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Chagas disease, leishmaniasis, and sleeping sickness affect 20 million people worldwide and lead to 10 

more than 50,000 deaths annually
1
. The diseases are caused by infection with the kinetoplastid 11 

parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These 12 

parasites have similar biology and genomic sequence, suggesting that all three diseases could be 13 

cured with drug(s) modulating the activity of a conserved parasite target
2
. However, no such 14 

molecular targets or broad spectrum drugs have been identified to date. Here we describe a 15 

selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, 16 

which cleared parasites from mice in all three models of infection. GNF6702 inhibits the 17 

kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian 18 

proteasome or growth of mammalian cells, and is well-tolerated in mice.  Our data provide genetic 19 

and chemical validation of the parasite proteasome as a promising therapeutic target for treatment 20 

of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for 21 

these neglected diseases. 22 
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Kinetoplastid infections affect predominantly poor communities in Latin America, Asia and Africa. 23 

Available therapies suffer from multiple shortcomings, and new drug discovery for these diseases is 24 

limited by insufficient investment3. We sought low molecular weight compounds with a growth 25 

inhibitory effect on Leishmania donovani (L. donovani)
4,5, Trypanosoma cruzi (T. cruzi)

6,7 and 26 

Trypanosoma brucei (T. brucei)
5,8. Our approach was to test 3 million compounds in proliferation assays 27 

on all three parasites (Supplementary Information Tables 1-3), followed by triaging of active compounds 28 

(half-maximum inhibitory concentration value EC50<10 µM) to select those with a clear window of 29 

selectivity (>5-fold) with respect to growth inhibition of mammalian cells.  An azabenzoxazole, 30 

GNF5343, was identified as a hit in the L. donovani and T. brucei screens. Although GNF5343 was not 31 

identified in the T. cruzi screen, we noted potent anti-T. cruzi activity of this compound in secondary 32 

assays. 33 

Optimization of GNF5343 involved the design and synthesis of ~3,000 compounds, and focused on 34 

improving bioavailability and potency on inhibition of L. donovani growth within macrophages (Fig. 1). 35 

A critical modification involved replacement of the azabenzoxazole center with C6-substituted imidazo- 36 

and triazolopyrimidine cores, which yielded compounds up to 20-fold more potent on intra-macrophage 37 

L. donovani (e.g. GNF2636). Replacement of the furan group with a dimethyloxazole ring reduced the 38 

risk of toxicity associated with the furan moiety, and replacement of the chlorophenyl group with a 39 

fluorophenyl improved selectivity over mammalian cell growth inhibition (e.g. GNF3849). These 40 

changes also resulted in low clearance and acceptable bioavailability. Further substitutions at the core C6 41 

position led to GNF6702 and a 400-fold increase in intra-macrophage L. donovani potency compared to 42 

GNF5343. 43 

L. donovani parasites cause a majority of visceral leishmaniasis (VL) cases in East Africa and India9. In 44 

mice infected with L. donovani
10, oral dosing with GNF6702 effected a more pronounced reduction in 45 
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liver parasite burden than miltefosine, the only oral anti-leishmanial drug available in clinical practice5 46 

(Fig. 2a). The miltefosine regimen for VL efficacy studies was chosen to approximate the drug plasma 47 

concentration of the clinical regimen11. We noted a greater than three log reduction in parasite load after 48 

eight day treatment with 10 mg/kg of GNF6702 twice-daily with the free concentration of GNF6702 49 

(fraction unbound in plasma=0.063) staying above the L. donovani EC99 value (the concentration 50 

inhibiting 99% of intra-macrophage parasite growth in vitro) for the duration of the dosing period 51 

(Extended Data Fig. 1a). Characterization of efficacy of ten analogues in the series at various doses 52 

revealed a significant correlation (r2=0.89, p<0.01) between i) the ratio of mean free plasma compound 53 

concentration to the L. donovani EC90 value and ii) reduction of the liver parasite burden. We found that 54 

90% parasite burden reduction in the mouse model was achieved when the mean free compound plasma 55 

concentration during treatment equaled a 0.94-fold multiple of the L. donovani EC90 value (Fig. 2b).  56 

Cutaneous leishmaniasis (CL) affects about a million people per year, causing skin lesions that can 57 

resolve into scar tissue12. In parts of the Middle East, CL has reached epidemic proportions13. After 58 

footpad infection of BALB/c mice with the dermatotropic L. major strain14,15, treatment with GNF6702 at 59 

10 mg/kg twice-daily caused a 5-fold decrease in footpad parasite burden and a reduction in footpad 60 

swelling (Fig. 2c). Both 3 mg/kg and 10 mg/kg twice-daily regimens of GNF6702 were superior to 30 61 

mg/kg once-daily miltefosine regimen (p<0.01), which translates into ~2-fold higher miltefosine plasma 62 

concentration in mice than observed in clinical dosing11. 63 

We further tested if GNF6702 can cure additional kinetoplastid parasite infections. An estimated 25% of 64 

the 8 million people infected with T. cruzi will develop chronic Chagas disease, manifesting as cardiac or 65 

intestinal dysfunction16,17. Benznidazole is broadly used for treatment of acute and indeterminate stages 66 

of Chagas disease in Latin America18,19. However, benznidazole has side-effects that frequently lead to 67 

treatment interruption18,20-22 and a better tolerated drug is needed. To model treatment in the 68 
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indeterminate disease stage, we infected mice with T. cruzi parasites and began treatment 35 days after 69 

infection, when the immune system of the mice had controlled parasite burden23. We increased the 70 

parasite detection sensitivity by immunosuppressing the mice after 20 days of treatment23,24. In this 71 

model, GNF6702 dosed twice-daily at 10 mg/kg matched the efficacy of benznidazole at 100 mg/kg 72 

once-daily; all but one treated mice had no detectable parasites in blood, colon or heart tissue, even after 73 

4 weeks of immunosuppression (Fig. 2d).  74 

Finally, we tested GNF6702 in a mouse model of stage II sleeping sickness (human African 75 

trypanosomiasis - HAT)25. Mortality of stage II HAT is caused by infection of the CNS and, in this 76 

mouse model, luciferase-expressing T. brucei parasites establish a CNS infection by day 21 post-77 

infection. GNF6702 was administered at 100 mg/kg once-daily to account for low exposure in the brain 78 

relative to the plasma (~10%, Extended Data Fig. 1b). Diminazene aceturate, a stage I drug that poorly 79 

crosses the blood-brain barrier, effected apparent clearance of parasites from the blood after a single dose, 80 

but did not prevent parasite recrudescence 21 days later. By contrast, treatment with GNF6702 for seven 81 

days caused a sustained clearance of parasites (days 42 and 92 post-infection in Fig. 2e, Extended Data 82 

Fig. 2a, Supplementary Information Tables 4 and 5). Significantly, mice treated with GNF6702 had no 83 

detectable parasites in the brain at termination of the experiment, though parasites were clearly detected 84 

in the brains of mice treated with diminazene aceturate (Extended Data Fig. 2b, Supplementary 85 

Information Table 6).  86 

As GNF6702 showed compelling efficacy in four mouse models of kinetoplastid infections: VL, CL, 87 

Chagas disease and stage II HAT, we reasoned that mechanistic studies of GNF6702 might identify a 88 

pan-kinetoplastid drug target that could inform target-based drug discovery efforts. We attempted to 89 

evolve L. donovani strains resistant to GNF3943 and GNF8000 (early analogues from the series, 90 

Extended Data Fig. 3) through 12 months of parasite culture under drug pressure without success. 91 
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However, we were able to select two drug-resistant T. cruzi epimastigote isolates, one resistant to 92 

GNF3943, and another to GNF8000. Both T. cruzi lines exhibited at least 40-fold lower susceptibility to 93 

GNF6702 than wild type T. cruzi (Extended Data Fig. 4a and 4b). Using whole genome sequencing, we 94 

found that the GNF3943-resistant line had a homozygous mutation encoding a substitution of isoleucine 95 

for methionine at amino acid 29 in the proteasome beta 4 subunit (PSMB4
I29M/I29M) and a heterozygous 96 

mutation P82L in dynein heavy chain gene. The GNF8000-resistant line had a heterozygous F24L 97 

mutation in PSMB4, and four other heterozygous mutations (Extended Data Table 1). We focused our 98 

attention on the proteasome as a likely target for the compound series because we found two independent 99 

mutations in the PSMB4 gene, and because the proteasome is an essential enzyme in eukaryotic cells. We 100 

also note that the Plasmodium falciparum proteasome has recently been the target of promising drug 101 

discovery efforts for malaria26. 102 

We first asked whether two prototypic inhibitors of mammalian proteasome, bortezomib and MG132, 103 

could also block T. cruzi growth. Indeed, both compounds inhibited T. cruzi epimastigote proliferation 104 

with sub-micromolar potency. However, in contrast to GNF6702, bortezomib and MG132 inhibited 105 

proliferation of the two resistant lines (PSMB4
I29M/I29M, PSMB4

wt/F24L) with comparable potency to the 106 

wild type parasites. Additionally, the PSMB4 mutant lines were not resistant to nifurtimox, an anti-107 

kinetoplastid drug with an unrelated mechanism of action (Extended Data Fig. 4a and 4b). To determine 108 

whether the F24L mutation was sufficient to confer resistance to GNF6702, we engineered T. cruzi 109 

epimastigote lines that ectopically expressed either wild type or F24L-mutated PSMB4. Overexpression 110 

of PSMB4WT had little effect on the EC50 value for GNF6702, whereas overexpression of PSMB4F24L 111 

caused a greater than 10-fold reduction in GNF6702 potency, but not in that of bortezomib (Fig. 3a, 112 

Extended Data Fig. 4c). Previously, bortezomib was also shown to inhibit the growth of T. brucei, 113 

suggesting that proteasome activity is essential for growth in this parasite as well27. To test whether 114 
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PSMB4F24L can rescue growth inhibition by GNF6702 in T. brucei, we engineered two parasite strains 115 

that ectopically expressed wild type and F24L-mutated PSMB4, respectively. Similar to T. cruzi, 116 

overexpression of PSMB4F24L in T. brucei conferred a high level of resistance to GNF6702 (~70-fold 117 

shift in EC50 value), while having no effect on parasite susceptibility to bortezomib (Fig. 3b, Extended 118 

Data Fig. 4c). 119 

We next asked whether GNF6702 could inhibit any of three T. cruzi proteasome proteolytic activities in 120 

biochemical assays. As predicted from the T. cruzi genome28, mass spectrometry analysis of purified T. 121 

cruzi proteasome identified seven alpha and seven beta proteasome subunits, including PSMB4 122 

(Supplementary Tables 7 and 8). Using substrates that are specific for each of the chymotrypsin-like, 123 

trypsin-like and caspase-like proteolytic activities, we found that only the chymotrypsin-like activity of 124 

the T. cruzi proteasome was inhibited by GNF6702 (IC50=35 nM), while the other two activities were not 125 

affected (IC50>10 µM). In contrast, bortezomib inhibited the chymotrypsin-like (IC50=91 nM), the 126 

caspase-like (IC50=370 nM) and the trypsin-like (IC50=1.7 µM) activities. We further found that the 127 

chymotrypsin-like activity of the PSMB4I29M T. cruzi proteasome was at least 300-fold less susceptible to 128 

GNF6702 (IC50>10 µM) and ~3-fold less susceptible to bortezomib (IC50=0.26 µM), while susceptibility 129 

of the other two mutant proteasome proteolytic activities to the two inhibitors were not affected (Fig. 4a, 130 

Extended Data Table 2). 131 

We reasoned that if the primary mechanism of parasite growth inhibition by the compound series was 132 

through inhibition of the proteasome chymotrypsin-like activity, then the IC50 values for this proteolytic 133 

activity should correlate with EC50 values for parasite proliferation. Indeed, a tight correlation between 134 

the two parameters was observed for L. donovani axenic amastigotes and T. brucei bloodstream form 135 

trypomastigotes (r2=0.78 and r2=0.67, respectively) over a 2,000-fold potency range for 317 analogues, 136 

thus indicating that inhibition of parasite proteasome activity was driving the anti-parasitic activity of 137 
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these compounds. We observed a weaker correlation between IC50 and EC50 values for intracellular 138 

T .cruzi (r2=0.36, p<0.01), perhaps reflecting more complex cellular pharmacokinetics resulting from 139 

compounds having to access T. cruzi parasites within the cytosol of mammalian cells (Fig. 4b, Extended 140 

Data Fig. 5). 141 

Both resistant T. cruzi lines retained sensitivity to bortezomib, which is a substrate-competitive inhibitor, 142 

suggesting that GNF6702 might have an alternative mode of inhibition. A Lineweaver-Burk plot of 143 

chymotrypsin-like activity at increasing concentrations of peptide substrate showed that GNF6702 has a 144 

non-competitive mode of inhibition clearly distinct from the competitive mechanism described for 145 

MG132 and bortezomib29,30. We were also able to extend these observations to proteasome from L. 146 

donovani (Fig. 4c, Extended Data Table 3). We further note that GNF6702 had no measurable activity on 147 

the human proteasome (Fig. 4d, Extended Data Table 2). Interestingly, human proteasome beta 4 subunit 148 

has a methionine at the 29th amino acid position, mirroring the I29M mutation in the GNF3943-resistant 149 

T. cruzi line (Extended Data Fig. 6a). 150 

In summary, GNF6702 blocks the chymotrypsin-like activity harbored by the beta 5 subunit without 151 

competing with substrate binding, and mutations in the beta 4 subunit, which is in direct physical contact 152 

with the beta 5 subunit, confer resistance to this inhibition. Next we used homology modeling of the T. 153 

cruzi proteasome to look for evidence of an allosteric inhibitor binding site. In the T. cruzi proteasome 154 

model, the F24 and I29 beta 4 residues are positioned at the interface between the beta 4 and beta 5 155 

subunits, on the outer limit of the beta 5 active site. Adjacent to these two beta 4 residues and the beta 5 156 

active site is a plausible binding pocket for GNF6702 (Extended Data Fig. 6b and 6c).  157 

Finally, we tested whether GNF6702 can inhibit proteasome activity in intact T. cruzi cells. Cellular 158 

proteins entering the proteasome degradation pathway are first tagged with ubiquitin, and proteasome 159 

inhibition results in intracellular accumulation of ubiquitylated proteins. Treatment of T. cruzi 160 



8 

 

epimastigotes with GNF6702 led to significant buildup of ubiquitylated proteins (Extended Data Fig. 7a) 161 

with the half-maximal effect (EC50) achieved at 130 nM compound concentration (Extended Data Fig. 162 

7c). This EC50 value correlated well with the half-maximal growth inhibitory concentration of GNF6702 163 

on T. cruzi epimastigotes (EC50=150 nM; Extended Data Fig. 4b). For comparison, similar experiments 164 

with bortezomib yielded comparable inhibitor potencies in the two T. cruzi assays (ubiquitylation 165 

EC50=62 nM vs growth inhibition EC50=160 nM; Extended Data Fig. 4b and 7c). We did not observe any 166 

detectable accumulation of ubiquitylated proteins in mammalian 3T3 cells treated with GNF6702 167 

(Extended Data Fig. 7b and 7c), further confirming high selectivity of this compound. 168 

Validation of the parasite proteasome as the target of GNF6702 is supported through several lines of 169 

evidence: i) point mutations in the PSMB4 gene are sufficient to confer resistance to biochemical 170 

proteasome inhibition and cellular T. cruzi growth inhibition; ii) GNF6702 is a selective inhibitor of 171 

parasite proteasome activity and does not inhibit the human proteasome, mirroring the selective 172 

inhibition of parasite growth over mammalian cell growth; and iii) potency of GNF6702 and analogues in 173 

parasite proteasome assays predict potency in parasite growth inhibition assays.  174 

In this work we show that in mouse disease models, GNF6702 was able to eradicate parasites from 175 

diverse niches that included the cytosol (T. cruzi), phagolysosome (L. donovani, L. major) of infected 176 

host cells, and brain (T. brucei). GNF6702 has also good pharmacokinetic properties, and the compound 177 

did not show activity in panels of human receptor, enzyme and ion channel assays (Supplementary 178 

Tables 9-11). Going forward, GNF6702, or analogues thereof, has potential to yield a new treatment for 179 

several kinetoplastid infections and it is currently being evaluated in preclinical toxicity studies. It is 180 

unclear if the clinical utility of GNF6702 could extend to the treatment of stage II HAT as GNF6702 was 181 

tested in the HAT mouse model only at one high dose (100 mg/kg once-daily). We also note that 182 

identification of a broadly active pan-kinetoplastid drug might not be feasible (or desirable) as such a 183 
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drug would need to reach high concentrations in varied tissues/subcellular compartments, and might 184 

carry increased toxicity risk. Instead, alternative analogues from this series with different 185 

pharmacological profiles might be needed for treatment of different kinetoplastid infections. Nevertheless, 186 

there are only scarce resources for drug development in these diseases, and identification of a common 187 

target and chemical scaffold with potential across multiple indications provides new hope for improved 188 

treatment options for some of the world’s poorest people. 189 
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FIGURE LEGENDS 300 

 Figure 1: Chemical evolution of GNF6702 from the phenotypic hit GNF5343. L. donovani: 301 

amastigotes proliferating within primary mouse macrophages; T. brucei: the bloodstream form 302 

trypomastigotes; T. cruzi: amastigotes proliferating in 3T3 fibroblast cells; macrophage: mouse primary 303 

peritoneal macrophages; EC50 and CC50 : half-maximum growth inhibition concentration; F: oral 304 

bioavailability in mouse after administering single compound dose (20 mg/kg) as a suspension; CL: 305 

plasma clearance in mouse after single iv bolus dose (5 mg/kg); N.D.: not determined; all EC50 and CC50 306 

values correspond to means ± s.e.m. (n=4 technical replicates). 307 

Figure 2: GNF6702 clears parasites in mouse models of kinetoplastid infections. a, Post-treatment L. 308 

donovani liver burdens in mouse model of VL as assessed by qPCR (n=5 mice). b, PK/PD relationship 309 

for ten GNF6702 analogues, each administered at several doses; circles: mean liver burdens associated 310 

with individual compound regimens (30 regimens in total; n=5 mice per regimen) relative to vehicle; 311 

horizontal dotted line: 90% reduction in the liver L. donovani burden; vertical dotted line: 0.94-fold 312 

multiple of the mean free compound plasma concentration/ the L. donovani EC90 value ratio. c, Post-313 

treatment L. major footpad burdens in the BALB/c mouse model of CL as assessed by qPCR (n= 6 mice); 314 
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the p values (two-tailed distribution) relate parasite burdens in compound-treated mice with those from 315 

vehicle-treated mice; left inset picture: a representative mouse footpad after treatment with vehicle; right 316 

inset picture: a representative mouse footpad after treatment with GNF6702 10 mg/kg twice-daily 317 

regimen. d, T. cruzi burden in mouse blood (circles), colon (triangles) and heart (diamonds) as assessed 318 

by qPCR after 20 days of treatment and four weeks of immunosuppression (n=8 mice). e, Whole body in 319 

vivo imaging of bioluminescent T. brucei before and after treatment; Trypanosoma brucei–infected mice 320 

were treated by a single intraperitoneal injection of diminazene aceturate (n=3 mice) or by oral 321 

administration of GNF6702 once-daily for 7 days (n=6 mice); filled symbols show whole body 322 

bioluminescence values for individual mice; several mice from the untreated and diminazene aceturate-323 

treated groups were euthanized between days 28 and 56 due to CNS infection symptoms; background 324 

bioluminescence values shown for uninfected mice (grey-filled squares; n=4) were collected 325 

independently from mice aged-matched for day 0 using the same acquisition settings. Red dotted lines in 326 

a, c and d plots show limit of parasite detection by qPCR; plot symbols below the red dotted line: mice 327 

with no detectable parasites; data points below the limit of detection are ‘jittered’ to show number of 328 

animals in a group; thick horizontal lines: means of the treatment groups; RU: relative units (parasite 329 

burden relative to the mean burden of the vehicle-treated group). 330 

Figure 3: F24L mutation in proteasome beta 4 subunit confers selective resistance to GNF6702. a, 331 

growth inhibition of T. cruzi epimastigote strains ectopically expressing PSMB4WT or PSMB4F24L protein 332 

by GNF6702 and bortezomib; non-induced/induced: culture medium without/with tetracycline to 333 

modulate expression of tetracycline-inducible PSMB4 genes. b, growth inhibition of T. brucei 334 

bloodstream form trypomastigotes constitutively overexpressing PSMB4WT or PSMB4F24L protein by 335 

GNF6702 and bortezomib. EC50 values for each strain/compound pair are listed inside a and b plot 336 

panels next to corresponding strain/compound symbol (defined in plot legends); means from n=3 337 
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technical replicates are shown; error bars represent s.e.m. values; for data points lacking error bars, s.e.m. 338 

values are smaller than circles representing means; due to limited aqueous solubility, the highest tested 339 

GNF6702 concentration was 10 µM. RU (relative units) in a and b corresponds to parasite growth 340 

relative to the DMSO control (%). 341 

Figure 4: Compounds from GNF6702 series inhibit growth of kinetoplastid parasites by inhibiting 342 

parasite proteasome chymotrypsin-like activity. a, Inhibition of three proteolytic activities of purified 343 

wild type (PSMB4WT) and PSMB4I29M T. cruzi proteasomes by GNF6702 and bortezomib; IC50 values 344 

for proteasome proteolytic activities are listed inside plots. b, Correlation between inhibition of 345 

chymotrypsin-like activity of purified L. donovani proteasome (IC50) and L. donovani axenic amastigote 346 

growth inhibition (EC50; data points correspond to means of 2 technical replicates); red circles: IC50>20 347 

µM; blue circles: EC50>25 µM; yellow circles: IC50>20 µM and EC50>25 µM; data for 317 analogues are 348 

shown. c, Lineweaver-Burk plot of inhibition of T. cruzi proteasome chymotrypsin-like activity by 349 

GNF6702 at increasing concentrations of a peptide substrate. d, Effect of GNF6702 and bortezomib on 350 

three proteolytic activities of human constitutive proteasome; IC50 values for proteasome proteolytic 351 

activities are listed inside plots. Data shown in a, c and d represent means ± s.e.m. (n=3 technical 352 

replicates; for data points lacking error bars, s.e.m. values are smaller than circles representing means). 353 

Due to limited aqueous solubility, the highest tested GNF6702 concentration in experiments shown in a 354 

and d was 10 µM. 355 

METHODS 356 

Ethics statement for animal models. All procedures involving mice were performed in accordance with 357 

AAALAC standards or under UK Home Office regulations, and were reviewed and approved in 358 

accordance with the Novartis Animal Welfare Policy. Sample size was determined on the basis of the 359 
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minimum number of animals required for good data distribution and statistics. Blinding was not possible 360 

in these experiments but animals were selected randomly for each group. 361 

Determination of IC50, EC50 and CC50 values, and data correlation. Reported IC50/ EC50/ CC50 values 362 

were calculated by averaging IC50/ EC50/ CC50 values obtained from individual technical replicate 363 

experiments (n; specified in relevant Figure captions and Methods sub-sections). Each technical replicate 364 

experiment was performed on a different day with freshly prepared reagents. Reported standard errors of 365 

mean (s.e.m.) were calculated using IC50/ EC50/ CC50 values determined in individual technical replicate 366 

experiments. To calculate IC50/ EC50/ CC50 values, measured dose response values were fitted with 4-367 

parameter logistic function y=A+(B-A)/(1+(x/C)^D) (model 201, XLfit, IDBS), where x refers to 368 

compound concentration and y corresponds to an assay readout value. 369 

VL efficacy data for ten GNF6702 analogues (Fig. 2a) were fitted with 4-parameter logistic function 370 

y=A+(B-A)/(1+(x/C)^D) (model 201, XLfit, IDBS), where x values correspond to free mean compound 371 

plasma concentrations and y values correspond to log10(L. donovani liver burden). 372 

To correlate parasite proteasome inhibition with parasite growth inhibition (Fig. 4b and Extended data 373 

Fig. 5), we fitted data with y=a*x+b function using the least square method (x corresponds to log10(IC50); 374 

y corresponds to log10(EC50)). 375 

Leishmania donovani axenic amastigote growth inhibition assay. RPMI 1640 medium (HyClone) was 376 

supplemented with 20% heat-inactivated fetal bovine serum (Omega Scientific), 23 µM folic acid 377 

(Sigma-Aldrich), 100 µM adenosine (Sigma-Aldrich),  22 mM D-glucose (Sigma-Aldrich), 4 mM L-378 

glutamine (Hyclone), 25 mM 2-(4-morpholino) ethanesulfonic acid (Sigma-Aldrich) and 100 IU 379 

penicillin/ 100 μg/mL streptomycin (HyClone), and adjusted to pH= 5.5 with 6 M hydrochloric acid 380 

(Fisher Scientific) at 37 °C. Leishmania donovani MHOM/SD/62/1S-CL2D axenic amastigotes were 381 
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cultured in 10 mL of this medium (Axenic Amastigote Medium) in T75 CELL-STAR flasks (Greiner 382 

Bio-One) at 37 °C/ 5% CO2 and passaged once a week. 383 

To determine compound growth inhibitory potency on L. donovani axenic amastigotes, 100 nL of serially 384 

diluted compounds in DMSO were transferred to the wells of white, solid bottom 384-well plates 385 

(Greiner Bio-One) by Echo 555 acoustic liquid handling system (Labcyte). Then, 1 x 103 of L. donovani 386 

axenic amastigotes in 40 µL of Axenic Amastigote Medium were added to each well, and plates were 387 

incubated for 48 hours at 37 °C/ 5% CO2. Parasite numbers in individual plate wells were determined 388 

through quantification of intracellular ATP. The CellTiter-Glo luminescent cell viability reagent 389 

(Promega) was added to plate wells, and ATP-dependent luminescence signal was measured on an 390 

EnVision MultiLabel Plate Reader (Perkin Elmer). Luminescence values in wells with compounds were 391 

divided by the average luminescence value of the plate DMSO controls, and used for calculation of 392 

compound EC50 values as described above. 393 

Axenic amastigote EC50 values shown in Fig. 4b correspond to means of 2 technical replicates.  394 

Isolation and maintenance of Leishmania donovani splenic amastigotes. Female BALB/cJ mice 395 

(Envigo) infected with L. donovani MHOM/ET/67/HU3 (ATCC) for 50-80 days were euthanized, and 396 

infected spleens were removed and weighed. The weight of an infected spleen ranged from 300 to 600 397 

mg. For comparison, spleens from non-infected age-matched BALB/cJ mice weighed ~100 mg. Infected 398 

spleens were washed in Axenic Amastigote Medium (composition described above) and placed into 399 

Falcon 50 mL conical centrifuge tubes (Fisher Scientific) containing ice-cold Axenic Amastigote 400 

Medium (15 mL per infected spleen). Spleens were homogenized on ice in a Dounce homogenizer and 401 

centrifuged at 200 x g for 15 minutes at 4 °C to remove tissue debris. Leishmania donovani amastigotes 402 

present in the supernatant were pelleted by centrifugation at 1,750 x g for 15 min at 4 °C and re-403 

suspended  either in Axenic Amastigote Medium (when used for in vitro macrophage infections) or in 404 
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Hanks’ Balanced Salt Solution (when used for mouse infections; Hyclone). Suspensions of splenic 405 

amastigotes were kept on ice and used for in vitro or in vivo infections within 2-3 hours. To propagate L. 406 

donovani amastigotes in vivo, 6 to 7 weeks old female BALB/cJ mice were infected with 8 x 107 purified 407 

splenic amastigotes in 200 µL of Hanks’ Balanced Salt Solution by tail vein injection. 408 

Leishmania donovani intra-macrophage amastigote growth inhibition assay. In vitro compound 409 

potencies on intra-macrophage L. donovani MHOM/ET/67/HU3 were determined using primary murine 410 

peritoneal macrophages infected with L. donovani splenic amastigotes.  Primary macrophages were 411 

elicited in female BALB/c mice for 72 hours following the injection of 500 µL of sterile aqueous 2% 412 

starch (J. T. Baker) solution into the mouse peritoneal cavity. The protocol used for isolation of 413 

peritoneal macrophages was described in detail previously31. The isolated macrophages were re-414 

suspended in Macrophage Infection Medium (RPMI-1640 medium supplemented with 2 mM L-415 

glutamine, 10% heat-inactivated fetal bovine serum, 10 mM sodium pyruvate (Hyclone), and 100 IU 416 

penicillin/ 100 µg/mL streptomycin), and 50 µL of macrophage suspension (8 x 105 macrophages/mL) 417 

were added to microscopy-grade, clear-bottom, black 384-well plates (Greiner Bio-One). Following 418 

overnight incubation at 37 °C/ 5% CO2, plate wells were washed with Macrophage Infection Medium to 419 

remove non-adherent cells using ELx405 Select microplate washer (BioTek), and then filled with 40 µL 420 

of Macrophage Infection Medium. Leishmania donovani HU3 splenic amastigotes isolated from infected 421 

spleens were re-suspended in Macrophage Infection Medium at a concentration of 6 x 107 cells/mL, and 422 

10 µL of the suspension were added to assay plate wells containing adherent macrophages.   After a 24-423 

hour infection period at 37 °C/ 5% CO2, plate wells were washed with Macrophage Infection Medium to 424 

remove residual extracellular parasites and re-filled with 50 µL of the medium. Leishmania donovani-425 

infected macrophages were subsequently treated with DMSO-dissolved compounds (0.5% final DMSO 426 

concentration in the assay medium) in dose response for 120 hours at 37 °C/ 5% CO2.  Next, treated 427 
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macrophages were washed with the phosphate-buffered saline buffer (PBS; Sigma-Aldrich) 428 

supplemented with 0.5 mM magnesium chloride (Sigma-Aldrich) and 0.5 mM calcium chloride (Sigma-429 

Aldrich), fixed with 0.4% paraformaldehyde (Sigma-Aldrich) in PBS, permeabilized with 0.1% Triton X-430 

100 (Sigma-Aldrich) in PBS, and stained with SYBR Green I nucleic acid stain(Invitrogen, 1:100,000 431 

dilution in PBS) overnight at 4 oC. Image collection and enumeration of macrophage cells and 432 

intracellular L. donovani amastigotes was performed using the OPERA QEHS automated confocal 433 

microscope system equipped with 20x water immersion objective (Evotec Technologies) and the OPERA 434 

Acapella software (Evotec Technologies) as described previously32. 435 

All reported intra-macrophage L. donovani EC50 values were calculated from at least 3 technical 436 

replicates (n= 3 or n= 4; specified in relevant Figure captions). 437 

Trypanosoma brucei growth inhibition assay. Bloodstream form Trypanosoma brucei Lister 427 438 

parasites were continuously passaged in HMI-9 medium formulated from IMDM medium (Invitrogen), 439 

10% heat-inactivated fetal bovine serum, 10% Serum Plus medium supplement (SAFC Biosciences), 1 440 

mM hypoxanthine (Sigma-Aldrich), 50 µM bathocuproine disulfonic acid (Sigma-Aldrich), 1.5 mM 441 

cysteine (Sigma-Aldrich), 1 mM pyruvic acid (Sigma-Aldrich), 39 µg/mL thymidine (Sigma-Aldrich), 442 

and 14 µL/L beta-mercapthoethanol (Sigma-Aldrich); all concentrations of added components refer to 443 

those in complete HMI-9 medium. The parasites were cultured in 10 mL of HMI-9 medium in T75 444 

CELL-STAR tissue culture flasks at 37 °C/ 5% CO2. 445 

To determine compound growth inhibitory potency on T. brucei bloodstream form parasites, 100 nL of 446 

serially diluted compounds in DMSO were transferred to the wells of white, solid bottom 384-well plates 447 

(Greiner Bio-One) by Echo 555 acoustic liquid handling system.  Then, 5 x 103 of T. brucei parasites in 448 

40 µL of HMI-9 medium were added to each well, and the plates were incubated for 48 hours at 37 °C/ 5% 449 

CO2. Parasite numbers in individual plate wells were determined through quantification of intracellular 450 
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ATP amount. The CellTiter-Glo luminescent cell viability reagent was added to plate wells, and ATP-451 

dependent luminescence signal was measured on an EnVision MultiLabel Plate Reader. Luminescence 452 

values in wells with compounds were divided by the average luminescence value of the plate DMSO 453 

controls, and used for calculation of compound EC50 values as described above. 454 

Trypanosoma brucei EC50 values shown in Fig. 1 and Extended Data Fig. 3 correspond to means of 4 455 

technical replicates. 456 

Trypanosoma cruzi amastigote growth inhibition assay. NIH 3T3 fibroblast cells (ATCC) were 457 

maintained in RPMI 1640 medium (Life Technologies) supplemented with 10% heat-inactivated fetal 458 

bovine serum and 100 IU penicillin/ 100 μg/mL streptomycin at 37 °C/ 5% CO2. Trypanosoma cruzi 459 

Tulahuen parasites constitutively expressing Escherichia coli beta-galactosidase33 were maintained in 460 

tissue culture as an infection in NIH 3T3 fibroblast cells. Briefly, 2 x 107 T. cruzi trypomastigotes were 461 

used to infect 6 x 105 NIH 3T3 cells growing in T75 CELL-STAR tissue culture flasks and cultured at 462 

37 °C/ 5% CO2 until proliferating intracellular parasites lysed host 3T3 cells and were released into the 463 

culture medium (typically 6-7 days). During the infection, the tissue culture medium was changed every 464 

two days. Number of T. cruzi trypomastigotes present in one mL of medium was determined using a 465 

hemocytometer. 466 

To determine compound potency on intracellular T. cruzi amastigotes, NIH 3T3 cells were re-suspended 467 

in phenol red-free RPMI 1640 medium containing 3% heat-inactivated fetal bovine serum and 100 IU 468 

penicillin/ 100 μg/mL streptomycin, seeded at 1,000 cells/ well (40 µL) in white, clear bottom 384-well 469 

plates (Greiner Bio-One), and incubated overnight at 37 °C/ 5% CO2. The following day, 100 nL of each 470 

compound in DMSO were transferred to individual plate wells by Echo 555 acoustic liquid handling 471 

system. After one hour incubation, 1 x 106 of tissue culture-derived T.cruzi trypomastigotes, in 10 µL of 472 

phenol red-free RPMI 1640 medium supplemented with 3% heat-inactivated fetal bovine serum and 100 473 
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IU penicillin/ 100 μg/mL streptomycin were added to each well. Plates were then incubated for 6 days at 474 

37 °C/ 5% CO2. Intracellular T. cruzi parasites were quantified by measuring the activity of parasite-475 

expressed beta-galactosidase. Ten microliters of a chromogenic beta-galactosidase substrate solution (0.6 476 

mM chlorophenol red-β-D-galactopyranoside/ 0.6% NP-40 in PBS; both reagents from Calbiochem) 477 

were added to each well and incubated for 2 hours at room temperature. After incubation, absorption was 478 

measured at 570 nM on SpectraMax M2 plate reader (Molecular Devices). Measured absorbance values 479 

in wells with compounds were divided by the average absorbance value of the plate DMSO controls, and 480 

used for calculation of compound EC50 values as described above. 481 

Trypanosoma cruzi amastigote EC50 values shown in Fig. 1 and Extended Data Fig. 3 correspond to 482 

means of 4 technical replicates.  483 

Trypanosoma cruzi epimastigote proliferation assay. Trypanosoma cruzi CL epimastigotes were 484 

continuously passaged in LIT medium containing 9 g/L liver infusion broth (Difco), 5 g/L bacto-tryptose 485 

(Difco), 1 g/L sodium chloride, 8 g/L dibasic sodium phosphate (Sigma-Aldrich), 0.4 g/L potassium 486 

chloride (Sigma-Aldrich),  1 g/L D-glucose, 10 % heat-inactivated fetal bovine serum and 10 ng/mL of 487 

hemin (Sigma-Aldrich). The medium was adjusted to pH= 7.2 with 6 M hydrochloric acid. The parasites 488 

were cultured in 10 mL of LIT medium in T75 CELL-STAR tissue culture flasks at 27 °C.  489 

To determine compound growth inhibitory potency on T. cruzi epimastigotes, 100 nL of serially diluted 490 

compounds in DMSO were transferred to the wells of white, solid bottom 384-well plates (Greiner Bio-491 

One) by an Echo 555 acoustic liquid handling system.  Then, 5 x 103 of T. cruzi epimastigotes in 40 µL 492 

of LIT medium were added to each well, and the plates were incubated for 7 days at 27 °C. Parasite 493 

numbers in individual plate wells were determined through quantification of intracellular ATP amount. 494 

The CellTiter-Glo luminescent cell viability reagent was added to plate wells, and ATP-dependent 495 

luminescence signal was measured on an EnVision MultiLabel Plate Reader. Luminescence values in 496 
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wells with compounds were divided by the average luminescence value of the plate DMSO controls, and 497 

used for calculation of compound EC50 values as described above. 498 

Trypanosoma cruzi epimastigote EC50 values shown in Extended Data Fig. 4 correspond to means of 3 499 

technical replicates. 500 

Mouse fibroblast NIH 3T3 growth inhibition assay. NIH 3T3 fibroblast cells were maintained in 501 

RPMI medium 1640 with glutamine (Life Technologies) supplemented with 5% heat-inactivated fetal 502 

bovine serum and 100 IU penicillin/ 100 μg/mL streptomycin (3T3 Medium) at 37 °C/ 5% CO2. NIH 3T3 503 

fibroblast cells were purchased from ATCC. We did not perform cell line authentication and did not test 504 

the cells for mycoplasma contamination. This cell line is not listed in the database of commonly 505 

misidentified cell lines maintained by ICLAC and NCBI Biosample. 506 

To determine compound potency, NIH 3T3 cells re-suspended in 3T3 medium were seeded at 1,000 507 

cells/ well (50 µL) in white 384-well plates (Greiner Bio-One) and incubated overnight at 37 °C/ 5% CO2. 508 

The following day, 100 nL of each compound in DMSO were transferred to individual plate wells by 509 

Echo 555 acoustic liquid handling system and plates were incubated for five days at 37 °C/ 5% CO2. Cell 510 

numbers in individual plate wells were determined through quantification of intracellular ATP amount. 511 

The CellTiter-Glo luminescent cell viability reagent was added to plate wells, and ATP-dependent 512 

luminescence signal was measured on an EnVision MultiLabel Plate Reader. Luminescence values in 513 

wells with compounds were divided by the average luminescence value of the plate DMSO controls, and 514 

used for calculation of compound CC50 values as described above. 515 

NIH 3T3 CC50 values shown in Fig. 1 and Extended Data Fig. 3 correspond to means of 4 technical 516 

replicates. 517 

Primary macrophage cytotoxicity assay. Primary macrophage cell viability was determined on mouse 518 

peritoneal macrophages infected with L. donovani and was expressed as the ratio of the number of 519 
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macrophage cells in wells treated with a compound to those in wells treated with DMSO. The number of 520 

macrophage cells in wells was determined by high content microscopy as described previously32. 521 

All reported macrophage CC50 values were calculated from 4 technical replicates (n= 4; also specified in 522 

Figure 1 and Extended Data Figure 3 captions).  523 

Selection of GNF3934- and GNF8000-resistant T. cruzi mutants. T. cruzi epimastigotes cultures 524 

resistant to GNF3943 and GNF8000 were generated using a methodology described previously32. Briefly, 525 

epimastigotes were initially cultured in the presence of compound concentration equivalent to its 526 

EC20 value (GNF3943 EC20= 1.5 μM and GNF8000 EC20= 0.2 μM in 0.2% DMSO) or 0.2% DMSO 527 

(control). Once a week, parasites were counted and growth rates were determined. If the parasite cultures 528 

exhibited a reduced growth rate compared to 0.2% DMSO-treated parasites, epimastigotes were cultured 529 

at the same compound concentration. Once the growth rates matched that of the control epimastigote 530 

culture (0.2% DMSO), parasites were transferred into medium containing two-fold higher compound 531 

concentration. The process was repeated until significant resistance was achieved (~10- to 20-fold 532 

increase in corresponding EC50 value). The time required for generation of cultures with such a level of 533 

resistance was approximately five months. Resistant clones were isolated via cloning by limiting dilution, 534 

and two independent clones were analyzed by whole genome sequencing. 535 

T. cruzi whole genome sequencing. Chromosomal DNA isolation from GNF3943- and GNF8000-536 

resistant T. cruzi clones, whole genome sequencing and sequence analysis were performed as described 537 

previously32. Sequencing reads were aligned to the T. cruzi CL Brenner genome34. 538 

Generation of T. cruzi strains ectopically expressing proteasome beta 4 subunit variants. PSMB4 539 

TcCLB503891.100 was amplified from T. cruzi CL Brenner genomic DNA using KOD Hot Start DNA 540 

Polymerase (EMD Millipore), and sense (5’-AAAGCGGCCGCATGTCGGAGACAACCATTG-3) and 541 

antisense (5-CCATGATCTTGATGTAATATAAGGCATTCAGCCCTGCTG-3) primers. The 542 
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PSMB4
F24L gene was generated from the wild type PSMB4 construct by site-directed mutagenesis using 543 

mutagenic sense (5-CAGCAGGGCTGAATGCCTTATATTACATCAAGATCATGG-3’) and antisense 544 

(5’-CCATGATCTTGATGTAATATAAGGCATTCAGCCCTGCTG-3’) primers and QuikChange II 545 

Site-Directed Mutagenesis Kit (Stratagene). The sequences of the wild type and mutant PSMB4 genes 546 

were verified by sequencing and both gene versions were subcloned into the T. cruzi expression vector 547 

pTcIndex1 under control of a T7 promoter35. Trypanosoma cruzi CL Brenner epimastigotes were first 548 

transfected as described previously36 with the pLEW13 plasmid37 harboring a tetracycline-inducible T7 549 

RNA polymerase gene. Transfected epimastigotes were selected in medium supplemented with neomycin 550 

(G418) at 500 µg/ml, and then transfected a second time with either pTcIndex1-PSMB4
wt or pTcIndex1-551 

PSMB4
F24L

 plasmid. Double transfected epimastigotes were selected in the presence of 500 µg/mL of 552 

G418 (Sigma-Aldrich) and 500 µg/mL of hygromycin (Sigma-Aldrich). Susceptibility of double 553 

transfected epimastigote cell lines to compounds was assessed using induced (+5 mg/mL of tetracycline) 554 

and non-induced parasite cultures after five days of compound treatment. Parasite viability was 555 

determined with AlamarBlue (ThermoFisher Scientific). 556 

Reported EC50 values for T. cruzi epimastigotes ectopically expressing PSMB4 proteins were calculated 557 

from 3 technical replicates (n= 3; also specified in the Figure 3a caption). 558 

Generation of T. brucei strains ectopically expressing proteasome beta 4 subunit variants. PSMB4 559 

(Tb927.10.4710) was amplified from T. brucei Lister 427 genomic DNA using PCR SuperMix High 560 

Fidelity (Invitrogen), sense (5’-GCAAGCTTATGGCAGAGACGACTATCGG-3) and antisense (5’-561 

GCGGATCCCTAGCTTACAGATTGCACTC-3’) primers. The PSMB4
F24L gene was generated from the 562 

wild type PSMB4 construct by site-directed mutagenesis using mutagenic sense (5'- 563 

gctgcggggttaaatgcgttatactacattaagataacgg-3‘), antisense (5'-ccgttatcttaatgtagtataacgcatttaaccccgcagc-3') 564 

primers and QuikChange II Site-Directed Mutagenesis Kit (Stratagene). The sequences of the wild type 565 
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and mutant PSMB4 genes were verified by sequencing and both gene versions were cloned into the T. 566 

brucei expression vector pHD1034 under control of a ribosomal RNA promoter. Transfected T. brucei 567 

Lister 427 cells were selected in medium supplemented with puromycin at 1 µg/ml. Susceptibility of 568 

transfected T. brucei cell lines to compounds were assessed after 2 days of compound treatment. Parasite 569 

viability was determined with CellTiter-Glo. 570 

Reported EC50 values for T. brucei parasites ectopically expressing PSMB4 proteins were calculated 571 

from 3 technical replicates (n= 3; also specified in the Figure 3b caption). 572 

Purification of parasite 20S proteasomes. T. cruzi CL epimastigotes, L. donovani MHOM/SD/62/1S-573 

CL2D axenic amastigotes and T. brucei Lister 27 bloodstream form trypomastigotes were grown to log 574 

phase and harvested by centrifugation. The corresponding cell pellets were stored at -80 °C until further 575 

use.  Prior to purification, 10 g of cell pellets were thawed, re-suspended in lysis buffer (50 mM Tris-HCl 576 

pH = 7.5, 1 mM TCEP, 5 mM EDTA, and 10 µM E-64), and lysed by passing cell suspension three times 577 

through a needle (22 gauge) and by subsequent three freeze/ thaw cycles. The lysate was first cleared of 578 

cellular debris by two centrifugation steps (15,000 x g at 4 °C for 15 minutes followed by 40,000 x g at 579 

4 °C for 60 minutes) and then fractionated through ammonium sulfate precipitation. The protein fraction 580 

precipitated between 45% and 65% of ammonium sulfate saturation was re-suspended in 25 mM Tris-581 

HCl pH = 7.5, 1 mM TCEP buffer, and dialyzed overnight at 4 °C against the same buffer. Proteasomes 582 

were further purified by anion exchange chromatography (Resource Q column, GE Healthcare Life 583 

Sciences) and size exclusion chromatography (Superose 6 column, GE Healthcare Life Sciences) as 584 

described elsewhere38. Active fractions from the latter purification step were pooled and used in 585 

proteasome biochemical assays. 586 

Subunit composition analysis of purified T. cruzi 20S proteasome by LC/MS/MS. Purified T. cruzi 587 

proteasome sample was buffer-exchanged and concentrated into 100 mM trimethylamine bicarbonate-588 
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HCl pH= 8.0, 150 mM NaCl buffer using a 10 kDa molecular weight cut-off micro-concentrator 589 

(Milipore Amicon Ultra). The resulting proteasome sample (200 µl, 1 mg/ml) was mixed with 5 µl of a 590 

TMTsixplex reagent (Pierce). After 60 second incubation to label primary amines, the reaction was 591 

stopped by adding 25 µl of 5% hydroxylamine. The labeled sample was run on 4-20% Bis-Tris PAGE gel 592 

(Invitrogen) to separate polypeptides. The gel was stained with eStain 2.0 (GenScript). Stained protein 593 

bands were cut out and in-gel digested separately with elastase (Promega) and asparaginase (Roche). 594 

Peptides generated by the digestions were resolved by HPLC using a vented column setup with a 2 cm 595 

Poros 10 R2 (Life Technologies, Carlsbad, CA) self-packed pre-column, and a PepMap Easy-Spray C18 596 

analytical column (15 cm x 75 µm ID, Thermo Scientific). Resin-bound proteolytic fragments were 597 

eluted with 2 to 40% acetonitrile / 0.1% formic acid operated at 300 nL/min for 120 min. Spectra of 598 

eluted peptide species  were determined by a column-coupled  Q Exactive hybrid quadrupole orbitrap 599 

mass spectrometer (Thermo Scientific). Proteome Discoverer v1.4 software (Thermo Scientific) was used 600 

to search the T.cruzi genome28 with identified spectra for presence of 20S proteasome subunits 601 

(Supplementary Table 7). Search parameters included fixed carbamidomethyl modification of cysteine, 602 

and variable oxidation of methionine, deamidation of asparagine, pyro-glu of N-terminal glutamine, and 603 

TMT(6-plex) modification of lysine residues. 604 

Measuring proteasome proteolytic activities.  The activity of purified parasite and human 20S 605 

proteasomes was monitored by measuring cleavage of various rhodamine-labelled fluorogenic substrates. 606 

Purified 20S proteasomes were diluted in proteasome assay buffer (25 mM Tris-HCl pH 7.5, 1 mM 607 

dithiothreitol (Sigma-Aldrich), 10 mM sodium chloride, 25 mM potassium chloride, 1 mM magnesium 608 

chloride, 0.05% (w/v) CHAPS (Sigma-Aldrich) and 0.9% DMSO) at a final concentration of 162 nM 609 

(parasite proteasomes) or 25 nM (human proteasome), and pre-incubated with compound (40 nL; 0.2% 610 

final DMSO concentration) for 1 hour. Next, the following substrates (Biosynthan GmbH) were added at 611 
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3 µM final concentration to monitor specific proteolytic activities (Suc-LLVY-Rh110-dPro: 612 

chymotrypsin-like activity; Ac-RLR-Rh110-dPro: trypsin-like activity; Ac-GPLD-Rh110-dPro: caspase-613 

like activity). The reaction was allowed to proceed for two hours at room temperature and fluorescence as 614 

a measure of purified 20S proteasome activity was monitored using the EnVision® plate reader 615 

(excitation at 485 nm/ emission at 535 nm). Km and Ki values were calculated using GraphPad Prism 616 

(GraphPad Software) ‘Non-competitive enzyme inhibition’ function. 617 

Data shown in Fig. 4a, 4c, 4d and Extended Data Table 3 represent means of 3 technical replicates (n= 3). 618 

Data shown in Fig. 4b and Extended Data Fig. 5 represent means of 2 technical replicates (n= 2). 619 

Monitoring accumulation of ubiquitylated proteins in intact cells. Growing T. cruzi epimastigotes 620 

were seeded into 24-well tissue culture plate (1 x 107 cells/per well) in LIT medium and treated for 2-12 621 

hours with DMSO (0.2%) or various concentrations of bortezomib and GNF6702 at 27 °C. Following the 622 

treatment, parasites were collected by centrifugation (3,500 g for 6 minutes) and washed twice with 623 

phosphate-buffered saline (PBS). Epimastigotes were lysed by resuspending washed cells in a buffer 624 

containing  50 mM Tris-HCl pH= 7.4, 150 mM sodium chloride, 1% CHAPS, 20 µM E-64 (Sigma-625 

Aldrich), 10 mM EDTA(Sigma-Aldrich), 5 mM N-ethylmaleimide(Sigma-Aldrich), 1 mM 626 

phenylmethylsulfonyl fluoride (Sigma-Aldrich), 10 µg/mL leupeptin (Sigma-Aldrich), 10 µg/mL 627 

aprotinin (Sigma-Aldrich), and incubating the suspension on ice for 20 minutes. Cell lysates were cleared 628 

by centrifugation at 21,000 g for 30 min at 4 °C. 629 

For 3T3 cells, 2 x 105 cells/ well were seeded into 24-well tissue culture plates in RPMI medium 1640 630 

supplemented with 10% heat-inactivated fetal bovine serum, and incubated overnight at 37 °C to allow 631 

cells to attach. Attached cells were treated for 2 hours with DMSO (0.25%) or various concentrations of 632 

bortezomib and GNF6702. Treated cells were washed twice with PBS and then lysed by incubating cells 633 

in modified RIPA buffer (50 mM Tris-HCl pH= 7.4, 1% Triton X-100, 0.2% sodium dodecylsulfate, 1 634 
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mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 5 µg/mL aprotinin, 5 µg/mL leupeptin) for 30 min at 635 

4 °C. Cell lysates were cleared by centrifugation at 21,000 g for 30 min at 4 °C. 636 

Protein concentration in cell extracts was determined with BCA assay (ThermoFisher), and 10 µg of cell 637 

extracts were loaded on NuPAGE Novex 4-12% Bis-Tris gel (Invitrogen). After electrophoresis, resolved 638 

proteins were transferred to nitrocellulose membrane.  Ubiquitylated proteins were detected with 639 

polyclonal anti-ubiquitin primary antibody (Proteintech, catalogue number 10201-2-AP) and rabbit anti-640 

mouse IgG-peroxidase antibody (Sigma-Aldrich, catalogue number A0545), and then imaged using ECL 641 

Prime Western Blotting Detection Reagent (Amersham) on Chemidoc XR+ imaging system (BioRad). 642 

Collected western blot images were quantified using Image Lab software (BioRad). Briefly, rectangles of 643 

identical size and shape were drawn around each blot lane to include inside the shape all ubiquitylated 644 

protein bands within 17 - 198 kDa molecular mass range. Next, integrated signal intensities within the 645 

rectangles (reported by the Image Lab software) were used for calculation of EC50 values. Three 646 

technical replicate experiments (n= 3) for each different dose response experiment (GNF6702 on T. cruzi 647 

epimastigotes; GNF6702 on 3T3 cells; bortezomib on T. cruzi epimastigotes; bortezomib on 3T3 cells) 648 

were performed.  649 

Trypanosoma cruzi proteasome modeling studies. The homology model of T. cruzi 20S proteasome 650 

was built using ‘Prime’ protein structure prediction program (Schrödinger) and X-ray structure of bovine 651 

20S proteasome (pdb accession code 1IRU)39 as the template. The model was subjected to restrained 652 

minimization to relieve inter-chain clashes. ‘SiteMap’ program (Schrödinger) was used to identify 653 

pockets on a protein surface suitable for small molecule binding. Flexible ligand docking was performed 654 

using ‘Glide 5.8’ (Schrödinger). The grid box was centered in a middle of the identified pocket and 655 

extended by 10 Å, with outer box extending additional 20Å. The ligand was docked using the standard 656 
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precision (SP) algorithm and scored using ‘GlideScore’ (Schrödinger). The GNF6702 GlideScore is 657 

equal to -8.5. 658 

Receptor, enzyme and ion channel assays.  GNF6702 profiling was performed at 10 µM concentration 659 

in a selectivity panel at Eurofins (www.eurofinspanlabs.com/Catalog/AssayCatalog/AssayCatalog.aspx). 660 

Listed values % change in the assay readout relative to the DMSO control. To determine inhibition of a 661 

subset of human tyrosine kinases by GNF6702, the inhibitor was profiled on a panel of Ba/F3 cell lines 662 

expressing individual Tel-activated kinases as described previously40. All assays were performed as 663 

single technical repeats. 664 

Determination of GNF6702 thermodynamic solubility. The solubility of GNF6702 was assessed in a 665 

high throughput thermodynamic solubility assay as described previously41. First, 25 µL of GNF6702 666 

DMSO solutions were transferred to individual wells of a 96-well plate. DMSO was evaporated and 250 667 

µL of 67 mM potassium phosphate buffer pH 6.8 were added to yield projected final compound 668 

concentrations from 1 µM to 100 µM. The plate was sealed to prevent solvent loss and shaken for 24 669 

hours at room temperature. The plate was then filtered to remove non-dissolved material. Concentration 670 

of GNF6702 in individual plate wells was determined by measuring solution UV absorbance with 671 

reference to a GNF6702 calibration curve.  672 

Determination of GNF6702 permeability in Caco-2 assay. A 96-Multiwell Insert System (BD 673 

Biosciences) was used for the Caco-2 cell culture and permeability assay as described previously42. Caco-674 

2 cells were seeded onto insert wells at a density of 1.48 x 105 cells per ml and allowed to grow for 19-23 675 

days before assays. To measure both absorptive (apical to basolateral [A-B]) and secretory (basolateral to 676 

apical [B-A]) compound transport, a solution of GNF6702 at 10 µM concentration in 0.5% DMSO were 677 

added to donor wells. The plate was incubated at 37°C for 2 hours, with samples taken at the beginning 678 
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and end of the incubation from both donor and acceptor wells. The concentration of GNF6702 was 679 

determined by LC-MS/MS.  680 

Apparent drug permeability (Papp) was calculated using the following equation:  681 

Papp =  dQ/dt * 1/(A*Cin )    682 

where dQ/dt is the total amount of a test compound transported to the acceptor chamber per unit of time 683 

(nmol/s), A is the surface area of the transport membrane (0.0804 cm2), Cin is the initial compound 684 

concentration in the donor chamber (10 µM), and Papp is expressed as cm/s). 685 

Determination of human CYP450 inhibition by GNF6702. Extent of inhibition of major human 686 

CYP450 isoforms 2C9, 2D6 and 3A4 by GNF6702 was determined using pooled human liver 687 

microsomes and the known specific substrates of various CYP450 isoforms: diclofenac (5 µM), bufuralol 688 

(5 µM), midazolam (5 µM), and testosterone (50 µM).  Probe substrate concentrations were used at 689 

concentrations equal to their reported Km values.  The CYP450 inhibition assays with probe substrates 690 

diclofenac (2C9) or midazolam (3A4) were incubated at 37 °C for 5 to 10 minutes using a microsomal 691 

protein concentration of 0.05 mg/mL. Probe substrates bufuralol (2D6) and testosterone (3A4) were 692 

incubated at 37 °C for 20 minutes using microsomal concentration 0.5 mg/mL. The test concentrations of 693 

GNF6702 ranged from 0.5 to 25 µM in the presence of 1% DMSO.  The reactions were initiated by 694 

adding NADPH (1 mM final concentration; Sigma-Aldrich) after a 5-min pre-incubation. Incubations 695 

were terminated by the addition of 300 µL of acetonitrile to 100 µL of a sample. No significant 696 

cytochrome P450 inhibition was observed. Extent of CYP450 isoform inhibition was determined by 697 

quantifying residual concentrations of individual CYP450 substrate probes at the end of reactions by 698 

LC/MS/MS. 699 

Determination of GNF6702 in vitro metabolic stability. The intrinsic metabolic stability of GNF6702 700 

was determined in mouse and human liver microsomes using the compound depletion approach and 701 
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LC/MS/MS quantification. The assay measured the rate and extent of metabolism of GNF6702 by 702 

measuring the disappearance of the compound. The assay determined GNF6702 in vitro half-life (T1/2) 703 

and hepatic extraction ratios (ER) as described previously43. GNF6702 was incubated for 30 minutes at 704 

1.0 µM concentration in a buffer containing 1.0 mg/ mL liver microsomes. Samples (50 µL) were 705 

collected at 0, 5, 15 and 30 minutes and immediately quenched by addition of 150 µL of ice-cold 706 

acetonitrile/ methanol/water mixture (8/1/1). Quantification of GNF6702 in samples was performed by 707 

LC/MS/MS, and the in vitro intrinsic clearance was determined using the substrate depletion method.  708 

The intrinsic clearance, CLint was calculated using the following equation: 709 

CLint = (0.693/ T1/2) *(V/ M) , 710 

where T1/2 is the in vitro half-life, V (µL) is the reaction volume, and M (mg) is the microsomal protein 711 

amount. Finally the hepatic extraction ratio is calculated as:   712 

ER = CLh/Qh , 713 

where CLh = hepatic clearance, Qh = hepatic blood flow. 714 

Clh was calculated using the following equation: 715 

CLh = (Qh * fu * CLint)/(Qh + fu * CLint) , 716 

where fu = fraction unbound to protein (assumed to be 1).  717 

Pharmacokinetic studies. An outline of various in vitro and in vivo DMPK assays used in this study for 718 

compound profiling was summarized previously44. The pharmacokinetic properties of GNF compounds 719 

and calculation of pharmacokinetic parameters was performed as described previously23. Mean 720 

compound plasma concentrations were calculated from fitted functions approximating compound plasma 721 

profile throughout 8 days of dosing. Blinding was not possible in these experiments. 722 

Bioanalysis of GNF6702 in plasma. Plasma concentration of GNF6702 was quantified using a 723 

LC/MS/MS assay. Solution of 20 ng/mL of verapamil hydrochloride (Sigma-Aldrich) in 724 
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acetonitrile/methanol mixture (3/1 by volume), was used as an internal standard. Twenty microliters of 725 

plasma samples were mixed with 200 µl of internal standard solution. The samples were vortexed and 726 

then centrifuged in an Eppendorf Centrifuge 5810R (Eppendorf) at 4,000 rpm for 5 minutes at 4 °C to 727 

remove precipitated plasma proteins. The supernatants (150 µl) were transferred to a 96-well plate and 728 

mixed with 150 µl H2O. The samples (10 µl) were then injected onto a Zorbax SB-C8 analytical column 729 

(2.1 x 30 mm, 3.5 µm; Agilent Technologies) and separated using a three step gradient (1st step: 1.5 mL 730 

of 0.05% formic acid in 10% acetonitrile; 2nd step: 0.5 mL of 0.05% formic acid in 100% acetonitrile; 3rd 731 

step: 0.5 mL of 0.05% formic acid in 10% acetonitrile) at flow rate of 700 µl/min. GNF6702 and 732 

verapamil were eluted at retention time 1.19 and 1.17 minutes, respectively. The HPLC system, 733 

consisting of Agilent 1260 series binary pump (Agilent Technologies),  Agilent 1260 series micro 734 

vacuum degasser (Agilent Technologies) and CTC PAL-HTC-xt analytics autosampler (LEAP 735 

Technologies) was interfaced to a SCIEX API 4000 triple quadrupole mass spectrometer (Sciex).  Mass 736 

spectrometry analysis was carried out using atmospheric pressure chemical ionization (APCI) in the 737 

positive ion mode. GNF6702 (430.07 > 333.20) and verapamil (455.16 > 164.90) peak integrations were 738 

performed using AnalystTM 1.5 software (Sciex). The lower limit of quantification (LLOQ) in plasma 739 

was 1.0 ng/mL.  Samples were quantified using seven calibration standards (dynamic range 1 – 5,000 740 

ng/mL) prepared in plasma and processed as described above. 741 

Formulation of study drugs for in vivo efficacy experiments. All compounds administered to mice 742 

during efficacy experiments were formulated as suspensions in distilled water containing 0.5% 743 

methylcellulose (Sigma-Aldrich) and 0.5% Tween 80 (Sigma-Aldrich). During a treatment course, each 744 

mouse received 0.2 ml of drug suspension per dose by oral gavage. 745 

Mouse model of visceral leishmaniasis. Female BALB/c mice (Envigo; 6-8 weeks old) were infected by 746 

tail vein injection with 4 x 107
 L. donovani MHOM/ET/67/HU3 splenic amastigotes (protocol number 747 
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P11-319). Seven days after infection, animals were orally dosed for eight days with vehicle (0.5% 748 

methylcellulose/ 0.5% Tween 80, miltefosine (12 mg/kg once-daily; Sigma-Aldrich), or a GNF 749 

compound (twice-daily). On the first day of dosing, three mice were used for collection of blood for PK 750 

determination and euthanized afterwards. On the last day of dosing, PK samples were collected from 751 

remaining five mice, which were also used for determination of compound efficacy (n= 5 mice per 752 

group). Liver samples were collected from these five mice and L. donovani parasite burdens were 753 

quantified by qPCR as follows. Total DNA was extracted from drug-treated mice livers using the 754 

DNeasy Blood and Tissue Kit (Qiagen).  Two types of DNA were quantified in parallel using the 755 

TaqMan assay:  L. donovani major surface glycoprotein gp63 (Ldon_GP63) and mouse GAPDH. L. 756 

donovani GP63 DNA was quantified with the following set of primers: 757 

TGCGGTTTATCCTCTAGCGATAT (forward), AGTCCATGAAGGCGGAGATG (reverse), and 758 

TGGCAGTACTTCACGGAC (TaqMan MGB probe, 5′-FAM-labeled reporter dye, non-fluorescent 759 

quencher). Mouse GAPDH DNA was quantified with the following set of primers: 760 

GCCGCCATGTTGCAAAC (forward primer), CGAGAGGAATGAGGTTAGTCACAA (reverse 761 

primer), and ATGAATGAACCGCCGTTAT (TaqMan MGB probe, 5′-FAM-labeled reporter dye, non-762 

fluorescent quencher). Each qPCR reaction (10 µL) included 5 µl of TaqMan Gene Expression Master 763 

Mix (Life Technologies), 0.5 µL of a 20X primer/probe mix (Life Technologies), and 4.5 µL (50 ng) of 764 

total DNA from liver samples. DNA amount was quantified using the Applied Biosystems 7900HT 765 

instrument. L. donovani parasite burden (RU: relative units) was expressed as the abundance of L. 766 

donovani GP63 DNA relative to the abundance of mouse GAPDH DNA. 767 

Mouse footpad model of cutaneous leishmaniasis. L. major  MHOM/SA/85/JISH118 metacyclic 768 

promastigotes were generated and purified by the peanut agglutinin method as described elsewhere45. To 769 

establish the L. major footpad infection, female BALB/c mice (Envigo; 6-8 weeks old; protocol number 770 
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P11-319) were injected with suspension of L. major metacyclic promastigotes (1 x 106 parasites in 50 771 

µL) into each hind footpad.  After eight days of infection, animals were dosed with vehicle, miltefosine 772 

(30 mg/kg once-daily), or indicated regimens of GNF6702 for seven days (n=6 mice per group). The 773 

progress of infection was monitored by measuring the size (length and thickness) of hind footpad 774 

swelling using digital calipers. At the end of the study, the mice were euthanized, and the footpad tissues 775 

were extracted and used for genomic DNA isolation with the DNeasy Blood and Tissue kit (Qiagen). The 776 

L. major footpad burden was determined by qPCR quantification of kinetoplastid minicircle DNA 777 

(forward primer: 5’-TTTTACACCTCCCCCCAGTTT-3’; reverse primer: 5’-778 

CCCGTTCATAATTTCCCGAAA-3’; Taqman MGB probe:  5’-AGGCCAAAAATGG-3’, 5′-FAM [6-779 

carboxyfluorescein]-labeled reporter dye, non-fluorescent quencher). The amounts of mouse  780 

chromosomal DNA in extracted samples were quantified in parallel qPCR using a glyceraldehyde-3-781 

phosphate dehydrogenase (GAPDH) TaqMan assay as described for mouse VL model above. L. major 782 

burden in footpad was expressed as the ratio of kinetoplast minicircle DNA to mouse GAPDH. P values 783 

for the between-groups differences in efficacies were calculated with a Student’s paired t test with a two-784 

tailed distribution. 785 

Mouse model of Chagas disease. Compound efficacy in mouse model of Chagas disease was 786 

determined as described previously23. Female C57BL/6 mice (Envigo; 6-8 weeks old; protocol number 787 

P11-316) were infected by intraperitoneal injection with 103 tissue culture-derived T. cruzi CL 788 

trypomastigotes. Starting at 35 days after infection, the animals were dosed orally once-daily with 100 789 

mg/kg benznidazole (Sigma-Aldrich) and indicated doses of GNF6702 (1, 3, and 10 mg/kg twice-daily, 790 

n=8 per group) for 20 days. Ten days following the end of drug treatment, the mice underwent four 791 

cycles of cyclophosphamide immunosuppression, each cycle lasting one week. During each 792 

immunosuppression cycle, mice were dosed by oral gavage once-daily with 200 mg/kg 793 
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cyclophosphamide (suspension in 0.5% methylcellulose/ 0.5% Tween80 aqueous solution) on day 1 and 794 

day 4 of the cycle. After the fourth immunosuppression cycle, blood samples were collected from the 795 

orbital venous sinus of each mouse, mice were euthanized and heart and colon samples were collected. 796 

Samples from treated mice were used for extraction of total DNA using the High Pure PCR template 797 

preparation kit (Roche). The amounts of T. cruzi satellite DNA (195-bp fragment) in extracted DNA 798 

samples were quantified by real-time qPCR TaqMan assay (Life Technologies) with the following set of 799 

primers: AATTATGAATGGCGGGAGTCA (forward primer), CCAGTGTGTGAACACGCAAAC 800 

(reverse primer), and AGACACTCTCTTTCAATGTA (TaqMan MGB probe, 5′-FAM [6-801 

carboxyfluorescein]-labeled reporter dye, non-fluorescent quencher). The amounts of mouse 802 

chromosomal DNA in extracted samples were quantified in parallel qPCR reactions using a GADPH 803 

(glyceraldehyde-3-phosphate dehydrogenase) TaqMan assay as described for mouse VL model above. 804 

Each qPCR mixture (10 μl) included 5 μl of TaqMan Gene Expression master mix (Life Technologies), 805 

0.5 μl of a 20x primer/ probe mix (Life Technologies), and 4.5 μl (50 ng) of total DNA extracted from 806 

blood samples. PCRs were run on the Applied Biosystems 7900HT instrument. T. cruzi parasitemia was 807 

expressed as the abundance of T. cruzi microsatellite DNA relative to the abundance of mouse GAPDH 808 

DNA. 809 

Mouse model of stage II HAT. Female CD1 (Charles River UK; ~8 weeks old; protocol number PPL 810 

60/4442) mice were infected by injection into the peritoneum with 3 x 104 T. brucei (GVR35-VSL2) 811 

bloodstream form parasites46. Starting on day 21, mice were dosed by oral gavage once-daily with 812 

GNF6702 (n= 6) at 100 mg/kg for 7 days or a single dose of diminazene aceturate (Sigma-Aldrich) at 40 813 

mg/kg in sterile water was administered by ip injection (n= 3). A group of untreated mice (n= 3) was 814 

included as controls. 815 
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Mice were monitored weekly for parasitemia from day 21 post-infection. T. brucei was quantified in 816 

blood samples from the tail vein by microscopy, and in vivo bioluminescence imaging of infected mice 817 

was performed before treatment on day 21 post-infection and in weeks following the treatment (day 28, 818 

35, 42, 56, 63, 72, 84, 92 post-infection). Imaging on groups of three mice was performed 10 min after ip 819 

injection of 150 mg D-luciferin (Promega)/kg body weight (in PBS) using an IVIS Spectrum 820 

(PerkinElmer) as described previously25. A group of uninfected mice (aged-matched for day 0 time point; 821 

n= 4) were imaged using the same acquisition settings to show the background bioluminescence (Fig. 2e, 822 

grey-filled squares) in the absence of luciferase-expressing T. brucei after day 92 of the experiment. 823 

Untreated and diminazene-treated mice were euthanized on days 32 and 35, and day 42, respectively, due 824 

to high parasitemia or the development of symptoms related to CNS infection. GNF6702-treated mice 825 

were euthanized on day 92. No parasitemia or clinical symptoms were observed at this point.  At the 826 

specified endpoints mice were sacrificed by cervical dislocation, after which whole brains were removed 827 

and imaged ex vivo within 10 minutes after administration of 100 μL of D-luciferin onto the brain 828 

surface. Data analysis for bioluminescence imaging was performed using Living Image Software. The 829 

same rectangular region of interest (ROI) covering the mouse body was used for each whole body image 830 

to show the bioluminescence in total flux (photons per second) within that region. Image panels of whole 831 

mouse bodies are composites of the original images with areas outside the ROI cropped out to save 832 

space. For ex vivo brain images the same oval shaped ROI was used to display the bioluminescence 833 

detected for each mouse brain at the respective endpoints.  834 

Chemical synthesis. The detailed procedures for chemical synthesis are presented in Supplementary 835 

Information. 836 

END NOTES 837 

Supplementary Information can be found at the end of this manuscript. 838 
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 875 

EXTENDED DATA LEGENDS 876 

Extended Data Figure 1: Pharmacokinetic profile of GNF6702 in mouse. a, Time profiles of mean 877 

free plasma concentration of GNF6702 in mouse model of visceral leishmaniasis; free GNF6702 878 

concentration values were predicted from measured total plasma concentration values collected on day 1 879 

and day 8 of treatment. Dashed blue lines correspond to intra-macrophage L. donovani EC50 of 18 ± 1.8 880 

nM and EC99 of 42 ± 5.6 nM. Circles: means ± s.d.; n=3 mice for treatment day 1; n=5 mice for treatment 881 

day 8; fraction unbound in mouse plasma=0.063. For data points lacking error bars, standard deviations 882 

are smaller than circles representing means. b, Time course of total GNF6702 concentration in mouse 883 

plasma and brain after single oral dose (20 mg/kg); n=2 mice per time point; circles: measured values; 884 

rectangles: means. 885 
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Extended Data Figure 2: GNF6702 clears parasites from mice infected with T. brucei. a,  In vivo 886 

quantification of bioluminescent T. brucei in infected mice before and after treatment. ip: intraperitoneal; 887 

day 21: start of treatment; day 28: 24 hours after last GNF6702 dose; day 42: evaluation of early parasite 888 

recrudescence in mice treated with diminazene aceturate (n=3); day 42 and 92: absence of parasite 889 

recrudescence in mice treated with GNF6702 (n=6). Images from uninfected mice (3 mice of 4 are shown) 890 

aged-matched for day 0 were collected independently using the same acquisition settings. Parasitemia 891 

(blue font) and whole mouse total flux (black font) values of each animal are shown above the image; 892 

N.D.: not detectable. Within each group the mouse numbers in yellow (top left in each image) refer to the 893 

same mouse imaged throughout. Complete sets of parasitemia and whole mouse total flux values 894 

collected on individual mice throughout the experiment are listed in Supplementary Tables 4 and 5.  b, 895 

Brains from mice shown in panel a were soaked in luciferin and imaged for presence of bioluminescent T. 896 

brucei at the indicated time points. For three diminazene-treated mice, two images of each brain are 897 

shown, one at a lower sensitivity (left) and the other at a high signal intensity scale. 898 

Extended Data Figure 3: Structures and profiles of GNF3943 and GNF8000 used for selection of 899 

resistant T. cruzi lines. L. donovani: amastigotes proliferating within primary mouse macrophages; T. 900 

brucei: the bloodstream form trypomastigotes; T. cruzi: amastigotes proliferating in 3T3 fibroblast cells; 901 

macrophage: mouse primary peritoneal macrophages; EC50 and CC50 : half-maximum growth inhibition 902 

concentration; F: oral bioavailability in mouse after administering single compound dose (20 mg/kg) as a 903 

suspension; CL: plasma clearance in mouse after single iv bolus dose (5 mg/kg); all EC50 and CC50 904 

values correspond to means ± s.e.m. (n=4 technical replicates). 905 

Extended Data Figure 4: Mutations in proteasome beta 4 subunit confer resistance to GNF6702 in 906 

T. cruzi and T. brucei. a, growth curves of wild type, GNF3943-resistant and GNF8000-resistant T. 907 

cruzi epimastigote strains in the presence of increasing concentrations of GNF6702, nifurtimox, 908 
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bortezomib and MG132; RU  (relative units) corresponds to parasite growth relative to the DMSO 909 

control (%); for data points lacking error bars, standard errors are smaller than circles representing means; 910 

due to limited aqueous solubility, the highest tested GNF6702 concentration was 10 µM. b, growth 911 

inhibition EC50 values of GNF6702, bortezomib, MG132 and nifurtimox on indicated T. cruzi strains. c, 912 

growth inhibition EC50 values of GNF6702 and  bortezomib on T. cruzi epimastigotes and T. brucei 913 

bloodstream form trypomastigotes overexpressing PSMB4WT or PSMB4F24L. Data shown in panels a, b 914 

and c correspond to means ± s.e.m. (n=3 technical replicates). 915 

Extended Data Figure 5: Correlation between inhibition of parasite proteasome chymotrypsin-like 916 

activity and parasite growth inhibition by the GNF6702 compound series. IC50: half-maximum 917 

inhibition of indicated parasite proteasome; T. brucei EC50: half-maximum growth inhibition on T. brucei 918 

bloodstream form trypomastigotes; T. cruzi EC50: half-maximum growth inhibition on T. cruzi 919 

amastigotes proliferating inside 3T3 cells; data points correspond to means of 2 technical replicates; red 920 

circles: IC50>20 µM; yellow circles: IC50>20 µM and EC50>25 µM; data for 317 analogues are shown. 921 

Extended Data Figure 6: Hypothetical model of GNF6702 binding to T. cruzi proteasome beta 4 922 

subunit. a, Alignment of amino acid sequences of proteasome beta 4 subunits (PSMB4) from L. 923 

donovani, T. cruzi, T. brucei and H. sapiens. Green: amino acid residues conserved between human and 924 

kinetoplastid PSMB4 proteins; blue: amino acid residues conserved only among kinetoplastid PSMB4 925 

proteins; black: amino acids mutated in T. cruzi mutants resistant to analogues from the GNF6702 series. 926 

b, Surface representation of the modeled T. cruzi 20S proteasome structure showing relative positions of 927 

the beta 5 and beta 4 subunits. Beta 4 amino acid residues F24 and I29 (colored yellow) are located at the 928 

interface of the two beta subunits. GNF6702 is depicted in a sphere representation bound into a predicted 929 

pocket on the beta 4 subunit surface with carbon, nitrogen, oxygen and hydrogen atoms colored magenta, 930 

blue, red and grey, respectively. The other T. cruzi 20S proteasome subunits are colored gray. c, Close-up 931 
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of the beta 5 and beta 4 subunits. The beta 5 subunit active site (pocket 1, chymotrypsin-like activity) is 932 

colored pale green. The predicted beta 4 pocket (pocket 2) with bound GNF6702 is colored blue. The 933 

inhibitor is shown in a stick representation with atoms colored as described in caption for the b panel. 934 

Beta 4 residues F24 and I29 are colored yellow. The proteasome model shown in panels b and c was 935 

produced by The PyMol Molecule Graphics System, Version 1.8, Schrodinger, LLC. 936 

Extended Data Figure 7: Effect of GNF6702 on accumulation of ubiquitylated proteins by T. cruzi 937 

epimastigotes and 3T3 cells. a, Western blot analysis of T. cruzi whole cell extracts with anti-ubiquitin 938 

antibody after treatment with GNF6702 and bortezomib. b, Western blot analysis of 3T3 whole cell 939 

extracts with anti-ubiquitin antibody after treatment with GNF6702 and borteomib. c, Concentrations of 940 

GNF6702 and bortezomib effecting half-maximum accumulation of ubiquitylated proteins in T. cruzi and 941 

3T3 cells (means ± s.e.m.; n=3 technical replicates); total ubiquitin signal values in individual blot lanes 942 

shown in panels a and b were quantified and used for calculation of the listed EC50 values. In a and b, 943 

numbers above the blot lanes indicate compound concentrations and D indicates control, DMSO-treated 944 

cells. For western blot source data, see Supplementary Figure 1. 945 

Extended Data Table 1: Point mutations identified by whole genome sequencing in GNF3943- and 946 

GNF8000-resistant T. cruzi epimastigotes. 947 

Extended Data Table 2: Enzyme inhibition IC50 values of bortezomib and GNF6702 on three 948 

proteolytic activities of wild type T. cruzi, PSMB4
I29M

 T. cruzi, and H. sapiens proteasomes. 949 

Extended Data Table 3: Inhibition kinetics parameters of GNF6702 on L. donovani and T. cruzi 950 

proteasomes. 951 

SUPPLEMENTARY METHODS 952 

1. Genomics Institute of the Novartis Research Foundation (GNF) chemical library 953 

The GNF chemical library consists of ~3 million low molecular weight compounds. 954 
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2. High throughput screening (HTS) campaigns and hit identification 955 

The high throughput screens were performed using 1,536 well polystyrene solid bottom white 956 

microplates (Greiner Bio-One). The GNF chemical library was tested against L. donovani, T. brucei and 957 

T. cruzi in whole-cell growth inhibition screens at single compound concentrations specified in sections 958 

below describing individual parasite screens. Parasite proliferation protocols described in the Methods 959 

section were optimized for 1,536 well plate assay format to provide optimal assay window and Z-factor. 960 

Primary hits included compounds that reduced growth of parasites by more than 50% relative to the 961 

relevant DMSO controls. 962 

2.1. Leishmania donovani HTS 963 

Leishmania donovani MHOM/SD/62/1S-CL2D axenic amastigotes in cell suspension were dispensed 964 

into 1,536-well assay plates (2,000 parasite cells in 5 µL of medium) and library compounds dissolved in 965 

DMSO were added to 4 µM final concentration (0.4% final DMSO concentration). After 48 hour 966 

incubation at 37 oC, parasite viability was assessed using the CellTiter-Glo Luminescent Cell Viability 967 

Assay (Promega) as described previously32. Compounds causing more than 50% reduction in parasite 968 

viability were considered hits. Identified hits were subsequently evaluated in the screening assay in 969 

triplicates at 4 µM compound concentration. Compounds that inhibited L. donovani growth in at least 970 

two replicates were considered confirmed hits. 971 

2.2. Trypanosoma brucei HTS 972 

Trypanosoma brucei Lister 427 bloodstream trypomastigotes in cell suspension were dispensed into 973 

1,536-well assay plates (900 parasite cells in 7 µL of medium) and library compounds dissolved in 974 

DMSO were added to 7 µM final concentration (0.7% final DMSO concentration). After 48 hour 975 

incubation at 37 oC, parasite viability was assessed using the CellTiter-Glo Luminescent Cell Viability 976 

Assay (Promega) as described previously32. Compounds causing more than 50% reduction in parasite 977 
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viability were considered hits. Identified hits were subsequently evaluated in the screening assay in 978 

triplicates at 7 µM compound concentration. Compounds that inhibited T. brucei growth in at least two 979 

replicates were considered confirmed hits.  980 

2.3. Trypanosoma cruzi HTS 981 

A suspension of mouse fibroblast 3T3 cells was dispensed into 1,536-well assay plates (750 cells in 5 µL 982 

of medium). After overnight incubation at 37 oC, adhered 3T3 cells were infected with T. cruzi 983 

trypomastigotes (2,500 trypomastigotes per well in 3 µL of medium) and library compounds dissolved in 984 

DMSO were added to 6.3 µM final concentration (0.63% final DMSO concentration). After an additional 985 

96 hour incubation at 37 °C, parasite viability was assessed using the BetaGlo Luminiscent Assay 986 

(Promega) as described previously32. Compounds causing more than 50% reduction in parasite viability 987 

were considered hits. Because of a large number of screen hits, we further followed upon only on a small 988 

subset of hits that were also identified as confirmed hits in L. donovani and T. brucei high throughput 989 

screens. Out of 93 such hits, 77 compounds were confirmed to be selective pan-kinetoplastid inhibitors (L. 990 

donovani, T. brucei, T. cruzi EC50 values < 10 µM, selectivity index relative to 3T3 CC50> 5). 991 

3. Chemical synthesis 992 

Unless otherwise noted, materials were obtained from commercial suppliers and were used without 993 

purification. Removal of solvent under reduced pressure refers to distillation using Büchi rotary 994 

evaporator attached to a vacuum pump (~3 mm Hg). Products obtained as solids or high boiling oils were 995 

dried under vacuum (~1 mm Hg).  Purification of compounds by high pressure liquid chromatography 996 

was achieved using a Waters 2487 series with Ultra 120 5 µm C18Q column with a linear gradient from 997 

10% solvent A (acetonitrile with 0.035% trifluoroacetic acid) in solvent B (water with 0.05% 998 

trifluoroacetic acid) to 90% A in four minutes, followed by two and half minute elution with 90% A.  999 
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1H NMR spectra were recorded on Bruker XWIN-NMR (400 MHz or 600 MHz). Proton resonances are 1000 

reported in parts per million (ppm) downfield from tetramethylsilane (TMS). 1H NMR data are reported 1001 

as multiplicity (s - singlet, d - doublet, t - triplet, q - quartet, quint - quintet, sept - septet, dd - doublet of 1002 

doublets, dt - doublet of  triplets,  bs - broad  singlet),  number  of  protons  and  coupling  constant  in  1003 

Hertz.  For spectra obtained in CDCl3, DMSO-d6, CD3OD, the residual protons (7.27, 2.50 and 3.31 ppm 1004 

respectively) were used as the reference.  1005 

Analytical thin-layer chromatography (TLC) was performed on commercial silica plates (Merck 60-F 1006 

254, 0.25 mm thickness); compounds were visualized by UV light (254 nm). Flash chromatography was 1007 

performed either by CombiFlash® (Separation system Sg. 100c, ISCO) or using silica gel (Merck 1008 

Kieselgel 60, 230-400 mesh). Agilent 1100 series liquid chromatograph/ mass selective detector (LC/ 1009 

MSD) was used to monitor the progress of reactions and check the purity of products using 254 nm and 1010 

220 nm wavelengths, and electrospray ionization (ESI) positive mode. Mass spectra were obtained in ESI 1011 

positive mode. Elemental analyses were carried out by Midwest microlabs LLC, Indianapolis. 1012 

3.1. Synthesis of GNF5343 1013 

 GNF5343 is a commercially available compound and was purchased from Chembridge laboratories 1014 

(catalogue # 5840200). 1015 

3.2. Synthesis of GNF6702; N-(4-fluoro-3-(6-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-2-1016 

yl)phenyl)-2,4-dimethyloxazole-5-carboxamide 1017 

3.2.1. Synthesis of 2-fluoro-5-nitrobenzoyl chloride (1) 1018 

A solution of 2-fluoro-5-nitrobenzoic acid (50 g, 270 mmol) in thionyl chloride (100 mL) was heated to 1019 

80 °C and stirred for 4 hours. The mixture was allowed to cool down to room temperature and the solvent 1020 

was removed to give compound 1 (54 g, 98% yield). 1021 

3.2.2. Synthesis of 2-(2-fluoro-5-nitrobenzoyl)hydrazine-1-carboximidamide (2)  1022 
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To a solution of aminoguanidine carbonate (36.2 g, 266 mmol) in dry toluene (300 mL) at 0 °C, was 1023 

added compound 1 (54 g, 0.266 mol) over 30 minutes. The mixture was stirred at room temperature for 1024 

12 hours. The formed precipitate was removed by filtration, and the residue was treated with H2O (400 1025 

mL) and made alkaline with sodium carbonate. The solid was collected and recrystallized from water to 1026 

obtain compound 2 (62 g, 97% yield). M/Z 241.1 (M+1). 1027 

3.2.3. Synthesis of 5-(2-fluoro-5-nitrophenyl)-4H-1,2,4-triazol-3-amine (3)  1028 

A solution of compound 2 (62 g, 0.257 mol) in H2O (800 mL) was stirred for 8 hours at 100 °C. After 1029 

cooling, the obtained solid was filtered, and the cake was washed with H2O (100 mL), tetrahydrofuran 1030 

(100 mL), and dried to give compound 3 (34 g, 51% yield). 1H NMR (400 MHz, DMSO) 12.42 (s, 1H), 1031 

8.74 (dd, J = 6.27, 3.01 , 1H), 8.26 (dt, J = 8.97, 3.42 , 1H), 7.57 (t, J = 9.54 , 1H), 6.29 (s, 2H). 1032 

3.2.4. Synthesis of 2-(2-fluoro-5-nitrophenyl)-6-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a] pyrimidine (4) 1033 

To a solution of compound 3 (1 g, 4.48 mmol) in acetic acid (20 mL) 2-(pyridin-2-yl)malonaldehyde (0.8 1034 

g, 5.376 mmol) was added at room temperature. The mixture was heated to 100 °C and stirred for 4 hours. 1035 

The mixture was allowed to cool to room temperature before adding water (50 mL), filtered, and the filter 1036 

cake was washed with saturate sodium bicarbonate solution (100 mL), H2O (100 mL), and 1037 

tetrahydrofuran (100 mL) and dried under vacuum to give compound 4 (0.9 g, 60% yield). 1H NMR (400 1038 

MHz, DMSO) 10.13 (d, J = 2.01 ,1H), 9.68 (d, J = 2.01 , 1H), 9.09- 9.02 (m, 1H), 8.77 (d, J = 4.27 , 1H), 1039 

8.28-8.19 (m, 1H), 8.15-7.96 (m, 2 H), 7.77 (t, J = 9.54 , 1H), 7.56-7.43 (m, 1H). 1040 

3.2.5. Synthesis of 4-fluoro-3-(6-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)aniline (5) 1041 

To a solution of compound 4 (0.15 g, 0.443 mmol) in tetrahydrofuran (5 mL) was added Raney Nickel 1042 

(0.2 g) and ZnI2 (71 mg) at room temperature. The mixture was stirred under H2 (50 psi) at 25 °C for 2.5 1043 

hours. The mixture was diluted with methanol (10 mL) and filtered. The solvent was removed and the 1044 

crude product was washed with methanol (5 mL x 2) and dried under vacuum to give compound 5 (90 1045 
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mg, 66% yield). 1H NMR (400 MHz, DMSO) 10.01-10.06 (m, 1H), 9.62-9.58 (m, 1H), 8.73-8.78 (m, 1046 

1H), 8.24-8.20 (m, 1H), 8-02-7.96 (m, 1H), 7.57-7.47 (m, 2H), 7.08-7.05 (m, 1H), 6.76-6.70 (m, 1H), 1047 

5.24 (s, 2H) M/Z 307.01 (M+1). 1048 

3.2.6. Synthesis of N-(4-fluoro-3-(6-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)phenyl)-2,4-1049 

dimethyloxazole-5-carboxamide (GNF6702; 6) 1050 

To a solution of 2,4-dimethyloxazole-5-carboxylic acid (40.6 mg, 0.28 mmol) in dimethylformamide (5 1051 

mL) was added HATU (118.6 mg, 0.31 mmol) and DIEA (72.4 mg, 0.56 mmol) at room temperature. 1052 

The mixture was stirred for 30 min, the intermediate 5 (80 mg, 0.26 mmol) was added at room 1053 

temperature. The mixture was stirred for 3 hours, water (10 mL) was added, the mixture was filtered, and 1054 

the filter cake was washed with H2O (5 mL x 2), tetrahydrofuran (5 mL x 2) and purified by HPLC to 1055 

give product 6 (33 mg, 31% yield). 1H NMR (400 M, MeOD) 9.84 (d, J = 2.4, 1H), 9.61 (d, J = 2.3, 1H), 1056 

8.76 (dt, J = 4.8, 1.4, 1H), 8.54 (dd, J = 6.4, 2.7, 1H), 8.12 (dt, J = 8.0, 1.1, 1H), 8.00 (td, J = 7.8, 1.8, 1057 

1H), 7.93 (ddd, J = 8.9, 4.1, 2.7, 1H), 7.49 (ddd, J = 7.5, 4.9, 1.0, 1H), 7.34 (dd, J = 10.4, 9.0, 1H), 2.57 1058 

(s, 3H), 2.48 (s, 3H). M/Z= 430.13 (M+1). 1059 

3.3. Synthesis of GNF3943; Isopropyl (2-(2-chloro-5-(furan-2-carboxamido)phenyl)-1H-1060 

imidazo[4,5-b]pyridin-6-yl)carbamate 1061 

3.3.1. Synthesis of 2-chloro-5-(furan-2-carboxamido)benzoic acid (7) 1062 

To a suspension of 5-amino-2-chlorobenzoic acid (13.7 g, 79.85 mmol, 1.00 equiv) in tetrahydrofuran 1063 

(100 mL) was added furan-2-carbonyl chloride (11.5 g, 88.10 mmol, 1.10 equiv) at 0 °C. The ice bath 1064 

was then removed and the reaction was stirred overnight at room temperature. The resulting mixture was 1065 

concentrated under vacuum and diluted with DCM. The solid was collected by filtration to give 17 g 1066 

(80%) of 2-chloro-5-(furan-2-amido)benzoic acid (7) as a gray solid.  1067 
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3.3.2. Synthesis of N-(4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]phenyl)furan-2-1068 

carboxamide (8) 1069 

A mixture of 5-nitropyridine-2,3-diamine (6 g, 38.93 mmol, 1.00 equiv) and 2-chloro-5-(furan-2-1070 

amido)benzoic acid (7) (10.4 g, 39.15 mmol, 1.00 equiv) in polyphosphoric acid (PPA) (100 mL) was 1071 

stirred overnight at 130 °C. The reaction was then poured into water/ice and the pH value of the mixture 1072 

was adjusted to 9 with sodium carbonate. The solids were collected by filtration and applied onto a silica 1073 

gel column with ethyl acetate/petroleum ether (3/1) to give 3.9 g (26%) of N-(4-chloro-3-[6-nitro-1H-1074 

imidazo[4,5-b]pyridin-2-yl]phenyl)furan-2-carboxamide (8) as a light yellow solid. 1H NMR (400 MHz, 1075 

DMSO) δ 10.50 (s, 1H), 9.19 (d, J = 2.6 Hz, 1H), 8.73 (s, 1H), 8.43 (d, J = 2.6 Hz, 1H), 8.03 – 7.90 (m, 1076 

4H), 7.61 (d, J = 8.9 Hz, 1H), 7.41 (d, J = 3.6 Hz, 1H), 6.79 – 6.67 (m, 1H). MS m/z 383.9 (M+H)+. 1077 

3.3.3. Synthesis N-(3-[6-amino-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl)furan-2-1078 

carboxamide (9) 1079 

To a suspension of N-(4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]phenyl)furan-2-carboxamide 1080 

(3.9 g, 10.16 mmol, 1.00 equiv) in ethanol (50 mL) was added SnCl2·2H2O (3.4 g, 15.04 mmol, 1.48 1081 

equiv) and the resulting mixture was heated to reflux overnight. The reaction mixture was concentrated 1082 

under vacuum and diluted with H2O. The pH value of the mixture was adjusted to 9 with saturated 1083 

sodium carbonate. The solids were collected by filtration and applied onto a silica gel column with ethyl 1084 

acetate/PE (3/1) to give 1.95 g (54%) of N-(3-[6-amino-1H-imidazo[4,5-b]pyridin-2-yl]-4-1085 

chlorophenyl)furan-2-carboxamide (9) as a yellow solid. 1H-NMR: (CD3OD, 400 MHz): 8.16 (d, J = 2.4 1086 

Hz, 1H), 7.97-8.10 (m, 2H), 7.78 (d, J = 0.8 Hz, 1H), 7.65 (d, J = 20.0 Hz, 1H), 7.31-7.41 (m, 2H), 6.68 1087 

(dd, J = 3.6, 2.0 Hz, 1H. MS (M+H)+=354. 1088 

 3.3.4. Synthesis of Isopropyl (2-(2-chloro-5-(furan-2-carboxamido)phenyl)-1H-imidazo[4,5-1089 

b]pyridin-6-yl)carbamate (GNF3943) (10) 1090 
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To a 20 mL vial was transferred N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)furan-2-1091 

carboxamide 9 (80 mg, 0.225 mmol) in dimethylformamide (4 mL) followed by addition of pyridine (2 1092 

drops), and the reaction mixture was stirred at 0 °C for 10 minutes.  At this point was added isopropyl 1093 

carbonochloridate (1 M solution in toluene, 1.45 mmols, 6.4 eq).  The reaction mixture was stirred 1094 

overnight while slowly warming up to room temperature.  The presence of desired peak (M+H (440)) 1095 

was confirmed by LC/MS. The reaction mixture was then quenched with saturated sodium carbonate 1096 

solution to neutralize the extra acid chloride and to make the solution basic (pH 8-9). The reaction was 1097 

extracted with ethyl acetate (3x10 mL), and the resulting organics were dried over sodium sulfate,  1098 

filtered, and dried under vacuum.  The resulting residue was purified via ISCO column chromatography 1099 

using (0-100% ethyl acetate/hexane) to provide 53 mg, 0.119 mmol, 53% of the desired compound. 1H 1100 

NMR (400 MHz, MeOD) δ 8.28 (d, J = 22.1, 2H), 8.10 (s, 1H), 7.88 (s, 1H), 7.67 (d, J = 1.0, 1H), 7.51 1101 

(d, J = 8.8, 1H), 7.24 – 7.16 (m, 1H), 6.56 (dd, J = 1.7, 3.5, 1H), 4.91 (dt, J = 6.2, 12.5, 1H), 1.24 (d, J = 1102 

6.2, 6H). M/Z=440.1(M+1) 1103 

3.4. Synthesis of GNF8000; isopropyl (2-(2-fluoro-5-(furan-2-carboxamido)phenyl) imidazo[1,2-1104 

a]pyrimidin-6-yl)carbamate 1105 

3.4.1. Synthesis of 1-(2-fluoro-5-nitrophenyl)ethan-1-one (11) 1106 

A 3,000 mL three necked flask equipped with a mechanic stirrer was charged with concentrated H2SO4 1107 

(720 mL) and cooled to -40 °C. 1-(2-fluorophenyl)ethanone (180 g, 1.3 mol) was added, followed by 1108 

addition of a mixture of fuming HNO3 (106.2 mL) in concentrated H2SO4 (260 mL) dropwise over 45 1109 

minutes. This mixture was stirred at this temperature for 15 minutes, poured into ice (8 kg), and extracted 1110 

with ethyl acetate (2000 mL x 2). The combined ethyl acetate layer was washed with saturated NaHCO3 1111 

solution (800 mL x 3), brine (800 mL), dried with anhydrous sodium sulfate, and concentrated under 1112 

vacuum. The residue was crystallized with petroleum ether to give compound 11 (200 g, yield: 84%) as a 1113 
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yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.34 (t, J = 9.29 Hz, 1H), 8.33-8.48 (m, 1H), 8.78 (dd, J = 1114 

6.15, 2.89 Hz, 1H). 1115 

3.4.2. Synthesis of 2-bromo-1-(2-fluoro-5-nitrophenyl)ethan-1-one (12) 1116 

To a solution of compound 11 (126 g, 0.688 mol) in acetic acid (860 mL) and 40% HBr solution (825.6 1117 

mL) at 0 °C, was added a solution of Br2 (110 g, 0.688 mol) in acetic acid (344 mL) in one portion. This 1118 

mixture was stirred at room temperature overnight, diluted with water (3000 mL), and extracted with 50% 1119 

ethyl acetate/petroleum ether (1500 mL x 2). The combined organic layer was washed with a saturated 1120 

NaHCO3 solution (1000 mL x 2), brine (1000 mL), dried with anhydrous sodium sulfate and 1121 

concentrated. The residue was purified by column chromatography on silica gel (20% EA/PE) to give the 1122 

compound 12 (150 g, yield: 83%) as a white solid.1H NMR (400 MHz, CDCl3) δ 8.85 (dd, J = 5.90, 2.89 1123 

Hz, 1H), 8.42-8.58 (m, 1H), 7.42 (t, J = 9.29 Hz, 1H), 4.52 (d, J = 2.01 Hz, 2H). 1124 

3.4.3. Synthesis of Isopropyl (2-aminopyrimidin-5-yl)carbamate (13) 1125 

A suspension of 5-nitropyrimidine-2-amine (1 eq.) and Pd/C (0.05 eq.) in ethanol (0.1 mM) was stirred 1126 

under hydrogen atmosphere overnight at room temperature to give of 2,5-diaminopyrimidine. The 1127 

mixture was then filtered and concentrated under vacuum. The residue (1 eq.) was subjected to coupling 1128 

with isopropylcarbonochloridate (1.5 eq.) in anhydrous pyridine (0.3 mM) overnight at room temperature. 1129 

The mixture was concentrated under vacuum, and the residue was extracted with ethyl acetate, washed 1130 

with brine, dried over anhydrous MgSO4 (s), filtered and concentrated under vacuum to give 13 as a 1131 

yellow solid. m/z (ESI): 196 (M + H+). 1132 

3.4.4. Synthesis of isopropyl (2-(2-fluoro-5-nitrophenyl)imidazo[1,2-a]pyrimidin-6-yl)carbamate 1133 

(14) 1134 

Into a 500 mL round-bottom flask, was placed 2-bromo-1-(2-fluoro-5-nitrophenyl)ethan-1-one 12 (30 g, 1135 

114.49 mmol, 1 eq.), propan-2-yl N-(2-aminopyrimidin-5-yl)carbamate (11.2 g, 57.08 mmol, 0.5 eq.) and 1136 
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acetone (200 mL). The resulting solution was stirred overnight at 70 °C. The reaction mixture was cooled 1137 

down and the solids were collected by filtration resulting in 15 g (36%) of propan-2-yl N-[2-(2-fluoro-5-1138 

nitrophenyl)imidazo[1,2-a]pyrimidin-6-yl]carbamate (14) as a brown solid.                           1139 

3.4.5. Synthesis of isopropyl (2-(5-amino-2-fluorophenyl)imidazo[1,2-a]pyrimidin-6-yl)carbamate 1140 

(15) 1141 

Into a 1 L round-bottom flask was placed tetrahydrofuran (500 mL), Raney Ni (15 g) and propan-2-yl N-1142 

[2-(2-fluoro-5-nitrophenyl)imidazo[1,2-a]pyrimidin-6-yl]carbamate 14 (8 g, 22.26 mmol, 1 eq.). The 1143 

resulting solution was stirred overnight at room temperature under an atmosphere of hydrogen. The solids 1144 

were filtered out, and washed with methanol (200 mL x 4). The resulting mixture was concentrated under 1145 

vacuum to give 7 g (95%) of propan-2-yl N-[2-(5-amino-2-fluorophenyl)imidazo[1,2-a]pyrimidin-6-1146 

yl]carbamate (I5) as a brown solid. 1H NMR (400 MHz, DMSO-d6) δ 9.94 (s, 1H), 9.24 (s, 1H), 8.46-1147 

8.47 (m, 1H), 8.26-8.28 (m, 1H), 7.51-7.53 (m, 1H), 6.96-7.02 (m, 1H), 6.55-6.59 (m, 1H), 4.89-4.98 (m, 1148 

1H), 3.17 (s, 2H), 1.07-1.30(m, 6H). MS m/z= 330 (M+1). 1149 

3.4.6. Synthesis of isopropyl (2-(2-fluoro-5-(furan-2-carboxamido)phenyl) imidazo[1,2-a]pyrimidin-1150 

6-yl)carbamate (GNF8000) (16) 1151 

In a 40 mL vial, pyridine (10 mL) was added to intermediate 15 (0.5 g, 1.518 mmol) to give a yellow 1152 

solution. To this solution was added furan-2-carbonyl chloride (0.198 g, 1.518 mmol) at 0 °C and the 1153 

resulting mixture was stirred for 1 hour. The reaction mixture was quenched with 60 mL of water and 1154 

extracted with ethyl acetate. The same step was repeated once more time to remove any extra pyridine. 1155 

All organic phases were combined, dried over sodium sulfate and purified by flash chromatography to 1156 

give product 16 (ethyl acetate/methanol= 0-10%). 1H NMR (400 MHz, DMSO-d6) δ 10.43 (s, 1H), 10.06 1157 

(s, 1H), 9.36 (s, 1H), 8.69 (dd, J = 2.8, 6.9 Hz, 1H), 8.56 (d, J = 2.7 Hz, 1H), 8.45 (d, J = 4.2 Hz, 1H), 1158 

8.02 (d, J = 1.0 Hz, 1H), 7.95-7.85 (m, 1H), 7.46 (d, J = 3.4 Hz, 1H), 7.37 (dd, J = 9.0, 10.9 Hz, 1H), 1159 
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6.78 (dd, J = 1.7, 3.5 Hz, 1H), 5.00 (dt, J = 6.3, 12.5 Hz, 1H), 1.35 (d, J = 6.2 Hz, 6H). MS m/z = 424 1160 

(M+1). 1161 

3.5. Synthesis of GNF3849; N-(4-fluoro-3-(6-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)phenyl)-1162 

2,4-dimethyloxazole-5-carboxamide 1163 

3.5.1. Synthesis of 2-(2-fluoro-5-nitrophenyl)-6-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine (17)  1164 

To a solution of compound 3 (0.5 g, 2.24 mmol) in AcOH (5 mL) was added 2-phenylmalonaldehyde 1165 

(0.39 g, 2.7 mmol). The mixture was then heated to 100 °C and stirred for 4 hours. The mixture was 1166 

allowed to cool to room temperature, water (10 mL) was added, the solids filtered, and the filter cake was 1167 

washed with tetrahydrofuran, and dried under vacuum to give compound 17 (0.36 g, 48% yield). 1H 1168 

NMR (400 MHz, DMSO) 9.93 (d, J = 2.4, 1H), 9.38 (d, J = 2.8, 1H), 8.90 (s, 1H), 7.93 (d, J = 7.78, 2H), 1169 

7.69 (d, J = 8.53, 1H), 7.61-7.50 (m, 2H), 7.31 (t, J = 7.40, 1H), 6.88 (s, 1H).  1170 

3.5.2. Synthesis of 4-fluoro-3-(6-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)aniline (18)  1171 

To a solution of compound 17 (2.5 g, 7.4 mmol) in tetrahydrofuran (200 mL) was added ZnI2 (1.2 g, 3.7 1172 

mmol) and Raney Nickel (3.5 g). This mixture was stirred at room temperature for 4 hour under H2 at 50 1173 

psi, then the mixture was filtrated and washed with methanol (20 mL) to give compound 18 (2.0 g, 87% 1174 

yield). 1H NMR (400 MHz, DMSO) 9.81 (d, J = 2.4, 1H), 9.27 (d, J = 2.8, 1H, 7.90 (d, J = 7.6, 2H), 1175 

7.58-7.53 (m, 2H), 7.45-7.50 (m, 2H), 7.09-7.05 (m, 1H), 6.74-6.70 (m, 1H), 5.22 (s, 2H). M/Z 306.1 1176 

(M+H+). 1177 

3.5.3. Synthesis of N-(4-fluoro-3-(6-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)phenyl)-2,4-1178 

dimethyloxazole-5-carboxamide (GNF3849) (19) 1179 

To a solution of 2,4-dimethyloxazole-5-carboxylic acid (0.56 g, 3.9 mmol) in dimethylformamide (30 mL) 1180 

was added DIEA (0.85 g, 6.66 mmol) and HATU (1.5 g, 3.9 mmol). This mixture was stirred at room 1181 

temperature for 30 minutes, then compound 18 (1.0 g, 3.28 mmol) was added. The mixture was then 1182 
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stirred at room temperature for 4 hours, diluted with water (50 mL) and extracted with tetrahydrofuran/ 1183 

ethyl acetate (100 mL /50 mL), the organic layer was dried over sodium sulfate and concentrated to give 1184 

the crude product. It was purified by HPLC to give product 19 (0.91 g, yield, 65%) as a white solid. 1H 1185 

NMR (400 MHz, MeOD) 9.49 (d, J = 2.4, 1H), 9.22 (d, J = 2.4, 1H), 8.51 (dd, J = 6.4, 2.8, 1H), 7.90 1186 

(ddd, J = 8.9, 4.2, 2.8, 1H), 7.86-7.76 (m, 2H), 7.63-7.55 (m, 2H), 7.54-7.45 (m, 1H), 7.32 (dd, J = 10.4, 1187 

9.0, 1H), 2.56 (s, 3H), 2.47 (s, 3H). M/Z= 429.2 (M+H+). 1188 

3.6. Synthesis of GNF2636; isopropyl (2-(2-chloro-5-(furan-2-carboxamido)phenyl)imidazo[1,2-1189 

a]pyrimidin-6-yl)carbamate 1190 

3.6.1. Synthesis of isopropyl (2-(2-chloro-5-nitrophenyl)imidazo[1,2-a]pyrimidin-6-yl)carbamate 1191 

(20) 1192 

Into a 500-mL round-bottom flask, was placed 13 (1.75 g, 6.3 mmol, 1.2 equiv), acetone (400 mL) and 2-1193 

bromo-1-(2-chloro-5-nitrophenyl)ethan-1-one (1.0 g, 5.3 mmol).  The resulting solution was stirred 1194 

overnight at 70 °C. The reaction mixture was cooled, the solvent evaporated, the resulting material 1195 

suspended in methanol, and then solids collected by filtration resulting in product 20 (0.75 g, 38% yield). 1196 

1H NMR (400 MHz, DMSO-D6) δ 10.08 (s, 1H), 9.34 (s, 1H), 9.08 (s, 1H), 8.86 (s, 1H), 8.56 (s, 1H), 1197 

8.19 (d, J = 8.7, 1H), 7.88 (d, J = 8.8, 1H), 4.95 (m, 1H), 1.30 (m, 6H). MS m/z (ESI) = 377 (M + ). 1198 

3.6.2. Synthesis of isopropyl (2-(5-amino-2-chlorophenyl)imidazo[1,2-a]pyrimidin-6-yl)carbamate 1199 

(21) 1200 

In a round-bottom flask, 20 (300 mg, 0.77 mmol) was taken up in methanol (20 mL) and SnCl2 (3 1201 

equivalents) was added. The resulting mixture was stirred for 2 hours at reflux. The reaction mixture was 1202 

concentrated under vacuum and the crude material was purified by flash column chromatography 1203 

(hexane/ ethyl acetate solvent system followed by DCM/methanol solvent system) resulting in 21 (265 1204 

mg, 96%) as a yellow solid. 1H-NMR: (300 MHz, MeOD): 9.30 (s, 1H), 8.51 (d, J = 2.1 Hz, 1H), 8.37 (s, 1205 
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1H), 7.37 (d, J = 1.8 Hz, 1H), 7.23 (d, J = 6.6 Hz, 1H), 6.72-6.74 (m, 1H), 5.01-5.07 (m, 1H), 1.24-1.36 1206 

(m, 6H). MS m/z = 346 (M+H+). 1207 

3.6.3. Synthesis of isopropyl (2-(2-chloro-5-(furan-2-carboxamido)phenyl)imidazo[1,2-a] 1208 

pyrimidine-6-yl)carbamate (GNF2636) (22) 1209 

To a suspension of compound 21 (20 mg, 0.06 mmol) in pyridine (2 mL) in a vial was added 2-furoyl 1210 

chloride (1.5 equivalents) at room temperature. After stirring overnight, the reaction was concentrated 1211 

and the resulting residue was purified by prep HPLC to afford the product 22 (5 mg, 19% yield). 1H 1212 

NMR (400 MHz, methanol-d4) δ9.57 (s, 1H), 8.76 (d, J = 2.6 Hz, 1H), 8.52 (s, 1H), 8.31 (d, J = 2.6 Hz, 1213 

1H), 7.89 – 7.69 (m, 2H), 7.62 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 3.5 Hz, 1H), 6.68 (dd, J = 3.5, 1.7 Hz, 1214 

1H), 5.14 – 4.97 (m, 1H), 1.35 (d, J = 6.3 Hz, 6H). MS m/z = 440.2 (M+H). 1215 
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1. Supplementary Table 1 

Small molecule screening data from Leishmania donovani axenic amastigote growth 

inhibition HTS. 

2. Supplementary Table 2 

Small molecule screening data from Trypanosoma brucei bloodstream form 

trypomastigote growth inhibition HTS. 

3. Supplementary Table 3 

Small molecule screening data from Trypanosoma cruzi intracellular trypomastigote 

growth inhibition HTS. 

4. Supplementary Table 4 

Time course of parasitemia in mice infected with bioluminescent T. brucei during and 

after treatment with diminazene aceturate and GNF6702 

5. Supplementary Table 5 

Time course of whole body bioluminescence in mice infected with bioluminescent T. 

brucei during and after treatment with diminazene aceturate and GNF6702 

6. Supplementary Table 6 

Trypanosoma brucei bioluminescence of ex vivo brains obtained from parasite-infected 

mice after treatment with diminazene aceturate and GNF6702. 

7. Supplementary Table 7 

20S proteasome subunits identified in purified T. cruzi proteasome. 

8. Supplementary Table 8 

Amino acid sequences of predicted Trypanosoma cruzi 20S proteasome alpha and beta 

subunits. 

9. Supplementary Table 9 

GNF6702 profile in a panel of mammalian receptors, enzymes and ion channels.  

10. Supplementary Table 10 

GNF6702 inhibition profile in a cell-based Ba/F3 panel of Tel-activated human tyrosine 

kinases.  

11. Supplementary Table 11 

GNF6702 ADME profile. 
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