
This is a repository copy of Energy Efficiency Support through Intra-Layer Cloud Stack 
Adaptation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/104993/

Version: Accepted Version

Proceedings Paper:
Djemame, K orcid.org/0000-0001-5811-5263, Kavanagh, R 
orcid.org/0000-0002-9357-2459, Armstrong, D et al. (6 more authors) (2017) Energy 
Efficiency Support through Intra-Layer Cloud Stack Adaptation. In: Lecture Notes in 
Computer Science. 13th International Conference on Economics of Grids, Clouds, 
Systems and Services (GECON 2016), 20-22 Sep 2016, Athens, Greece. Springer Verlag ,
pp. 129-143. ISBN 978-3-319-61919-4 

https://doi.org/10.1007/978-3-319-61920-0_10

© Springer International Publishing AG 2017. This is an author produced version of a 
paper published in Lecture Notes in Computer Science. The final publication is available at
Springer via https://doi.org/10.1007/978-3-319-61920-0_10. Uploaded in accordance with 
the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Energy Efficiency Support through

Intra-Layer Cloud Stack Adaptation

Karim Djemame1, Richard Kavanagh1, Django Armstrong1,
Francesc Lordan2, Jorge Ejarque2, Mario Macias2,

Raül Sirvent2, Jordi Guitart2 3, and Rosa M. Badia2 4

1 School of Computing, University of Leeds, UK
2 Barcelona Supercomputing Center, Spain

3 Universitat Politecnica de Catalunya, Barcelona, Spain
4 Artificial Intelligence Research Institute (IIIA) -

Spanish National Research Council (CSIC)

Abstract. Energy consumption is a key concern in cloud computing.
The paper reports on a cloud architecture to support energy efficiency
at service construction, deployment, and operation. This is achieved
through SaaS, PaaS and IaaS intra-layer self-adaptation in isolation. The
self-adaptation mechanisms are discussed, as well as their implementa-
tion and evaluation. The experimental results show that the overall ar-
chitecture is capable of adapting to meet the energy goals of applications
on a per layer basis.

Keywords: Cloud computing, Energy efficiency, Self-adaptation,
Programming models.

1 Introduction

The rapid growth of cloud computing and the use of the Internet have produced
a large collective electricity demand which is expected to increase by 60% or
more by 2020 as the online population steadily increases [9]. Although currently
moderate energy consumers, cloud data centres are continuously increasing their
energy consumption share as compared to other sectors. Cloud computing offers
the potential for energy saving through centralisation of computing and stor-
age technologies at large data and computing centres. Some mechanisms are
exploited to reduce energy consumption (e.g. server consolidation) but mainly
operate at the data centre, hardware and virtual infrastructure level and do
not include the platform and software application in their energy reduction ap-
proaches.

Previous work has characterised the factors which affect energy efficiency in
the design, construction, deployment, and operation of cloud services [8]. The
approach focused firstly on the identification of the missing functionalities to
support energy efficiency across all cloud layers (SaaS, PaaS and IaaS), and
secondly on the definition and integration of explicit measures of energy require-
ments into the design and development process for software to be executed on a



2 Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

cloud platform. This paper adds the capabilities required in the architecture in
order to achieve dynamic energy management for each of the cloud layers thanks
to adaptation, which is supported by an intra-layer approach. The key research
challenge is the ability to take adaptive actions based upon factors such as en-
ergy consumption, cost and performance within each layer of the architecture
and examine the effect that these have upon the running applications. Therefore,
the paper’s main contribution are:

1. an energy efficiency aware cloud architecture, which is discussed in the con-
text of the cloud service life cycle: construction, deployment, and operation.

2. an intra-layer self-adaptation methodology tailored for: 1) the SaaS Pro-
gramming Model to make use of advanced scheduling techniques that con-
sider different versions of an application’s Core Elements, target platform
and consumption profile; 2) the Self-Adaptation Manager that manages ap-
plications at runtime and maintains performance and energy efficiency at the
PaaS layer, and 3) the Self-Adaptation Manager that performs re-scheduling
of Virtual Machines (VMs) to maintain energy efficiency and performance
at the IaaS layer.

The remainder of the paper is structured as follows: Section 2 describes a
proposed architecture to support energy-awareness. Section 3 explains how self-
adaptation is supported within the SaaS, PaaS, and IaaS layers of the archi-
tecture. Section 4 presents the experimental design, and Section 5 discusses the
evaluation results of intra-layer self-adaptation within the layers. Section 6 re-
views some related work. In conclusion, Section 7 provides a summary of the
research and plans for future work.

2 Energy Efficient Cloud Architecture

Methods and tools that consider energy efficiency are needed to manage the life
cycle of cloud services from requirements to run-time through construction, de-
ployment, operation, and their adaptive evolution over time. Their availability
will result in an implementation of a software stack for energy efficient-aware
clouds. Thus, an architecture supporting energy efficiency and capable of self-
adaptation while at the same time aware of the impact on other quality char-
acteristics of the overall cloud system such as performance is proposed in [8].
Figure 1 provides an overview of this architecture, which includes the high-level
interactions of all components, is separated into three distinct layers and follows
the standard cloud deployment model.

In the SaaS layer a set of components interact to facilitate the modelling,
design and construction of a cloud application. The components aid in evaluating
energy consumption of a cloud application during its construction. A number
of plug-ins are provided for a frontend Integrated Development Environment
(IDE) as a means for developers to interact with components within this layer.
A number of packaging components are also made available to enable provider
agnostic deployment of the constructed cloud application, while also maintaining



Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation 3

Fig. 1: Energy-Aware Architecture

energy awareness. The Programming Model Plug-in (PM plug-in) provides a
graphical interface to use the Programming Model and supporting tools to enable
the development, analysis and profiling of an application in order to improve
energy efficiency. On the other hand, the Programming Model provides the service
developers with a way to implement services composed of source code, legacy
applications executions and external Web Services [11].

ThePaaS layer provides middleware functionality for a cloud application and
facilitates the deployment and operation of the application as a whole. Compo-
nents within this layer are responsible for selecting the most energy appropriate
provider for a given set of energy requirements and tailoring the application to
the selected providers hardware environment. The Application Manager (AM)
manages the user applications that are described as virtual appliances, formed by
a set of interconnected VMs. Application level monitoring is also accommodated
for here, in addition to support for Service Level Agreement (SLA) negotiation.

In the IaaS layer the admission, allocation and management of virtual re-
source are performed through the orchestration of a number of components.
The Virtual Machine Manager (VMM) is responsible for managing the complete
life cycle of the virtual machines that are deployed in a specific infrastructure
provider. The IaaS layer monitors the energy consumed by the virtual machines,
and is able to aggregate them by application. These infrastructure-level infor-
mation is used to optimize the energy consumption at a VM level (by means
of server consolidation mechanisms), and gathered to the PaaS level in conjunc-
tion with application-level metrics provided from software probes installed in
the VMs.



4 Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

The Energy Awareness provision is an important step in the architecture
implementation plan as it concentrates on delivering energy awareness in all
system components. Monitoring and metrics information are measured at IaaS
level and propagated through the various layers of the cloud stack (PaaS, SaaS).
The Cloud Stack Adaptation with regard to energy efficiency will focus on the
addition of capabilities required to achieve dynamic energy management per
each of the cloud layers, in other words intra-layer self-adaptation. Inter-layer
self-adaptation is the subject of future work.

3 Intra-Layer Self-Adaptation

This sections explains how dynamic energy management is achieved by the in-
dividual cloud layers (SaaS, PaaS and IaaS) through a self-adaptive intra-layer
approach.

3.1 SaaS Layer

The Programming Model (PM) is based on the COMPSs Model [5]. This
architectural component enables applications including a single Core Element
(CE) to have different implementations together with the possibility of imple-
menting energy-aware policies in the PM Runtime. Details on these techniques
can be found in [11] where a greedy policy is provided as a proof-of-concept.

To support self-adaptation at the SaaS layer more complex policies are im-
plemented as optimization algorithms to adapt the execution of the application
at run time. The algorithm is an optimization of one parameter, but filtering out
the options that surpass the boundaries defined for the rest of parameters and
searches for a local optimal in the discrete search space in every scheduling step.
As will be shown in Section 6, self-adaptation at software development level has
already been considered in other frameworks, but have not taken into account
the three parameters considered here for optimization: energy, performance and
cost. Therefore, the scheduling policies at application-level to optimize these
three parameters are the key novelty in this layer. More precisely, the policies
proposed are: 1) Minimise energy consumption (total Wh used) of the appli-
cation run, with instant boundaries for price (EUR/h) and performance (s per
CE); 2) Minimise cost (total EUR spent) of the application run, with boundaries
for power (W) and performance (s per CE), and 3) Maximise performance (total
execution time) of the application run, with boundaries for power (W) and price
(EUR/h).

The three parameters are dynamic during the execution of an application
when they are calculated for a specific CE. This is especially important in the
case of cost because a fixed price would not allow any optimisations. In the pro-
posed architecture in Figure 1 the IaaS Pricing Modeller implements a dynamic
pricing scheme, where the price of a physical host is divided between its running
VMs and applications, allowing the PM runtime to optimize it. More specifically,
the price of a host is divided between the VMs running there at the same time,



Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation 5

the price of a VM is divided between the applications running together on that
VM, and in the PM case the application price can be even divided among all
CEs running.

Instant boundaries, such as maximum power, maximum EUR/hour and max-
imum execution time for a CE are considered for the adaptation. This is due to
the nature of the PM applications. Depending on the application the complete
workflow may not always be available to make the scheduling plan in advance.
In addition, service-like applications as opposed to batch-like applications do
not have a clear completion time. These boundaries will drive the optimization
of either: energy, performance or cost, which will be specified by the end user
before the execution of the application. It is also worth mentioning that these
optimization algorithms mixed with the versioning capabilities presented in [11]
enable interesting options for deciding how to execute an application in a set of
resources, thus, not only having different machine choices to make that optimiza-
tion, but also different pieces of software implementing the same functionality.

3.2 PaaS Layer

The PaaS Self-Adaptation manager (PaaS SAM) is the principle compo-
nent in the PaaS layer for deciding on the adaptation required to maintain SLAs.
The overall aim of this component is to manage the trade-offs between energy,
performance and cost during adaptation at runtime. The PaaS SAM is notified
of the need to take an adaptation by the SLA manager, see Figure 1.

In this the PaaS SLA Manager, detects a breach of the SLA terms. It then
notifies the PaaS SAM of the SLA breach. Notifications of SLA breaches princi-
pally contain the following information: 1) Time: the timestamp of the detected
violation; 2) Type of violation message: This is either a ”violation” if the vio-
lation is detected, or ”warning” message if the guarantee is near the violation
threshold; 3) SLA Agreement Term: used to distinguish between different con-
straint terms, and 4) SLA Guaranteed State: provides information on the border
conditions of the SLA: 1) Guarantee Id: the metric to be monitored; 2) Operator:
such as greater than, less than, equal, and 3) Guaranteed Value: the value of the
threshold.

The adaptation rules then run in two stages. The first stage indicates the
type of adaptation to make such as: add/remove VMs by assessing the causes
of the SLA breach. This runs as a match making process by which the noti-
fication of the SLA term is matched against the adaptation rules. The PaaS
SAM thus matches the decision rules that map between the event notifica-
tions and the potential actuators. In its most basic mode of operation a tu-
ple of <Agreement Term, Direction, Response Type> is utilised in a match
against the SLA violation notification to determine the form of adaptation to
take, e.g. <energy usage per app,LT, REMOVE VM>. The types of events that
the PaaS SAM can respond to are for the guarantees on the application’s power
consumption and the overall energy consumption of an application.

The rules includes an overall threshold value, which determines how many
events are required before a rule fires, assuming that temporary reporting of



6 Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

SLA breaches can be ignored. An example of this would be if VM power was
to become too high due to a short burst of CPU utilisation. This setting of this
threshold value depends on the rate at which the SLA Manager reports SLA
violations events and upon how responsive the PaaS SAM is required to be to
these violations. A history of recent adaptations is also recorded to ensure that
the PaaS SAM will not react a second time in short succession to the same
violation event, this history is kept for a shortwhile and once a recent log of
adaptation has timed out the PaaS SAM is able to respond again to the same
SLA term been violated. This thus puts important limits upon how quickly the
PaaS SAM will perform adaptation. In a more advanced mode of operation fuzzy
logic is used with the following input parameters: 1) Current metric difference:
between the guaranteed value and the actual measured value; 2) Trend difference:
between the first detected breaches value and the current detected breaches
value, and 3) Energy usage/power usage per Application: counts the number of
times the event has fired.

The second stage indicates the exact nature of this adaptation such as what
type of VM to add or which VM should be deleted. The principal actuators
made available to the PaaS SAM are the ability to: 1) add and remove VMs
from an application; 2) scale the VM vertically in terms of its allocated memory
and CPUs, and 3) terminate the application as a whole. The engine that makes
the decision of the scale of adaptation can be varied but is required to look
at the application’s Open Virtualization Format (OVF) document to determine
constraints such as the minimum and maximum allowed VMs of a given image
type. It then needs to make the selection of which VM to modify or which new
type of VM to start.

3.3 IaaS Layer

The VMM is the component responsible for the deployment and life cycle of
the VMs, as well as for their disk images. It also allows the IaaS layer to select
different scheduling policies such as: energy-aware, cost-aware, distribution and
consolidation of VMs.

The policies are implemented as scoring functions that evaluate an allocation
scenario towards the desired policies. The scorers are injected in the OptaPlanner
constraint optimisation solver[4], which applies heuristics to decide in a reason-
able time which is the best allocation for a set of VMs in the available nodes. The
administrator can choose the local search heuristic from Simulated Annealing,
Hill Climbing, and Late Acceptance[3]. The ability to self-adapt at operation
time which is supported by the Self-Adaptation Manager (SAM) is needed
to keep the cloud infrastructure in an optimal state during its operation. To
maximise the objective scores while keeping acceptable performance, the VMM
needs to be able to live migrate VMs. To effectively enable live migration it is
required that the VM images are stored in a shared disk space that is accessible
by the source and destination hosts. For memory-intensive applications it is also
required a fast local network infrastructure (e.g. 100GbE or Infiniband) to allow
copying the main memory without having to stall the VM.



Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation 7

The migration decision takes into account information about the infrastruc-
ture and comes from several architectural components: the Energy Modeller,
the Pricing Modeller, the Infrastructure Monitoring, and the SLA Manager (see
Figure 1). The information from the aforementioned is used as input into the
scoring functions used by OptaPlanner.

The VMM administrator can choose which scoring function will be used by
OptaPlanner as a heuristic to perform a local search through all the possible
VM/host allocations. Currently, four policies are supported:

Distribution. The VMs are distributed equally along all the available hosts.
This policy maximises the performance of the applications but minimises the
energy efficiency.

Consolidation. The VMs are allocated to the minimum number of hosts
(without overselling resources). This policy is energy-efficient but does not con-
sider the particularities of the applications that must coexist in the hosts, and
how the VMs can interfere between them.

Energy-Efficiency. The VMM asks to the Energy Modeller[8] about the
predicted consumption for a VM into a given host, and chooses the allocation
that minimises such consumption.

Price Minimisation. Similar to the Energy-Efficiency policy, but asking
to the Price Modeller for the allocation whose price is the lowest. The Price
Modeller gets a prediction of the energy from the Energy Modeller and ponders
it with the expected energy prices for a given time range.

4 Experimental Design

This section presents the experimental design. The objective of the experiments
is to ascertain that the self-adaptation at SaaS, PaaS and IaaS when monitoring
a service in an operation achieves dynamic energy management in each of the
cloud layers.

Application Two applications are used: 1) a compute intensive simulation
application of buildings to optimize their energy, thermal quality and indoor
comfort and thus achieve a sustainable design. This is performed by the jEPlus
application [2], which is the EnergyPlus [1] simulation manager, a well-known
simulation tool in the real estate sector. The jEPlus application implements a
parameter-sweep algorithm which performs large scale executions of the Ener-
gyPlus simulator with several configurations to find out the optimal setup, and
2) a 3-tier Web application comprising of 5 VMs: one MySQL database VM, one
HA Proxy load balancing VM, 2 JBoss Instances/worker nodes and one JMeter
based VM that acts as a set of users inducing load onto the system.

Metrics and KPIs A number of metrics and KPIs are used to drive the
intra-layer self-adaptation: 1) Application Run Time: KPI which the PM tries
to optimise when an application is deployed in a Performance mode; 2) Appli-
cation Energy Consumption: KPI which the PM optimises when an application
is deployed in a energy efficient mode. At PaaS level, the proposed architecture
is able to provide the current energy consumption of a deployed application by



8 Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

monitoring the total energy consumed by the different VMs, see Application
Monitor in Figure 1; 3) Application Execution Cost: KPI which is optimized
when the PM deploys an application in a cost efficient mode.The PaaS layer
also provides the current application total cost thanks to the Pricing Modeller,
see Figure 1. Other metrics include: 1) Estimated Task Execution Time by the
PM Runtime based on historic data of executions; 2) Estimated Task Execution
Power/Energy Consumption by the PaaS Energy Modeller; 3) Estimated Task
Execution Price/cost by PaaS Pricing Modeller, see Figure 1. At the IaaS level,
KPIs include: 1) VM power, 2) physical host power and 3) Datacentre power, as
the spot measurement in watts for VM, host and the whole data centre.

Cloud Tesbed The cloud testbed is located at the Technische Universität
Berlin. The computing cluster consists of 32 nodes with the following attributes:
Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz, 16GB RAM, 3x1TB HD and
2x1 GBit Ethernet NIC. Each node is connected to a storage area network
usage where storage nodes are accessible through a Distributed File Systems,
CephFS. Virtual Infrastructure Management is supported through an OpenStack
Ice House distribution with Neutron and the OpenDaylight software-defined net-
working (SDN) controller. Power consumption on each node is measured thanks
to identical energy-meters to guarantee comparative measurements. The actual
devices are Gembird EnerGenie Energy Meters that share their measurements
in the local network. These devices can measure power up to 2, 500 Watts with
an accuracy of ±2% and are able to deliver two measurements per second.

5 Results

5.1 SaaS Layer

In order to evaluate the new functionality implemented in the Programming
Model (PM), we executed the same jEPlus calculation with different configura-
tions. The selected jEPlus calculation generates 100 Energy+ runs executed in 5
VMs with 8 vCPUS (equivalent to a 4 real cores) an 8GB of RAM which allows
to run 20 tasks in parallel. Each experiment run has been repeated several times
to ensure its statistical significance, and no large standard deviations have been
found. Firstly, we executed the application with the original COMPSs-based PM
which is used as the baseline for comparisons. The execution is then repeated
adding the different PM improvements (the efficient execution mechanism, task
versioning support and multi-mode self-adapted scheduling capabilities). In the
first part of the experiment, we executed the application twice: one with the
sequential version of the Energy+ task and another one with a threaded version
as the original PM runtime does not support task versioning. Table 1a shows
the KPIs obtained for each of these baseline executions. The minimum elapsed
time achieved with the baseline is 750 secs, minimum cost is 68 Euro-cents and
the minimum energy consumption is 93.10 Wh. While the execution time metric
for the CEs is controlled directly by the PM, the power and energy values are
requested to the PaaS Energy Modeller component, and the price and cost val-
ues to the PaaS Pricing Modeller. Essentially the energy/power is obtained from



Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation 9

Table 1: Application KPI measurements with different configurations
(a) Measurements without ASCETiC PM Improvements

Execution Elapsed Time Energy Consum. Cost
Only Threaded Tasks 750 seconds 108.70 Wh 68 Euro-cents
Only Sequential Tasks 1152 seconds 93.10 Wh 72 Euro-cents

(b) Measurements with efficient execution improvements

Execution Elapsed Time Energy Consumption Cost
Only Threaded Tasks 662 seconds (-11.7%) 95.70 Wh (-12%) 60 Euro-cents(-11.8%)
Only Sequential Tasks 1008 seconds (-12.5%) 81.10 Wh (-12.9%) 63 Euro-cents (-12.5%)

(c) Single Task metrics estimations

Task Version Mean Exec. Time Estim. Mean Power Estim. Energy Consum. Estim. Cost
Threaded 125 seconds 26.10 W 0.90 Wh 0.57 Euro-cents
Sequential 193 seconds 14.47 W 0.78 Wh 0.60 Euro-cents

(d) Measurements with self-adaptation

Deployment Mode Elapsed Time Energy Consumption Cost
Performance Mode 735 seconds 94.37 Wh 61 Euro-cents
Energy-efficiency Mode 882 seconds 83.80 Wh 63 Euro-cents
Cost-efficiency Mode 751 seconds 94.45 Wh 61 Euro-cents

(e) Application Execution KPI comparison

Execution Elapsed Time Energy Consum. Cost
(w/o ASCETiC) (w/o ASCETiC) (w/o ASCETiC)

Only Threaded 662 secs (750 secs) 95.70 Wh (108.70 Wh) 0.60 Euros (0.68 Euros)
Performance +9.9% (-2%) -1.4% (-13.2%) +1.7% (-10.3%)
Energy-efficiency +25% (+15%) -12.9% (-22.9%) +5% (-7.3%)
Cost-efficiency +11.8% (0%) -1.3% (-13.1%) +1.7% (-10.3%)
Only Sequential 1008 secs (1152 secs) 81.10 Wh (93.10 Wh) 0.63 Euros (0.72 Euros)
Performance -27% (-36.2%) +14%(+1.3%) -3.2% (-15.27%)
Energy-efficiency -12.5% (-23.4%) +3.2% (-9.9%) 0% (-12.5%)
Cost-efficiency -25.5% (-34.8%) +14.1% (+1.4%) -3.2% (-15.27%)

real measurements, mapped to VMs, applications, and CEs, and the cost/price
is calculated using fixed factors, and variable factors, such as the cost of the
energy used. Afterwards, we introduced the efficient execution improvements in
the PM runtime which includes the non-blocking I/O communication and per-
sistent workers. We ran the same executions and measured the same KPIs which
are shown in Table 1b. A general gain of 12% in all KPIs can be observed.

With the architecture tools, we are also able to extract the monitored metrics
for each type of executed tasks (duration, power, energy and cost). The values
obtained for these metrics are shown in Table 1c. In this table, the threaded
version is shorter, but consumes more power and energy. In the case of cost,
it is calculated by a combination of the resource usage, duration and energy
consumption. As the duration term is the one which has more effect in this
cost calculation, the threaded version is cheaper. These metrics are used by the
PM runtime to perform the application level self-adaptation. In the last part
of the experiment, we introduced the task versioning and the multi-mode self-



10 Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

adapted scheduling. In this case, we have executed the application in the three
possible modes: the Performance mode, where the elapsed time is optimized; the
Energy-efficient mode, where the energy consumption is optimized; and the Cost-
efficient mode, where the cost of the execution is optimized. For each of these
runs, we measured the same KPIs which are shown in Table 1d. We can observe
that the Performance mode gives the smaller elapsed time, the Energy-efficient
mode gives the best energy consumption and the Cost-efficient mode gives the
cheaper. Note that, cost and performance gives almost the same values because
the sequential version has a similar behavior for duration and cost. Therefore,
the solution found by the PM runtime in both cases is almost the same.

Finally, Table 1e compares the KPI values obtained in the different exper-
iments with baseline. When we compare the versions with the improved PM,
we can observe the cost of using the self-adaptation mechanisms. The Only
Threaded execution is the most efficient for the Elapsed time and Cost because
it only uses the version which has the best performance and cost. In contrast, the
Only Sequential execution is the most energy-efficient because it only executes
the version with the best energy consumption. When we compare with the values
obtained with Performance, Energy-efficient and Cost-efficient modes, we can
see that the KPI are degraded by a 9.9%, 3.2% and 1.7% respectively. This is
due to the initial execution of different versions to obtain the first metric values.
If we compare the results with the ones obtained without the PM improvements,
we can observe that this overhead has been mitigated with the general gain ob-
tained by the efficient execution mechanism. It is important to highlight that all
the different improvements are obtained only by doing actuations at the SaaS
layer, which means distributing the tasks execution in the available VMs, with-
out changing either VMs or physical hosts, and we are able to improve some of
the metrics even up to a 36%. In addition, the mechanisms give an extra degree
of freedom to users, who can decide in advance if their application run will be
done chasing minimum execution time, energy or cost.

5.2 PaaS Layer

The PaaS SAM listens for notification events of SLA violation breaches. These
events arrive over an ActiveMQ interface. Messages can be submitted to the
appropriate queue causing the PaaS SAM to invoke adaptation. This is achieved
by calling either the Application manager or in the case of the experimentation
below the Virtual Infrastructure Manager Open Nebula via a connector interface
that invokes the required changes. A 3-tier Web application is used to perform
the experimentation. It comprises of 5 VMs: one MySQL database VM, one HA
Proxy load balancing VM, 2 JBoss Instances/worker nodes and one JMeter based
VM that acts as a set of users inducing load onto the system. The experiment
is structured in such that 5 VMs are started initially, then during the course of
the experimental run, violation notification events are submitted to the PaaS
SAM. This in turn causes the PaaS SAM to invoke adaptation which causes one
of the VMs to be shutdown. The PaaS SAM is required to decide what action
to take and when multiple messages are received it is expected to only make



Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation 11

Fig. 2: VMs Trace - 30 second time units division (top); Count of Successful
Service Request by JMeter (bottom)

an adaptation to the application once, within a short space of time. The PaaS
SAM as part of the experimentation used its rule based threshold system, with
the threshold set to first event arriving would trigger adaptation. This threshold
could be configured to be higher, especially in cases where the IaaS layer is also
expected to adapt. Thus the PaaS SAM could wait n time intervals of warnings
from the SLA manager, thus giving the IaaS layer time to adapt before the PaaS
intervenes. It has a poll interval of 5 seconds in which it observes the message
queue for new events as well as cleans up any historical log of past events that
had become too old to consider as still relevant. The PaaS SAM keeps a history
of events that last 30 seconds. This time-span is relatively short but it allows
the experiment to run smoothly without multiple adaptation events taking place
simultaneously. This also limits the time to wait until any additional adaptation
can be demonstrated. The PaaS SAM on deciding to remove a VM, in the mode
of operation selected for the experiment removes the last VM that was created
of the appropriate type. This is done to ensure which VM to be removed is
predictable.

In Figure 2 (top), the JMeter and HAProxy instances can be seen to be very
stable in their overall power consumption. The SQL database is less stable in its
measured values. The total application power initially is around 276W. It then
increases at time unit 10 under increased system load by the JMeter instance
to 327W. This is then reduced by the removal of one of the VMs at time unit
36 to 243W where the JBoss instance is turned off due to the arrival of several
SLA violation notification events. At time unit 56 the load is stopped and the
power goes to 221W. This demonstrates how the PaaS SAM can invoke change
which can result in a reduced power consumption thus saving energy. The count



12 Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

of successful service requests is shown in Figure 2 (bottom). It can be seen in
the initial phase a short loading period where the induced load increases. In
time interval 36 when the VM is switched off the amount of service requests
is drastically reduced from an average of 294 service requests to 42 per every
30 seconds block. This therefore demonstrates a trade-off in combination by
showing that although power consumption can be reduced there is an associated
loss in performance.

5.3 IaaS Layer

The main purpose of this form of self-adaptation management is to demonstrate
how the VMM uses the advantages of migration capabilities to reorganize the
VMs at runtime, periodically or after events that could leave the testbed in a
sub-optimal status to achieve the required policies, such as VM deployment or
removal.

Two jEPlus experiments are performed to test the Self-Adaptation Manager
capabilities. In the first experiment, three 8-CPU nodes (wally159, wally162,
wally163 ) progressively start a 12 VMs with 2 CPUs, 1 GB RAM and, 1 GB Disk
executing a 4-thread CPU load generator that performs floating-point matrix
multiplications. The VMM is configured with a consolidation policy to deploy
the VMs on the lowest number of physical nodes. The OptaPlanner component
is configured to look for the optimum allocation by means of Hill Climbing algo-
rithm, though with a reduced number of hosts any other local search algorithm
would quickly converge to an optimum solution. The intention is to save energy
when it is combined with mechanisms to turn off the idle physical nodes and turn
them on again when they are required. Every 5 minutes, a VM from a physical
host (selected alternatively) is destroyed and the self-adaptation policy is trig-
gered to re-consolidate the other VMs. The second experiment is simulated using
an Energy Modeller. A set of 30 VMs are deployed progressively in 10 physi-
cal hosts and then destroyed. The objective is to compare the same execution
with three policies: Consolidation (but without self-adaptation), Power-Aware
(allocate VMs in the host that the Energy Modeller predicts it will consume less
energy) and Power-Aware with runtime self-adaptation.

First Experiment. Figure 3 shows the effects of self-adaptation in the three
physical nodes. In the first third of the experiments, the energy consumption
of the three physical serves generally decreases as VMs are removed. In some
points, the energy is slightly increased because the policy calculations decide
that is more efficient to migrate a VM to such host. In the second third (from
16:38 to 16:42), all the running VMs fit in two hosts. Consequently, the VMM
decides that is better to consolidate all the VMs in two physical hosts. This is
the reason for wally163 to have a plain, low consumption from that time. Such
consumption would be near 0 if the testbed had available a mechanism for remote
sleep/wakeup. Analogously, in the last third of the experiments, only 4 VMs are
in the system, and all are consolidated in wally162. The IaaS layer demonstrated
the feasibility of live migration for generic VMs in order to maximize the overall



Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation 13

Fig. 3: Historic of power consumption for the three servers

performance of the system in terms of energy efficiency. The VM migration
process typically took 10-20 seconds.

Second Experiment. Figure 4 shows the evolution of the overall power
consumption since the beginning of the experiment, with no VMs deployed,
until the end, where all the VMs have been undeployed. The measured results
show that Power-Aware policy consumes 21% less energy than Consolidation.
Savings are higher during the first half of the experiment and later, when the
VMs are undeployed, the system becomes non-optimal since the VMs are not
consolidated. With Power-Aware with Self Adaptation policy, the system status
is optimized when the VMs are destroyed. The overall power consumption is 16%
lower with self adaptation with respect to Power-Aware without self-adaptation.

Fig. 4: Overall power consumption for three different policies



14 Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation

Cost of migrations must not be underestimated. Migrations of memory-
intensive VMs are expensive in terms of network and memory usage for the
physical nodes. 10-20 seconds is not significant for batch applications, but may
decrease the QoS for web services. Future versions of the self-adaptation pol-
icy penalise migrations in the scoring functions. To maximise energy efficiency,
nodes should provide remote sleep/wake up to allow energy saving when a host
becomes idle thanks to consolidation.

6 Related Work

Research effort has targeted energy efficiency support at various stages of the
cloud service lifecycle (construction, deployment, operation). Regarding self-
adaptation capabilities at software development level, tools such as GreenPipe [13]
consider energy as a parameter to be optimised, but it is provided by the user
and tailored for a particular type of applications. The PaaS SAM is similar to
the SHoWA frameworks recovery planner [12]. The recovery planner is likened
to a disease database, with a set of rules on how to treat certain anomalies in
performance. The PaaS SAM manager goes further and specifies conditions such
as the recent violations of a similar nature and recent adaptation responses. It
also avoids pure thresholds and utilises fuzzy logic in order to give a more re-
fined response during adaptation. The Synthesis of Cost-effective Adaptation
Plans (SCOAP) framework [15] is a similar PaaS/application oriented adapta-
tion framework which focuses on the economic costs of utilising Cloud infras-
tructures under various pricing models. Mistral [10] is a controller framework
that optimizes power consumption, performance benefits as well as the impact
of adaptations but with a focus on the IaaS layer. In the service operation stage,
energy efficiency has been extensively studied and has focused for example on
approaches towards energy management for distributed management of VMs in
cloud infrastructures, where the goal is to improve the utilization of computing
resources and reduce energy consumption under workload independent quality
of service constraints. This approach has been faced during VM allocation [6]
and runtime migration [7][14].

7 Conclusion

This paper has described an energy-aware cloud architecture along side an intra-
layer self-adaptation methodology tailored for SaaS, PaaS and IaaS. The self-
adaptation implementation has been showcased in two applications and results
show that dynamic energy management is achieved for each of the Cloud layers.
Future work focuses on the inter-layer self-adaptation where each layer moni-
tors relevant energy efficiency status information locally and shares this with the
other layers, assesses its current energy status and forecasts future energy con-
sumption as needed. Self-adaptation actions can then be decided and executed
according to this assessment in a coherent and consistent way.



Energy Efficiency Support through Intra-Layer Cloud Stack Adaptation 15

Acknowledgments

This work is partly supported by the European Commission under FP7-ICT-
2013.1.2 contract 610874 (ASCETiC project), by the Spanish Goverment un-
der contract TIN2015-65316-P and BES-2013-067167 and by the Generalitat de
Catalunya under contract 2014-SGR-1051. Thanks to GreenPreFab Italia for
providing the jEPlus application and TU Berlin for their technical support.

References

1. EnergyPlus Building Energy Simulation Program, https://energyplus.net/
2. JEPlus: EnergyPlus Simulation Manager for Parametrics, http://www.jeplus.org/
3. OptaPlanner User Guide, http://docs.jboss.org/optaplanner/release/6.4.0.Final/

optaplanner-docs/html/index.html, Last visited on July 2016
4. OptaPlanner Web Site, http://www.optaplanner.org, Last visited on May 2016
5. Badia, R.M., Conejero, J., Diaz, C., Ejarque, J., Lezzi, D., Lordan, F., Ramon-

Cortes, C., Sirvent, R.: Comp superscalar, an interoperable programming frame-
work. SoftwareX 3, 32–36 (2015)

6. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation
Computer Systems 28(5), 755 – 768 (2012)

7. Dargie, W.: Estimation of the cost of VM migration. In: Computer Communication
and Networks (ICCCN) 23rd International Conference. pp. 1–8 (2014)

8. Djemame, K., Armstrong, D., Kavanagh, R., et al: Energy efficiency embedded
service lifecycle: Towards an energy efficient cloud computing architecture. In: Pro-
ceedings of the 2nd International Conference on ICT for Sustainability 2014. vol.
1203, p. 1–6. Stockholm, Sweden (Aug 2014)

9. Greenpeace: Clicking clean: How companies are creating the green internet (Apr
2014)

10. Jung, G., Hiltunen, M.A., Joshi, K., Schlichting, R., Pu, C.: Mistral: Dynami-
cally managing power, performance, and adaptation cost in cloud infrastructures.
In: 2010 IEEE 30th International Conference on Distributed Computing Systems
(ICDCS). pp. 62–73

11. Lordan, F., Ejarque, J., Sirvent, R., Badia, R.M.: Energy-aware programming
model for distributed infrastructures. In: Proceedings of the 24th Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing (PDP
2016). Heraklion, Greece (Feb 2016)

12. Magalhaes, J.P., Silva, L.M.: A framework for self-healing and self-adaptation of
cloud-hosted web-based applications. In: Proceedings of the 5th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). pp. 555–
564 (2013)

13. Mao, Y., et al.: GreenPipe: a Hadoop based workflow system on energy-efficient
clouds. In: 26th International Parallel and Distributed Processing Symposium
Workshops. pp. 2211–2219. IEEE (2012)

14. Murtazaev, A., Oh, S.: Sercon: Server Consolidation Algorithm using Live Migra-
tion of Virtual Machines for Green Computing. IETE Technical Review 3(28), 1–8
(2011)

15. Perez-Palacin, D., Mirandola, R., Calinescu, R.: Synthesis of adaptation plans for
cloud infrastructure with hybrid cost models. In: Proc. of the 2014 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications. pp. 443–450


