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Abstract

There has been overwhelming evidence that coherent structures play

a critical role in determining the overall transport in a variety of sys-

tems. We compute the probability distribution function (PDF) tails

of momentum flux and heat flux in ion-temperature-gradient turbu-

lence, by taking into account the interaction among modons, which

are assumed to be coherent structures responsible for bursty and in-

termittent events, contributing to the PDF tails. The tail of PDF

of momentum flux R = 〈vxvy〉 is shown to be exponential with the

form exp {−ξR3/2}, which is broader than a Gaussian, similarly to
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what was found in the previous local studies. An analogous expres-

sion with the same functional dependence is found for the PDF tails

of heat flux. Furthermore, we present a detailed numerical study of

the dependence of the PDF tail on the temperature and density scale

lengths and other physical parameters through the coefficient ξ.
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I Introduction

One of the main challenges in magnetic fusion research has been to predict

the turbulent heat and particle transport originating from various micro-

instabilities. The ion-temperature-gradient (ITG) mode is one of the main

candidates for causing the anomalous heat transport in core plasmas of toka-

maks [1]. Significant heat transport might however be mediated by coherent

structures such as streamers and blobs through the formation of avalanche

like events of large amplitude [2]- [4], as indicated by recent numerical stud-

ies. These events cause the deviation of the probability distribution functions

(PDFs) from a Gaussian profile on which the traditional mean field theory

(such as transport coefficients) is based. In particular, PDF tails due to

rare events of large amplitude are often found to be substantially different

from Gaussian although PDF centers tend to be Gaussian [5]. These non-

Gaussian PDF tails are manifestations of intermittency, caused by bursts and

coherent structures. The characterization of these PDF tails thus requires a

non-perturbative method.

There are many coherent structures of interest, including zonal flows and

streamers. While streamer-like structures (kθ ≫ kr) enhance transport zonal

flows can dramatically reduce transport [6]- [7]. The zonal flows are poloidally

and toroidally symmetric (kθ = 0, k‖ = 0) and radially inhomogeneous (kr 6=

0) flow structures in toroidal plasmas. It would thus be of great importance

to develop a theory of the formation of coherent structures and PDFs of heat

flux due to these structures.

The purpose of this paper is to investigate the likelihood of the forma-

tion of coherent structures by computing the PDF (tails) of the Reynolds

stress and predict the PDFs of heat transport. Specifically, we extend a non-
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perturbative theory of the PDFs of local momentum flux and heat flux to ac-

commodate global fluxes by incorporating the interactions among structures.

An advanced fluid model for the ITG mode is used [8] that has been successful

in reproducing both experimental [9] and non-linear gyro-kinetic results [10].

The advanced fluid model is expected to give qualitatively and quantitatively

accurate results in tokamak core plasmas or the flat density regime. For in-

stance, this was shown in the plot of the slope of the ITG threshold as a

function of ǫn in the flat density regime (see Figure 1 in Ref. [11]) where this

model recovers the full linear kinetic result within 5%, far better than the

prediction from an approximate kinetic model using a constant energy ap-

proximation in the magnetic drift. In particular, the gyrokinetic simulations

of ITG mode turbulence reported in the Cyclone work Ref. [10] indicate that

there is a strong excitation of zonal flows close to marginal stability where the

non-linearly generated flows were able to damp out the turbulence resulting

in a non-linear up-shift in the critical temperature gradient needed to obtain

transport for longer time scales. One particular coherent structure in ITG

drift wave turbulence is the two dimensional bipolar vortex soliton solution

called the modon [12]- [14]. The modon is an exact solution to the non-linear

governing equations for ITG mode turbulence and travels perpendicular to

both the strong magnetic field and the background density gradient. The

PDF tail is viewed as the transition amplitude from an initial state with no

fluid motion to a final state governed by the modon with different amplitudes

in the long time limit.

The theoretical technique used here is the so-called instanton method, a

non-perturbative way of calculating the PDF tails. The PDF tail is first for-

mally expressed in terms of a path integral by utilizing the Gaussian statistics

of the forcing. An optimum path will then be associated with the creation
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of a modon (among all possible paths) and the action is evaluated using

the saddle-point method on the effective action. The saddle-point solution

of the dynamical variable φ(x, t) of the form φ(x, t) = F (t)ψ(x) is called

an instanton if F (t) = 0 at the initial time and F (t) 6= 0 in the long time

limit. The instanton is localized in time, existing during the formation of

the modon. Thus, the bursty event can be associated with the creation of a

modon. Note that, the function ψ(x) here represents the spatial form of the

coherent structure. Historically, the instanton method was used in gauge field

theory for calculating the transition amplitude from one vacuum to another

vacuum [15]- [16].

We will show exponential PDF tails for both heat flux (H) and momentum

fluxes (R) of the form e−ξH3/2

and e−ξR3/2

, similar to the PDFs of local fluxes

in the earlier works [17]- [19]. The dependence of the coefficient ξ (i.e. the

overall amplitude of the PDF tails) on parameter values (e.g. the density

gradient, temperature gradient, curvature, etc) will be studied in detail. We

will also demonstrate the generation of monopole vortex via the interaction

of two dipoles (modons).

The paper is organized as follows. In Sec. II the model for the ITG mode

is presented together with preliminaries for the path-integral formulation for

the PDF tail of momentum flux. In Sec. III the instanton solutions are

calculated and the PDF tail of momentum flux is estimated in Sec IV. We

provide numerical results in Sec. V and a discussion of the results and the

PDF tail of heat flux and conclusion in Sec. VI.
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II Non-perturbative calculation of momentum

flux PDF

The ITG mode turbulence is modeled using the continuity and temperature

equation for the ions and considering the electrons to be Boltzmann dis-

tributed; quasi-neutrality is used to close the system [8]. In the present work

the effects of parallel ion motion, magnetic shear, trapped particles and finite

beta on the ITG modes are neglected since in previous works that the effect

of parallel ion motion on the ITG mode was found to be rather weak [20].

The continuity and temperature equations are,

∂ñ

∂t
−
(

∂

∂t
− αi

∂

∂y

)

∇2
⊥φ̃+

∂φ̃

∂y
− ǫngi

∂

∂y

(

φ̃+ τ
(

ñ+ T̃i

))

+ ν∇4φ̃ =

−
[

φ̃, ñ
]

+
[

φ̃,∇2
⊥φ̃
]

+ τ
[

φ̃,∇2
⊥

(

ñ+ T̃i

)]

+ f, (1)

∂T̃i

∂t
− 5

3
τǫngi

∂T̃i

∂y
+
(

ηi −
2

3

)

∂φ̃

∂y
− 2

3

∂ñ

∂t
=

−
[

φ̃, T̃i

]

+
2

3

[

φ̃, ñ
]

. (2)

Here [A,B] = (∂A/∂x)(∂B/∂y)− (∂A/∂y)(∂B/∂x) is the Poisson bracket; f

is a forcing; ñ = (Ln/ρs)δn/n0, φ̃ = (Ln/ρs)eδφ/Te, T̃i = (Ln/ρs)δTi/Ti0 are

the normalized ion particle density, the electrostatic potential and the ion

temperature, respectively. In equations (1) and (2), τ = Ti/Te, ρs = cs/Ωci

where cs =
√

Te/mi, Ωci = eB/mic and ν is collisionality. We also define

Lf = − (dlnf/dr)−1 (f = {n, Ti}), ηi = Ln/LTi
, ǫn = 2Ln/R where R is

the major radius and αi = τ (1 + ηi). The perpendicular length scale and

time are normalized by ρs and Ln/cs, respectively. The geometrical quanti-

ties are calculated in the strong ballooning limit (θ = 0, gi (θ = 0, κ) = 1/κ

where gi (θ) is defined by ωD (θ) = ω⋆ǫngi (θ)) [21]- [22], with ω⋆ = kyv⋆ =

ρscsky/Ln. The system is closed by using quasi-neutrality with Boltzmann

distributed electrons. Note that the approximate linear solutions to Equa-
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tions (1) and (2) with f = 0 give the dispersion relation with real frequency

(ωr) and growth rate (γ) as,

ωr =
ky

2 (1 + k2
⊥)

(

1 −
(

1 +
10τ

3

)

ǫngi − k2
⊥

(

αi +
5

3
τǫngi

))

, (3)

γ =
ky

1 + k2
⊥

√

τǫngi (ηi − ηith), (4)

where

ηith ≈ 2

3
− 1

2τ
+

1

4τǫngi
+ ǫngi

(

1

4τ
+

10

9τ

)

. (5)

Finite Larmor Radius (FLR) effects on the ηith are here neglected, although

these are included in the numerical study leading to Figures 1 and 2.

We formally calculate the PDF tails of momentum flux by using the

instanton method. To this end, the PDF tail is expressed in terms of a

path integral by utilizing the Gaussian statistics of the forcing f [23]. The

probability distribution function for Reynolds stress R can be defined as

P (R) = 〈δ(〈vxvy〉 −R)〉

=
∫

dλ exp(iλR)〈exp(−iλ(vxvy))〉

=
∫

dλ exp(iλR)Iλ, (6)

where

Iλ = 〈exp(−iλvxvy)〉. (7)

The integrand can then be rewritten in the form of a path-integral as

Iλ =
∫

DφDφ̄e−Sλ . (8)

The angular brackets denote the average over the statistics of the forcing f .

By using the ansatz Ti = χφ, which will be justified later (see Eq. (15)), the
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effective action Sλ in Eq. (8) can be expressed as

Sλ = −i
∫

d2xdtφ̄

(

∂φ

∂t
− (

∂

∂t
− αi

∂

∂y
)∇2

⊥φ+ (1 − ǫngiβ)
∂φ

∂y
− β[φ,∇2

⊥φ]

)

+
1

2

∫

dtd2xd2x′φ̄(x)κ(x− x′)φ̄(x′)

+ iλ
∫

d2xdt(−∂φ
∂x

∂φ

∂y
)δ(t). (9)

Here,

β = 1 + τ + τχ, (10)

χ =
ηi − 2

3
(1 − U)

U + 5
3
τǫngi

. (11)

In Eq. (11), U is the modon speed (see Eq. (15)). To obtain Eq. (9)

we have assumed the statistics of the forcing f to be Gaussian with a short

correlation time modeled by the delta function as

〈f(x, t)f(x′, t′)〉 = δ(t− t′)κ(x− x′), (12)

and 〈f〉 = 0. The delta correlation in time were chosen for the simplicity of

the analysis. In the case of a finite correlation time the non-local integral

equations in time are needed. We will also make use of the completeness

of the Bessel function expansion and write κ(x − x′) = κ0(J0(kx)J0(kx
′) +

J1(kx)J1(kx
′)(cos θ cos θ′+sin θ sin θ′)+J2(kx)J2(kx

′)(cos 2θ cos 2θ′+sin 2θ sin 2θ′)+

...).

III Instanton (saddle-point) solutions

We have now reformulated the problem of calculating the PDF to a path-

integral as in Eq. (6). Although the path integral cannot in general be

calculated exactly, an approximate value can be found in the limit λ→ ∞ by

using a saddle point method. The idea of the saddle-point method is that the
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integrand has a unique global maximum and that all significant contributions

to the integral come only from points in the vicinity of this maximum. In

the limit λ → ∞ a particular path that satisfies the saddle-point equations

gives the leading order contribution. The saddle-point equations are;

δSλ

δφ
= 0, (13)

δSλ

δφ̄
= 0. (14)

Since a direct application of the saddle-point equations results in very compli-

cated partial differential equations for φ and φ̄, we assume that the instanton

saddle-point solution is a temporally localized modon. That is, we assume

that a non-linear vortex soliton solution exists to the system of Eqs (1)-(2)

by assuming that the electric potential φ can be written

φ(x, y, t) = ψ(x, y − Ut)F (t), and Ti = χφ. (15)

The function ψ in Eqs (16)-(17) is the spatial form of the coherent structure,

which is assumed to be the sum of the two modons with the ratio of strength

ǫ as follows,

ψ(x, y − Ut) = c1J1(kr)(cos θ + ǫ sin θ) +
α

k2
r cos θ for r ≤ a, (16)

ψ(x, y − Ut) = c2K1(pr)(cos θ + ǭ(r) sin θ) for r ≥ a. (17)

Here J1 and K1 are the first Bessel function and the second modified Bessel

function, respectively. Here r =
√
x2 + y2, tan θ = y′/x, y′ = y − Ut, α =

(A1 − k2A2), A1 = (1 − ǫngi − U)/β, A2 = (U + αi)/β. By matching the

inner and outer solution at r = a we find the conditions c1 = −αa/J1(ka),

c2 = −Ua/K1(pa), J
′
1(ka)/J1(ka) = (1 + k2/p2)/ka − kK ′

1(pa)/pK1(pa);

U is the velocity of the modon, and a is the size of the core region. The

function ǭ(r) is chosen such that the matching conditions are similar to those

in previous previous studies [17]- [18].
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It is important to note that if ǫ = 0 that the averaged Reynolds stress

vanishes. In general the Reynolds stress associated with the modon can be

found to be

R0 = 〈vxvy〉 =
∫

d2x(−∂φ
∂x

∂φ

∂y
)

= −ǫπc21
∫

drr[
α

kc1
J0(kr) +

1

4
(
J1(kr)

r
)2 +

3

2
kJ ′

1(kr)
J1(kr)

r

+
1

4
k2(J ′

1(kr))
2 +

1

4
k2(J2(kr))

2]. (18)

The Reynolds stress in Eq. (18) represents the effective force driving coher-

ent structures. Interestingly, it shows that the non-linear interaction of two

modons (dipoles) can generate a monopole, given by the zeroth order Bessel

function (J0), as well as other more complicated structures. Given that a

monopole is the dominant term our result, Eq. (18), indicates the tendency

of monopole formation from modons. This tendency was observed in numer-

ical studies in Ref. [14], [24]. Next, the action Sλ is to be expressed only as

an integral in time by using the conjugate variables

F̄0 =
∫

d2xφ̄(x, t)J0(kr), (19)

F̄1s =
∫

d2xφ̄(x, t)J1(kr) sin θ, (20)

F̄1c =
∫

d2xφ̄(x, t)J1(kr) cos θ, (21)

F̄2s =
∫

d2xφ̄(x, t)J2(kr) sin 2θ, (22)

F̄2c =
∫

d2xφ̄(x, t)J2(kr) cos 2θ. (23)

Note that the contribution from the outer solution (r > a) to Sλ is neglected

compared to that from the inner solution (r < a) for simplicity. The outer

solution decays fast and inherently gives a minor contribution to the PDF

tail. The action Sλ consists of three different parts; the ITG model, the

forcing and the Reynolds-stress parts respectively. The ITG model part of
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the action can be reduced to

IITG = −i
∫

d2xdt
[

Ḟ ((1 + k2)ψ − k2αx)

+ F
[

1 − ǫngiβ − U − k2(U + αi) + βFk2α
] ∂ψ

∂y

+ Fνk4ψ − Fνk4αx
]

. (24)

The full action including the forcing and Reynolds stress terms can then

be expressed in terms of F , Ḟ and the conjugate variables F̄

Sλ = −i
∫

dt[γ1Ḟ (F̄1c + ǫF̄1s) + F (γ2F̄2s + ǫγ3F̄0 + ǫγ4F̄2c)

+ F 2(γ5F̄2s + ǫγ6F̄0 + ǫγ7F̄2c) + γ8(F̄1c + ǫF̄1s))]

+
1

2
κ0

∫

dt(F̄ 2
0 + 2(F̄ 2

1c + F̄ 2
1s) + 2(F̄ 2

2s + F̄ 2
2c))

− λR0

∫

dtF 2δ(t) (25)

Here the coefficients are;

γ1 = c1(1 + k2 +
2α

k3
), (26)

γ2 = −k
2
α1 = −γ3 = −1

2
γ4, (27)

γ5 = −k
2
βα = −γ6, (28)

γ7 = βkα, (29)

γ8 = νk4, (30)

α1 = 1 − ǫngiβ − U − k2(U + αi). (31)

The equations of motions for the instanton are found by the variations of

the action with respect to F , F̄0, F̄1c, F̄1s, F̄2c and F̄2s;

δSλ

δF
= −i[−γ1(

˙̄F 1c + ǫ ˙̄F 1s) + (γ2F̄2s + ǫγ3F̄0 + ǫγ4F̄2c)

+ 2F (γ5F̄2s + ǫγ6F̄0 + ǫγ7F̄2c) + γ8(F̄1c + ǫF̄1s)]

− 2λR0Fδ(t) = 0, (32)
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δSλ

δF̄0
= −iǫ(γ3F + γ6F

2) + κ0F̄0 = 0, (33)

δSλ

δF̄1c
= −i(γ1Ḟ + γ8F ) + 2κ0F̄1c = 0, (34)

δSλ

δF̄1s
= −iǫ(Ḟ + γ8F ) + 2κ0F̄1s = 0, (35)

δSλ

δF̄2c
= −iǫ(γ4F + γ7F

2) + 2κ0F̄2c = 0, (36)

δSλ

δF̄2s

= −i(γ2F + γ5F
2) + 2κ0F̄2s = 0. (37)

The equation of motion for F is derived for t < 0 using Eqs. (32)-(37) as;

1

2
γ2

1(1 + ǫ2)
dḞ 2

dF
= η1F + 3η2F

2 + 2η3F
3, (38)

η1 = γ2
2 + 2ǫ2γ2

3 + ǫ2γ2
4 + γ2

8 + ǫ2γ2
8 , (39)

η2 = γ2γ5 + 2ǫ2γ3γ6 + ǫ2γ4γ7, (40)

η3 = γ2
5 + 2ǫ2γ2

6 + ǫ2γ2
7 . (41)

The contribution from the dissipation (ν) to the term involving the time

derivative of F (Ḟ ) cancels out and the equation of motion is exactly solvable.

In the limit of λ→ ∞ the relation can be written,

Ḟ ≃
√

η3

γ2
1(1 + ǫ2)

F 2. (42)

The initial condition is found by integrating Eq. (32) over the interval [−δ, 0]

(δ ≪ 1) and observing that the conjugate variables mediating between the

forcing and F vanish for t ≥ 0. This can be interpreted as a “causality”

condition

iγ1(F̄1c(−δ) + ǫF̄1s(−δ)) + 2λR0F (0) = 0. (43)

The elimination of F̄1c and F̄1s using Eqs. (34) and (35) gives a relationship

between Ḟ and F in the limit λ→ ∞ as,

γ2
1(1 + ǫ2)Ḟ (−δ) ≃ 4κ0λR0F (0). (44)
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Finally, Eqs. (43) and (44) gives the initial condition for F

F (0) ≃ 4κ0λR0
√

η3γ2
1(1 + ǫ2)

. (45)

We use this initial condition to compute the saddle-point action and then

predict the scaling of Sλ (as λ → ∞) to compute the PDF tail in the next

section.

IV The PDF tail

The PDF tail is found by calculating the value of Sλ at the saddle-point. Of

particular interest is the dependency of the action on λ in the limit λ → ∞

which will give the PDF tail;

Sλ ≃ −1

3
λR0





4λκ0R0
√

η3γ2
1(1 + ǫ2)





2

≃ −1

3
hλ3. (46)

The PDF tail of the Reynolds stress (R) can now be found by performing

the integration over λ in Eq. (6) using the saddle-point method,

P (R) ∼ exp(−ξ( R
R0

)3/2), (47)

ξ =
2

3

√

η3γ
2
1(1 + ǫ2)

4κ0
. (48)

Here, it is important to note that our assumption that λ → ∞ corresponds

to R → ∞. Equation (47) gives the probability of a Reynolds stress R,

normalized by the Reynolds stress R0 due to the the modon solution R0

given by Eq. (18) which is fixed for given parameters. We have assumed

that the modon is created and that F (t) = 0 as t → −∞, which means we

can interpret the Eq. (47) as a transition amplitude from an initial state,

with no fluid motion, to final states with different values of R/R0. It is also
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important to note that even though we have assumed a Gaussian forcing

the tail is non-Gaussian exhibiting intermittency. The overall coefficient ξ

in the PDF in Eqs. (47)-(48) depends on several physical parameter values.

First, ξ → ∞ (i.e. PDF vanishes) as the the forcing disappears (κ0 → 0);

the instanton cannot form and the PDF vanishes (P (R) → 0). Second,

ξ increases for larger ǫ leading to a reduction in the PDF. Furthermore, ξ

depends on ion temperature gradient (ηi), density gradient (ǫn), temperature

ratio (τ = Ti/Te), modon size (a), modon speed (U) and wave number (k).

These dependencies will be studied in detail numerically in Sec. V.

V Results

We have presented a calculation of the tail of the Reynolds stress probability

distribution function (PDF) in forced ITG turbulence. We have shown by a

non-perturbative calculation (instanton calculus) that a coherent structure

can lead to intermittent vorticity flux. A path-integral formulation is devel-

oped for the PDF tail. The system is solved by assuming that the tail is

associated with bursty events or the creation of modons (a bipolar vortex).

The integrals are then estimated by the saddle-point method, which gives

the functional dependence of the tail as exp {−ξ(R/R0)
3/2}. This exponen-

tial form seems to be ubiquitous in drift wave turbulence. In this section,

the parameter dependencies of ξ will be studied in detail and compared to a

normalized Gaussian profile.

In Figure 1, the PDF tails are shown as a function of Reynolds stress

for forced ITG mode turbulence (blue line), forced Hasegawa-Mima (HM)

turbulence (red line), Gaussian distributions with same parameters as for

the ITG mode turbulence (green line) and cases with negative modon speed

14



in ITG mode turbulence (black line) and HM turbulence (dashed black line).

The other parameters are ηi = 4.0, τ = 0.5, ǫn = 1.0, gi = 1, a = 2, U = 2.0

(U = −5.0 black line and dashed black line), κ0 = 3.0, ǫ = 0.1 and k ≈ 1.84

(ITG case), k = 0.81 (ITG with reversed modon speed), k ≈ 1.73 (HM case)

and k = 1.56 (HM with reversed modon speed). The PDF tail in HM model

is obtained by setting the parameters β = 1 and ǫn = 0.0. This is equivalent

to letting ηi = 0.0 and τ = Ti/Te = 0.0. It is shown that for U > 0 the PDF

tail for ITG turbulence is significantly lower compared to the value found for

HM turbulence, although they are qualitatively similar. The reason for this

is that the model dependent factor ξ is significantly different in ITG mode

and HM turbulence. In the case of reversed modon speed (U < 0), χ changes

sign and significantly enhances the PDF tail. The enhanced ITG PDF tail

for the reversed modon speed is due to the change in k; a smaller value of k

combined with a large negative modon speed gives the enhancement.

Figure 2 shows the PDF tail as a function of Reynolds stress in ITG

mode turbulence by varying ǫn parameter values; k ≈ 1.91, ǫn = 0.1 (black),

ǫn = 1.0, (blue line), ǫn = 2.0, (red line) and a Gaussian distribution with

the same ξ as for the ǫn = 1.0 case (green line). The parameters are U = 4.0

with all the others the same as those in Figure 1. The PDF tails for different

density profiles are qualitatively similar, however for peaked density profiles

(small ǫn) the PDF tails are significantly enhanced.

In most cases, the PDF tails of drift wave turbulence differ significantly

both quantitatively and qualitatively with the Gaussian distributions.
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Figure 1: (Color online). The PDF tails are shown as a function of Reynolds

stress for ITG mode turbulence (blue line), forced Hasegawa-Mima (HM)

turbulence (red line), Gaussian distributions with same parameters as for

the ITG mode turbulence (green line) and cases with negative modon speed

in ITG mode turbulence (black line) and in HM turbulence (dashed black

line). The other parameters are ηi = 4.0, τ = 0.5, ǫn = 1.0, gi = 1, a = 2,

U = 2.0 (U = −5.0 black line and dashed black line), κ0 = 3.0, ǫ = 0.1 and

k ≈ 1.84 (ITG case), k = 0.81 (ITG with reversed modon speed), k ≈ 1.73

(HM case) and k = 1.56 (HM with reversed modon speed).
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Figure 2: (Color online). Shows the PDF tail as a function of Reynolds

stress in ITG mode turbulence by varying ǫn parameter values; ǫn = 0.1,

k ≈ 1.91 (black), ǫn = 1.0, (blue line), ǫn = 2.0, (red line) and a Gaussian

control distribution with the same ξ as for the ǫn = 1.0 case (green line).

The parameters are U = 4.0 and the others as in Figure 1.
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VI Discussion and conclusions

The present calculation of the PDF tail of momentum suggests the PDF

tail ∼ e−ξR3/2

to be ubiquitous in drift wave turbulence. The 3/2 exponent

in Eq. (47) follows from the λ → ∞ dependence of the action as Sλ ∼

λ3 and inherently comes from the quadratic non-linearity in the dynamical

equations. This scaling can be found by balancing the terms in Sλ as λ→ ∞

as λφφ ∼ φφ̄ ∼ T φ̄φ2 ∼ T φ̄2, from which it follows: φ ∼ λ, φ̄ ∼ λ2, T ∼

λ−1, and Sλ ∼ λ3. Here, T is the typical timescale of the instanton. The

coefficient ξ in Eq. (47) contains all the model dependent information and

gives the difference between the ITG and the HM models; we have shown that

PDF tails in drift wave turbulence significantly deviate from the Gaussian

distributions in most cases. Moreover, it was found that reversed modon

speed may have significant influence on the PDF tail (e.g see Figure 1). There

is some interesting recent experimental work done at CSDX at UCSD, where

the same qualitative Reynolds stress PDF scaling was found (e−ξR3/2

) [27],

which agrees with our prediction.

We now consider the PDF of ion heat flux 〈Tivx〉 given by,

P (H) ∼ 〈δ(〈Tivx〉 −H)〉

=
∫

dλ exp(iλH)〈exp(−iλ(Tivx))〉, (49)

By using the same methodology, we can show that P (H) takes exactly the

same form as for P (R); i.e. P (H) ∼ e−ξ(H/H0)3/2

. Here, H0 = 〈Tivx〉, is

the heat flux associated with modons. Therefore, heat transport can also be

significantly enhanced over the Gaussian prediction due to modons.

In using the instanton method we had to assume the spatial form of the

coherent structure, a modon in this case, to be an exact solution to the
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non-linear dynamical equation with fixed parameter values. This means that

the mechanism of formation of the structure itself was not addressed in this

analysis. The computation of structure formation will be addressed in a

future publication.

We note that for simplicity, we have not included the effect of zonal flows

in the present study. The system of Eq. (1)-(2) describes the non-linear evo-

lution of the ITG mode in the presence of a Gaussian forcing (f), by assuming

the Boltzmann response. The influence of zonal flows on the PDFs can be

calculated by using a similar method, and is expected to give a qualitatively

similar result (e−ξR3/2

), but with a different value of the coefficient ξ. As long

as the main non-linearity is quadratic in Eq. (1), the same power law should

follow since the power-law is determined by the highest nonlinearity in the

equations. Due to the neglect of zonal flows the result obtained in this pa-

per would be more relevant to understanding transport in drift-wave systems

that have weak influence of zonal flows e.g. electron-temperature-gradient

(ETG) turbulence. However, even if zonal flows play an important role in

the regulation of ITG turbulence, it is still of great interest to investigate the

PDF tails in ITG turbulence which is weakly regulated by zonal flows. It

is because many transport simulations have shown that the zonal flows have

strong effect close to the critical gradient whereas far away from this critical

gradient the effect of zonal flows is much more complicated.

In general, for calculating the PDF tail a weighted sum over various

coherent structures is needed. At present, the only known exact solution is

the modon which we have assumed to be the underlying coherent structure.

A generalization should be straight forward if more non-linear solutions were

available.

We note that a non-Gaussian scaling of the PDF (the exponent of R) is
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found even when the forcing is Gaussian, although the exact exponent may

depend on the temporal and possibly spatial correlation of the forcing (f).

In the present paper, the forcing is chosen to be temporally delta correlated

for simplicity. The exponent may also change, if another spatial coherent

structure is introduced i.e. another non-linear solution to the Eq. (1)-(2) is

found. The case where the forcing is non-Gaussian (f) will be addressed in

a future publication.

Although there are very few numerical simulations of event-size distribu-

tions, there are however some recent gyrokinetic numerical simulations of the

spectrum properties of heat flux [25]- [26]. However, the prediction of the

full spectrum behavior of heat flux is out of the scope of the present work

and will be addressed in a future publication.

In summary, this paper presents the first calculation of PDF tails of

momentum flux and heat flux, which were shown to be significantly enhanced

over the Gaussian prediction. This suggests that considerable transport is

mediated by rare events of high amplitude. This is because even if the

PDF tails have a low amplitude (rare events), these rare events are of high

amplitude, possibly carrying significant transport. Since the PDF tails are

enhanced over the Gaussian prediction in our case, these events are more

likely to mediate considerable transport. The main point of the present

work is to investigate the influence of different parameters on the coefficient

(ξ). The results should be interpreted that for certain parameters, large scale

events are more likely to be the main cause for transport while less important

for other parameters. In all cases with parameters relevant for a tokamak

plasma, the (enhanced) non-Gaussian PDF tail is of great importance. The

overall amplitude is shown to be larger in ITG than in HM turbulence for

reversed modon speed (U < 0).
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