊕ y) ♯P

−
U4

x ♯ true
x ♯P x ♯Q

U5

x ♯P ∧ Q

x ♯P x ♯Q
U6

x ♯(P = Q)

x ♯P
U7

x ♯¬P

x ⊲⊳ y
U8

x ♯ y
x ∈ mwb-lens

U9

x ♯(∃ x • P)

x ⊲⊳ y x ♯P
U10

x ♯(∃ y • P)

−
U11

x ♯[P]

Laws U1–U3 correspond to unrestriction of multiple variables using the lens
operations; for example U2 states that sublens preserves unrestriction. Laws
U4–U7 show that unrestriction distributes through the logical connectives. Laws
U8–U11 show the behaviour of unrestriction with respect to variables. U8 states
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that x is unrestricted in variable expression y if x and y are independent. U9 and
U10 relate to unrestriction over quantifiers; the proviso x ∈ mwb-lens means, for
example, that a law is applicable to variables modelled by maps. Finally U11
states that all variables are unrestricted in a universal closure.

We next introduce substitution P[v/x], which is also encoded semantically
using homogeneous substitution functions σ : α ⇒ α over state space α. We
define functions for application, update, and querying of substitutions:

Definition 12 (Substitution functions).

σ †P , λ s.P(σ(s))

σ(x 7→s e) , (λ s. putx (e(s)) (σ(s))

〈σ〉s x , (λ s. getx (σ(s)))

Substitution application σ † P takes the state, applies σ to it, and evaluates
P under this updated state. The simplest substitution, id , λ x. x, effectively
maps all variables to their present value. Substitution lookup 〈σ〉s x extracts
the expression associated with variable x from σ. Substitution update σ(x 7→s e)
assigns the expression e to variable x in σ. It evaluates e under the incoming state
s and then puts the result into the state updated with the original substitution σ
applied. We also introduce the short-hand [x1 7→s e1, · · · , xn 7→s en] = id(x1 7→s

e1, · · · , xn 7→s en). A substitution P[e1, · · · , en/x1, · · · , xn] of n expressions to
corresponding variables is then expressed as [x1 7→s e1, · · · , xn 7→s en] †P.

Theorem 12 (Substitution query laws).

〈σ(x 7→s e)〉s x = e (SQ1)

〈σ(y 7→s e)〉s x = 〈σ〉s x if x ⊲⊳ y (SQ2)

σ(x 7→s e, y 7→s f ) = σ(y 7→s f ) if x � y (SQ3)

σ(x 7→s e, y 7→s f ) = σ(y 7→s f , x 7→s e) if x ⊲⊳ y (SQ4)

SQ1 and SQ2 show how substitution lookup is evaluated. SQ3 shows that an
assignment to a larger lens overrides a previous assignment to a small lens and
SQ4 shows that independent lens assignments can commute. We next prove the
laws of substitution application.

Theorem 13 (Substitution application laws).

σ † x = 〈σ〉s x (SA1)

σ(x 7→s e) †P = σ † e if x ♯P (SA2)

σ † uop f v = uop f (σ † v) (SA3)

σ † bop f u v = bop f (σ † u) (σ † v) (SA4)

(∃ y • P)[e/x] = (∃ y • P[e/x]) if x ⊲⊳ y, y ♯ e (SA5)

These laws effectively subsume the usual syntactic substitution laws, for an ar-
bitrary number of variables, many of which simply show how substitution dis-
tributes through expression and predicate operators. SA2 shows that a substitu-
tion of an unrestricted variable has no effect. SA5 captures when a substitution
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can pass through a quantifier. The variables x and y must be independent, and
furthermore the expression e must not mention y such that no variable cap-
ture can occur. Finally, we will use unrestriction and substitution to prove the
one-point law of predicate calculus [17, §3.1].

Theorem 14 (One-point).

(∃ x • P ∧ x = e) = P[e/x] if x ∈ mwb-lens, x ♯ e

Proof. By predicate calculus with pred-tac.

The one-point law states that a quantification can be eliminated if precisely one
value for the quantified variable is specified. We state the requirement “x does
not appear in e” with unrestriction. Thus we have now constructed a set of meta-
logical operators and laws which can be applied to the laws of programming, all
the while remaining within our algebraic lens framework and mechanised model.
Indeed, all our operators are deeply encoded first-class entities in Isabelle/HOL.

4.3 Relational laws of programming

We now show how lenses can be applied to prove the common laws of program-
ming within the relational calculus, by augmenting the alphabetised predicate
calculus with relational variables and operators. Recall that a relation is simply
a predicate over a product state: (α× β) upred. Input and output variables can
thus be specified as lenses that focus on the before and after state, respectively.

Definition 13 (Relational variables).

JxK = x # fst Jx ′K = x # snd

A variable x is lifted to a input variable x by composing it with fst, or to an
output variable x ′ by composing it with snd. We can then proceed to define the
operators of the relational calculus.

Definition 14 (Relational operators).

P ; Q , ∃ v • P[v/1′] ∧ Q[v/1] II , (1′ = 1)

P 2 b 3Q , (b ∧ P) ∨ (¬b ∧ Q) x := v , II[v/x]

The definition of sequential composition is similar to the standard UTP presen-
tation [21], but we use 1 and 1′ to represent the input and output alphabets of
Q and P, respectively. Skip (II) similarly uses 1 to state that the before state is
the same as the after state. We then combine II with substitution to define the
assignment operator. Note that because x is a lens, and v could be a product
expression, this operator can be used to represent multiple assignments. We also
describe the if-then-else conditional operator P 2 b 3Q. Sequential composition
and skip, combined with the already defined predicate operators, provide us with
the facilities for describing point-free while programs [2], which we illustrate by
proving that alphabetised relations form a quantale.
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Theorem 15 (Unital quantale). UTP relations form a unital quantale; that
is they form a complete lattice and in addition satisfy the following laws:

(P ; Q) ; R = P ; (Q ; R) P ; II = P = II; P

P ;

(

d
Q∈Q

Q

)

=
d

Q∈Q

(P ; Q)

( d
P∈P

P

)

; Q =
d

P∈P

(P ; Q)

This is proved in the context of Armstrong’s Regular Algebra library [2], which
also derives a proof that UTP relations form a Kleene algebra. This in turn
allows definition of iteration using while b do P , (b ∧ P)

∗

∧ (¬b′), where b′

denotes relational converse of b, and thence to prove the usual laws of loops. We
next describe the laws of assignment.

Theorem 16 (Assignment laws).

x := e ; P = P[e/x] (ASN1)

x := e ; x := f = x := f if x ♯ f (ASN2)

x := e ; y := f = y := f ; x := e if x ⊲⊳ y, x ♯ f , y ♯ e (ASN3)

x := e ; (P 2 b 3Q) = (x := e ; P)2 b[e/x]3
(x := e ; Q) if 1′ ♯ b (ASN4)

We focus on ASN3 that demonstrates when assignments to x and y commute,
and models law LP6 on page 3. Thus we have illustrated how lenses provide a
general setting in which the laws of programming can be proved, including those
that require meta-logical assumptions.

4.4 Parallel-by-merge

Fig. 6. Pictorial representation of parallel-by-merge P ||M Q

We further illustrate the flexibility of our model by implementing one of the
more complex UTP operators: parallel-by-merge. Parallel-by-merge is a general
schema for parallel composition as described in [21, Chapter 7]. It enables the
expression of sophisticated forms of parallelism that merge the output of two
programs into a single consistent after state. It is illustrated in Figure 6 for
two programs P and Q acting on variables x and y. The input values are fed
into P and Q, and their output values are fed into predicates U0 and U1. The
latter two rename the variables so that the outputs from both programs can be
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distinguished by the merge predicate M . M takes as input the variable values
before P and Q were executed, and the respective outputs. It then implements
a specific mechanism for reconciling these outputs depending on the semantic
model of the target language. For example, if P and Q both yield event traces
as in CSP [19,7], then only those traces that are consistent will be permitted.

Lenses can be used to define the merge predicate and post-state renamings
U0 and U1. The merge predicate takes as input three copies of the state: the
outputs from P and Q, and the before state of the entire computation. Thus if
the state has type A then M : ((A×A)×A,A) urel, and similarly U0,U1 : (A, (A×
A) × A) urel. We thus give syntax to refer to indexed variables n.x, and prior
variables <x, that give the input values, using the following lens compositions:

Definition 15 (Separated and prior variables).

J0.xK = x # fst # fst J1.xK = x # snd # fst J<xK = x # snd

Lenses 0.x and 1.x focus on the first and second elements of the tuple’s first
element, and <x focusses on the second element. We now define U0 and U1:

Definition 16 (Separating simulations).

U0 , 0.1′ = 1 ∧ <1′ = 1 U1 , 1.1′ = 1 ∧ <1′ = 1

U0 and U1 copy the before value of the whole state into both their respective in-
dexed variables, and also the prior state. We can now describe parallel-by-merge,
given a suitable basic parallel composition operator || which could, for example,
be plain conjunction or design parallel composition (see [21, Chapter 3]):

Definition 17 (Parallel-by-merge).

P ||M Q , ((P ; U0) || (Q ; U1)) ; M

We also define predicate swapm , 0.x, 1.x := 1.x, 0.x that swaps the left and
right copies, and then prove the following generalised commutativity theorem:

Theorem 17 (Commutativity of parallel-by-merge).

If M ; swapm = M then P ||M Q = Q ||M P.

This theorem states that if a merge predicate is symmetric, the resulting parallel
composition is commutative. In the future we will also show the other properties
of parallel composition [21], such as associativity and units. Nevertheless, we
have shown that lenses enable a fully algebraic treatment of parallelism.

5 Conclusions

We have presented an enriched theory of lenses, with algebraic operators and lens
comparators, and shown how it can be applied to generically modelling the state
space of programs in predicative semantic frameworks. We showed how lenses
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characterise variables, express meta-logical properties, and enrich and validate
the laws of programming. The theory of lenses is general, and we believe it has
many applications beyond program semantics, such as verifying bidirectional
transformations [12]. We have also defined various other useful lens operations,
such as lens quotient which is dual to composition. Space has not allowed us
to cover this, but we claim this is useful for expressing the contraction of state
spaces. Further study of the algebraic properties of these operators is in progress.

Overall, lenses have proven to be a useful abstraction for reasoning about
state, in terms of properties like independence and combination. We have used
our model to prove several hundred laws of predicate and relational calculus
from the UTP book [21] and other sources [17,7,26]. We have also mechanised
the Hoare calculus and a weakest precondition calculus that support practical
program verification. Although details were omitted for brevity, lenses enable
definition of operators like alphabet extension and restriction, through the de-
scription of alphabet coercion lenses that are used to represent local variables
and methods. We are currently exploring links with Back’s variable calculus [4].

In future work we will to apply lenses to additional theories of programming,
such as hybrid systems [15] and separation logic [28], especially since our lens
algebra resembles a separation algebra. Moreover, we will use our UTP theorem
prover7 to apply our database of programming laws to build practical verifica-
tion tools for a variety of semantically rich languages [26], in particular for the
purpose of analysing heterogeneous Cyber-Physical Systems [15]. We also plan
to integrate our work with the existing Isabelle/Circus [10] library4 to further
improve verification support for concurrent and reactive systems.
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