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Abstract. The excessive use of energy consumption in Cloud infrastructases h
become one of the major cost factors for Cloud providersatotain. In order to
enhance the energy efficiency of Cloud resources, proactive acttveeman-
agement tools are used. However, these tools need to be suppdrtedeniy-
awareness not only at the physical machine (PM) level but also at widakine
(VM) level in order to enhance decision-making. This paper integlan en-
ergy-aware profiling model to identify energy consumption fdelugeneous
and homogeneous VMs running on the same PM and presentsrgg-aware
prediction framework to forecast future VMs energy consumption. fidnise-
work first predicts the VM workload based on historical workload patterns us-
ing Autoregressive Integrated Moving Average (ARIMA) model. The predicted
VM workload is then correlated to the physical resources within thiseframk

in order to get the predicted VM energy consumption. Comparechwiitial re-
sults obtained in a real Cloud testbed, the predicted results show tlesiettys-
aware prediction framework can get up to 2.58 Mean PercentagdR&) for

the VM workload prediction, and up to -4.47 MPE for the VM ggerediction
based on periodic workload pattern.

Keywords: Cloud Computing, Energy Efficiency, EmgrAware Profiling, En-
ergy Prediction, Workload Prediction, Cloud Workload Patterns

1 I ntroduction

With the wide adoption of Cloud Computing, energy consumption éesniee one of
the main issues for Cloud providers to maintain. A Cloud infreistra along with its
cooling resources consunadarge amount of energy in order to operate, which may
cause ecological and economic issues. The ICT industry is responsiatetd 2 per-
cent of the global CO2 emission, which is similar to the amoursechloy the aviation
industry, as stated by Gartner [1]. For economic aspects, a data centrensian€o
about 100 times more energy compared to a typical office with the sam@]sire
terms of maintenance, Cloud providers consider energy consuragtare of the larg-
est cost factors [3] with a big impact on the operational cost of ad@hfwastructure
[4]. Therefore, various energy efficient techniques have been intrddecently to
help the Cloud providers reduce the energy consumption cost ofrtfrastructure,
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which can then lead to reducing the cost of operational expenditure (OPEX3\dand
less impact on the environment.

The impact of energy consumption is not only dependent on the etfjcadrthe
physical resources, but also on the efficiency of the tools deployedrnagmahese
resources as well as the efficiency of the applications running on thesecessfilr
Different methods have been used to efficiently manage the Cloud resalfcafs
which can be based on certain thresholds, called reactive, or based on precited
proactive. For example, once exceeding a certain threshold, 80% of CRHtiotilj
some actions take place by reactive methods to add more resources arpkgeoid
mance degradation. With prediction, proactive methods have the advantagmgf
some actions at earlier stages to avoid getting that threshold and maintairetttecxp
performance. To enable such optimisation and the energy efficient désitpud ap-
plications, the applicationslesigners and developers should be provided with energy-
aware information to support their programming decisions. Atigogeployment tools
should incorporate energy-ware information to make energy-efficientatesiahen
deploying these applications on the Cloud resources. As discussed iaViQ ap-
propriate tools for energy monitoring and profiling is essential to get ketergy-
awareness and then help for energy optimisation at all layers dbsgefscale system.
Also, predicting the workload @ Virtual Machine (VM) can help make effective de-
ployment strategies and energy efficient resource allocation method$h(ig,. Man-
aging the Cloud paradigm in all different levels and reducing thggmensumption
has been an active area of research as it can result in reduction of OPEXrcib&s f
Cloud providers.

Cloud applications can experience different workload patterns based on the users’
usage behaviours, and these workload patterns are depicted by the utib§dtien
resources hosting these applications. As stated in [8], there are mair@jdiixework-
load patterns, namely: static workload experiencing the same and stable rasburce
sation over a period of time; periodic workload experiencing repeated cesdilisa-
tion peaks in time intervals; continuously changing workload experieaciegource
utilisation that continuously decreases or increases over time; unpredictddasor
experiencing a resource utilisation randomly over time, and ioradie-time work-
load experiencing a resource utilisation peak once over time. These differelatadork
patterns consume energy differently based on the resources they utilisgit T$1im-
portant to have reactive and proactive methods to efficiently manage ¢seseces
when being utilised. In order to do that, current energy usagéysigal and virtual
resources has to be profiled so that such reactive methods can itelg@msequently,
future energy usage can be predicted so that such proactive methodssmakeEn-
ergy consumption can be directly measured at the Physical Machindg®\))out it
is difficult and not directly measured at the VM level. Thus, enabliegyggrawareness
at different levels is a key aspect towards efficiently managing the Chradigm.

In our previous work [9]we proposed and implemented a system architeaure t
enable energy-aware profiling for Cloud infrastructure resources afpbygtical and
virtual levels. In this paper, we extend our work to consider hetegdgevhen profil-
ing energy consumption for different sizes of VMs running on desiRyl. Also, we
extend this architecture to enable energy prediction for the VMs requesteddtoud



applications by considering previously profiled and stored data as wed astiming
workloads characteristics before service deployment. The outcomes of thiaork
help and add value to enhance the energy efficiency of Cloud environynkradmg
into other deployment models or scheduling strategies to enable enécgnefhan-
agement of Cloud resources, which can lead to lowering the cost of @PEXoud
providers.This paper’s main contributions are:

e Energy-aware profiling model that enables energy-awareness for hosoogeand
heterogeneous VMs in Clouds.

e Energy-aware prediction framework that forecasts the future eneage tsr VMs
prior to deployment.

This paper is structured as follows: a discussion of the related wesudknsarised
in the next section. Section 3 presents the system architecture followed bysaidiscu
of the energyware profiling model for attributing PM’s power consumption to heter-
ogeneous and homogeneous VMs, and a discussion of the energypaggiction
framework for forecasting the future VMs’ energy usage before their deployment. Sec-
tion 4 discusses the experimental set up followed by results and evalunafention
5. Finally, Section 6 concludes this paper and discusses future work.

2 Related Work

Djemame et al [10] emphasised the importance of optimising the eeffiggncy of
the Cloud paradigm at different layers and proposed an architecture thegsadden-
ergy efficiency at all Cloud layers and all through Cloud application litdéecyoni-
toring and profiling as well as forecasting the energy consumption issiggetpwards
enhancing and optimising the energy efficiency in the Cloud gamatiowever, VMs’
energy consumption cannot be measured and profiled directly asothey lthve direct
hardware interfaces. Therefore, their energy information can be indirecttifietbvia
modelling the energy consumed by the servers in which they are (i@sidd13].
Further, uncertainty issues associated with the Cloud environmestsritakore
difficult to do such prediction, like predicting job runtime. Tcherngkfal [14] have
emphasied the difficulty of dealing with uncertainty in Cloud environmerpesally
since its workload can change dramatically over time. So, they have redadeths-
sified the uncertainty issues associated with a Cloud environmentsand skd some
approaches to mitigateem. For example, some looked at the historical data of appli-
cations to predict the runtime job of similar applications to be executed [15]
Tchernykh et al [16] have presented an experimental study for several sctied-
uling strategies in a Cloud envinoent with different workloads. In the experimental
results, they used and analysed eight allocation strategies based ondahpeeagggo-
ries, namely, knowledge-free, energy-aware, and speed-aware. Thg raoeej used
in their work simply considers sumng up the machine’s idle power and the extra
variable powerwhich depends on the workload. However, they do not consider the
workload in their model when calculating the variable power consumgiiea, the
workload used in their work is based on HPC jobs for parallel dddegwironments



and not precisely on real Cloud environments that should also considentpéexity
of virtualisation aspects.

Some work focusson predicting power consumption based on historical data while
others use performance counters, which are queried from chips &uQ3$elying on
performance counters would not work appropriately in heterogeneousrengnts
with different server’s characteristics, as argued by Zhang et al [17]. Therefore, they
presented a best fit energy prediction model BFEPM that flexibly selects the best mod
for a given server based on a series of equations that consider onlytilation [17]
Dargie [18] proposed a stochastic model to estimate the power consuropganilti-
core processor based on the CPU utilisation workload and found outehratation-
ship between the workload and power is best estimated using a linearrfumetidual-
core processor and using a quadratic function in a single-core goocEarther, Fan
et al [19] have introduced a framework to estimate the power consuroptenvers
based on CPU utilisation only and argued with their results that the poms&smption
correlates well with the CPU usage. As their framework produced accesatts, they
argued that it is not necessary to use more complex signals, like hardwarsmaece
counters, to model power usage. Their work also indicates that the aofivither
system components, other than CPU, may have either small effpotr@n usage or
their activity correlates well with the CPU activity.

In terms of future prediction based on historical data, estimating the energy co
sumption of a Cloud application prior to deployment on VMs would irequnde-
standing the characteristics of the underlying physical resources, like idle gawer
sumption and variable power under different workload, and the projeitad! re-
sources usage, as stated in [AMus, it is essential to get the predicted VMs’ workload
first in order to get their predicted energy. Some work has predictee farorkload in
a Cloud environment based on Autoregressive Integrated Moving Average (ARIMA
model [21-24]; nonetheless, their objectives do not consider predicting the energy co
sumption. For example, Calheiros et al [24] introduced a Cloud worldaatiction
module based on the ARIMA model to proactively and dynamically proviste
sources. They define their workload as the expected number of recuoested by the
users, which are then mapped to predict thatreu of VMs needed to execute users’
requests and meet the Quality of Service (QoS).

Compared with the work presented in this paper, ARIMA model is uspckthct
the VM workload, defined as VM CPU utilisation, which is then mappedimittie
energy-aware prediction framework to get the forecasted VM energy cptisorfor
the next time interval. Then, having predicted the VM workload and its ecergy
sumption, other methods can rely on this information to help inteoduproactive re-
source provisioning and scheduling that aim to not only utilise ressefficiently and
meet the demands, but also consider the energy efficiency aspects.abhigetlan
drive towardsacost reduction of the energy consumption and OPEX for Cloud service
providers.



3 Energy-Aware Profiling and Prediction

Enabling energy-awareness in the Cloud paradigm is a key step sovpdnahising its
energy efficiencyAn energy-aware profiling model is introduced for Cloud infrastruc-
tureswhere the service operation takes place in order to understand how thehasergy
been consumed; this profiled information can then be used to hedpfthare devel-
opers and reactive management tools make energy-efficient decisionsptineising

the applications and efficiently managing the Cloud resources. Also, ajyeaware
prediction framework is proposed to predict the energy consumptiéefrequested

to execute the application, prior to service deployment, which can help arnigtacil
such proactive deployment tools with energy-awareness to efficiarghage the
Cloud resources. The overall system architecture of this work will basdied in the
next subsection, followed by detailed discussion of the energy-aware profiling and
prediction within this architecture.

3.1  System Architecture

The system architecture is aimed at enabling energy-awareness at the depémdnen
operational levels of the Cloud paradigm. As depicted in Figure 1, this architecture
consists of a number of components, mainly, the Resource MonitdrindRMU),
Energy-aware Profiling Unit (EPU), Reporting and Analysis Unit, and dynaware
PREdiction Unit (EPREU). The highlighted components, EPU and EPREthe

main focus of this paper.

Starting at the bottom layer when the Cloud infrastructure is operating tthe
Cloud services, the resources’ usage and physical energy consumption along with the
number of assigned VMs to each PM are dynamically collected by RMU h&aPR an
appropriate energy model that takes as input the monitored data from RMUtpots
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Fig. 1. System architecture



the attribution of the energy consumption to each VM based on the enasgyrgation

of their physical hosts. Then, EPU profiles and populétese measurements to a
knowledge database, which can be further used by the Reporting andig\blaliygo
provide energy-aware reports to the application developers to help them leaheho
applications consume energy and make such energy-efficient decisions aggdrdin
optimise their applications. Also, these measurements can be very osefutth re-
source management tools by enhancing their energy-awarenessaking energy-
efficient decisions when, for example, scheduling the tasks and balémeiwgrkload.
Further,this energy-related information of VMs, which can be used by different cus
tomers and run on the same PM, can help the service providethitgra new pricing
mechanism that charge the customers based not only on their ITcessagage, but
on their energy usage as well.

Moving up to the middle layer when the Cloud services are about to be/el@plo
EPREUhas a framework consisting of a number of models that predict the erangy
sumption of VMs prior to service deployment by considering the tfpgbese VMs
and their historical data. The predicted energy consumption for VMs can hetp oth
deployment strategies make energy-efficient decisions proactively.

3.2 Energy-Aware Profiling Model

The energ consumption of PMs can be directly measured and mainly consist® of
parts, idle and active. The idle energy is consumed when the PM is turrimad not
running any workload. The active energy is the extra energy addeslittie when the
PM is busy and running some workload. As the case wittPMgthe total energy
consumption of the VM equaits idle energy consumption plus its active energy con-
sumption. Yet, the energy consumption of VMs is difficult to identifg aot directly
measured.

In our previous work [9], we introduced an energy-awarélprg model that attrib-
utes the PM’s energy consumption to VMs. It attributes the PM’s idle energy evenly
among the number of VMs running on it, and attributes the acteggibased on VM
CPU utilisation mechanism. This model enables a fair attribution of a PM’s energy
consumption to homogeneous VMs.

In this paper, we extend our work and introduce a new energy-avadilang model
that fairly attributes the energy consumption to homogeneous and hetmogafvis
running on the same PM. This new model works by fairly attributing the PM’s idle
energy to VMs based on the number of Virtual CPUs (VCPUSs) assigned to each VM
and the active energy to VMs based on the VM CPU utilisation mechanism as well as
the number of VCPUs assigned to each VM.

As shown in Equation VM., is the power consumption of the targeted VM;
PM,4.pwr iS the idle power consumption of the PM where the VMs are hosted,;
VM, py @DV M,y are the number of assigned VCPUs and the CPU utilisation of
that VM; VMcoyy: is the number of VMs running on the same R\, .. and
VM, are the number of assigned VCPUs and the CPU utilisation of a meftbher
VMs set hosted by the same PM, and the active power consumption d¥l tisetlre
total PM’s power P Mp,,,- minus its idle power.
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Hence, the new energy-aware profiling model can now fairly attribetété and
active energy consumption of a PM to the same or different sizes of vidsms of
the allocated VCPUs for each VM. For instance, when both a small VM withPLVC
and a large VM with 3 VCPUSs are being fully utilized the samdM, the large VM
would have triple the value in terms of energy consumption as comjpatieel small
VM; so that the energy consumption can be fairly attributed based on themtsical
resources used by each VM.

3.3 Energy-Aware Prediction Framework

As measuring the current energy consumption is difficult and canmuerbmmed di-
rectly at the VM level, predicting the future energy consumption is evea difficult

at this level because it would rely on tis@mated PM’s energy to be used. Therefore,
an energy-aware prediction framework that aims to forecast thigyec@nsumption

for the new VMs prior to service deployment is presented. This frarkendudes a
model that first predicts the workload at the VM level. After that, this predicted VM
workload is correlated to physical workload in order to estimate thePhwenergy
consumption, from which the predicted VM energy consumption woulcabedoon.

As depicted in Figure 2, this energy-aware prediction framework includesriaiar
stepsin order to forecast the VMs’ energy consumption.

o 1- Predict VM 4. Predict VM Energy »| Deployment Environments
Workload Consumption
h
y
2. Predict PM 3. Predict PM Energy
Workload Consumption
A

Fig. 2. Energy-aware prediction framework

Step 1: this framework starts by receiving from the deployment environiprent
requisite information, which is the requested number of VMs along véthd¢hpacity
in terms of VCPUs to execute the application, before such deployment ptakess
place. Then, by using the ARIMA model, the VM workload, which is €RU utili-
sation, is predicted based on historical static and periodic workload patterns.



The ARIMA model is a time series prediction model that has been used widely in
different domains, including finance, owing to its sophisticationaaudiracy; further
details about the ARIMA model can be found in [25]. Unlike other prediatiethods,
like sample average, ARIMA takes multiple inputs as historical observationaugnd o
puts multiple future observations depicting the seasonal tiendn be used for sea-
sonal or non-seasonal time-series data. The type of seasonal ARIMA isiaded in
this work as the targeted workload patterns are reoccurring and shegeisgnality in
time intervals. In order to use the ARIMA model for predicting the VMkiead in
our work, the historical time series workload data has to be stationagywisté Box
and Cox transformation [26] and data differencing methods ardasaake these data
stationary. The model selection can be automatically processed in R pacKager|g
theauto.arima function, which selects the best fit model of ARIMA based on Akaike
Information Criterion (AIC) or Bayesian Information Criterion (Blvalue.

Step 2: once the VM’s workload is predicted, the next step is to understand how this
workload would be reflected on the physical resources and predict the new PM’s work-
load, which is PM CPU utilisation, with consideration of its current Yeaik as the
PM may be running another VM already. Therefore, the relationshigbatthe num-
ber of VCPUs and the PM’s CPU utilisation is characterised for each PM in the Leeds
Cloud testbed (this testbed is discussed in Section 4). For instance, Riglhevs a
linear relation between the number of VCPUs and CPU utilisation for a simggecal
host. Thus, using this relation equation can help estimate the new increment of PM’s
CPU utilisation based on the used ratio of the requested VCPUs for the VM,
VM, geqvcrus, identified by the predicted VM CPU utilisatiohiM,pyeqyey- This new
increment of PM’s utilisation would be also added to the current PM’s CPU utilisation,
PM,cyrrucir» IN Order to identify the new tdtaf the predicted PM’s CPU utilisation,
PM,prequtit» @s described in Equation 2. The PM’s idle CPU utilisation, P M, q100ti1, 1S
subtracted from the current because the relation equation already cotfsiglédte
value.
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Fig. 3. (a) On the left: Number of VCPUs vs CPU utilisation for a single hgsOfkthe right:
CPU utilisation vs power consumption for a single host.



VM -
PM_proqutii = (23.993 X (VMxRquCPUS X "f#“”m) + 4.5347)

+ (PMxCurrUtil - PMxIdleUtil) (2)

Step 3: after predicting the PM’s workload, the next step is to predict the PM’s en-
ergy consumption based on the correlation of this predicted workload with &glyen
consumption. For example, Figure 3b shows a linear relation betweg@ower con-
sumption and the CPU utilisation on the same physical host.

Considering this relation, Equation 3 is used to predict the PM’s power consumption,
PM,preapwr» based on the predicted PM’s CPU utilisation.

PMxPreder = 0.7254 X PMxPredUtil +53.88 (3)

Step 4: the final step within this framework is to profile and attribute the predicted
PM’s energy consumption to the new requested VM and to the VMs already running
on that physical host based on the energy-aware profiling model introduSedtian
3.2. Hence, the energy consumption for the new VM prior to depldywiétbe pre-
dicted for the next interval time using Equation 1, but substitutind/ Mg, ., with
VMx PMPwr with PMxPrederr anc“/'IVI)cUtil with VMxPredUtil-

Reqycpu?

4  Experimental Set Up

This section describes the environment and the details of the experimeshisteal in
order to evaluate the work presented in this paper. In terms of the engimgrthe
experiments have been conducted on the Leeds Cloud testbed, discudestadlsinn
[9]. Briefly, this testbed includes a cluster of commodity Dell seraers,one of these
servers with a four core X3430 Intel Xeon CPU was used. The servar\WastsUp
meter [28] attached to directly measure the energy consumption and pugabbix
[29], which is also used for resources usage monitoring pespdsis testbed currently
uses OpenNebula [30] version 4.10 as the Virtual Infrastructure Manadéy, (&fid
KVM [31] hypervisor for the Virtual Machine Manager (VMM).

In terms of the experimeritdesign, the aim is to evaluate that the new energy-aware
profiling model presented in this paper is capalfifairly attributing the PM’s energy
consumption to homogeneous and heterogeneous VMs, diteiscenario is designed
to show how the energy consumption would be attributed when twoéMallvith 1
VCPU for each are running on the same PM, and another sce@degigned to show
how the energy consumption would be attributed when a small VM wWitGRU and
a large VM with 3 VCPUs are running on the same PM. Secondlwiitiés also to
evaluate that the energy-aware prediction framework is capable of predietiedrgy
consumption of the VM prior to service deployment based on historical statjeand
riodic workload. Thus, a number of direct experiments have beeruciadon the
testbed to synthetically generate static and periodic workload by stréssiGgrU on
different types of VMs, like a small VM with 1 VCPU and a large VM with 3 VCPUs.
The generated workload of each VM type has four time intervals ofirdtes each.
The first three intervals will be used as Historical data set for prediction, and the last



interval will be used as the testing data set to evaluate the predicted results. e pred
tion process starts by firstly predicting the VM workload offline ushreauto.arima
function in R package [27] and then completing the cycle of this framkeand con-
sidering the correlation between the physical and virtual resources totpredigy
consumption of the VM prior to deployment on a single PM. This siPilglés expected

to host this VM only, so this VM would have the same energguwoption as the PM.

5 Results Discussion and Evaluation

Starting with evaluating the capability of the energy-aware profiling, Etgdia and 4b
show the results of attributing the PM’s energy consumption to two homogeneous and
heterogeneous VMs. The first part of Figures 4a and 4b shovetthmition of the
PM’s idle energy when the VMs are running but not generating any workload, and the
second part shows the attribution of the PM’s total energy when the VMs are running
the same workload at 80% of CPU utilisation.
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Fig. 4.  Energy consumption of a single host attributed to two homogeneogsstdivn on
the left (a) and to two heterogeneous VMs shown on the right (b).

Figure 4a shows the results of attributing the PM’s energy consumption to two ho-
mogeneous small VMs, each with 1 VCPU. Based on the results sirofigure 4a,
both of the VMs have the same energy consumption as they aredmaonog and have
the same usage of the actual physical resources. Figure 4b shows the attribution of PM’s
energy consumption to heterogeneous VMs, one small with 1 VCPU and daogeer
with 3 VCPUs. As having triple the size in terms of VCPUs, the large VM’s energy
consumption during the idle and active states is three times larger than the energy co
sumption of the small VM. Overall, the results show that the enexgyeaprofiling
model is capable of fairly attributing PM’s energy consumption to homogeneous and
heterogeneous VMs based on their utilisation and size, which reflect the acgieaphy
resources’ usage.

In terms of evaluating the energy-aware prediction framework, Figoresgnts the
predicted results for a large VM based on a historical static workload pattern at 80% of
CPU utilisation, and Figure 6 presents the predicted results for a large VMdreaaed
historical periodt workload pattern with two utilisation peaks.
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Fig. 5. Prediction results for a large VM based on static workload patt¢r@n(the left: results
of workload prediction. (b) On the right: results of energy prediction.

For the prediction based on the historical static workload pattern, Figure 5a shows
the results of the predicted versus the actual VM workload. Figusbdhks the results
of the predicted versus the actual VM energy consumption over a time.period

As discussed previously, the VM workload prediction within the prop&rseie-
work uses the ARIMA model to forecast the next 30 minute periogdookload, as
shown in Figure 5a, based on three historical intervals of workload. Ovbealre-
dicted VM workload results closely match the actual workload owingetsdiphisti-
cation of the ARIMA model. Based on this predicted workload, the VMggneon-
sumption is predicted using the remaining models, as previously discusted the
proposed framework (see Section 3.3). Figure 5b shows the predidtedergy con-
sumption results, which have a small variation as compared to the actual emergy
sumption. The reason of this variation is because there is an@eatiomof error from
the previous steps within the framework, especially when correlatingth@RRJ uti-
lisation to PM power consumption. As seen on Figure 5b, the actual exargymp-
tion increases in the first part of the interval; this may be duketdhermal energy,
which is not captureéh this work, causing thenachine’s fan to run faster and thus
leading to an increase of P&fhergy, which is then attributed to the VMespite this
accumulation of error, the proposed framework can predict the VM energump-
tion accurately.

In terms of prediction accuracy, a number of metrics, as summarised in Talde 1,
used to evaluate the predicted VM workload and energy consumption bagatioon s

Table 1. Prediction accuracy for a large VM based on static workload pattern

Accuracy Metric Predicted VM | Predicted VM Energy,
Workload Consumption
Mean Error (ME) -0.11 -1.75
Root Mean Squared Error (RMSE) 0.42 3.28
Mean Absolute Error (MAE) 0.33 3.04
Mean Percentage Error (MPE) -0.14 -1.89
Mean Absolute Percentage Error (MAP 0.42 3.17




workload. As previously discussed in Section 4, the actual data of the Vioagdr
and energy consumption are used as the testing data set for evaluation purposes.
As shown in Table 1, the accuracy of the predicted VM workload is vghyds its
metrics® values are close to zero. The predicted VM energy consumption is less accurate
as compared with the predicted VM workload, but still achieves a good pradictio
accuracy, with -1.89 of MPE. The reason of the predicted VM ermyggumption
being less accurate than the predicted workload when compared to the actual data is
due to the accumulated error when correlating this VM workload to physicateesou
In terms of prediction based on the historical periodic workload patterm,eFégu
shows the results of the predicted versus the actual VM workloadefagwshows the
results of the predicted versus the actual VM energy consumption pggod of time.
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Fig. 6. Prediction results for a large VM based on periodic workload pattgr@n(ahe left:
results of workload prediction. (b) On the right: results of energy predictio

Despite the periodic utilisation peaks, the predicted VM workload results are closely
matched with the actual results, which reflect the capability of the ARIMA mnodel
capture the historical seasonal trend and give a very accurate predictiatireggor
The proposed framework is also capable of predicting the energyroptisn of the
VM with only a small variation as compared to the actual. As shown in Fidpitde
actual VM energy consumption in the middle of the interval has a small peak, which
was not followed by the predicted VM energy consumption. This is agaife due
to the thermal energy which is not considered in the proposed framework

Table 2. Prediction accuracy for a large VM based on periodic workload pattern

Accuracy Metric Predicted VM Workload| Predicted VM Energy
Consumption
ME -0.02 -3.04
RMSE 151 5.76
MAE 0.81 4.61
MPE 2.58 -4.47
MAPE 5.30 6.43




For evaluating the accuracy of the predicted VM workload and energy cptisom
based on periodic workload, different accuracy metrics are used, as shown in.Table 2
Despite the high variation of the workload utilisation in the periodic pattern, the
accuracy metrics, as shown in Table 2, indicate that the predicted VM workload
achieves a good accuracy, with 2.58 of MPE. As previoustysiied, the accumulated
error when correlating the predicted VM workload to the physical resouroegento
get the energy affects the accuracy of the predicted VM energy consuripigoefore,
the predicted VM energy consumption is less accurate as compared with theegred
VM workload, but still achieves a good prediction accuracy, with -4.47 of MPE

6 Conclusion and Future Work

This paper has presented and evaluated a new energy-aware profiling moelehthat
bles a fair attribution of a PM’s energy consumption to homogeneous and heterogene-

ous VMs based on their utilisation and size, which reflect the physical cesosage

by each VM. Also, it has proposed an energy-aware prediction frafkeavéorecast

the energy consumption of the VM prior to service deployment. A nunfldirext
experiments were conducted on the Leeds Cloud testbed to evaluate the cagability o
the energy prediction. Overall, the results show that the proposed eneagy/pedic-

tion framework is capable of forecasting the energy consumptiothéoyM with a

good prediction accuracy for static and periodic Cloud workload patterns.

The application of the proposed work is providing energy-awarevigish can be
used and incorporated by other reactive and proactive managemenb tozke en-
hanced energy-aware decisions and efficiently manage the Cloud resdesdasy
towards a reduction of energy consumption, and therefore lowmréngost of OPEX
for Cloud providers and having less impact on the environment.

In future work, we aim to facilitate the proposed prediction fraomkwnd make an
online modeller on the Leeds testbed to make the prediction process dyhiamieve
will consider the scalability aspects with different prediction scenariosttefushow
the capability of the proposed work, like predicting the energy usagerfomber of
VMs to be run on a single or multipfMs already hosting other running VMs, and
predicting the energy usage for these VMs to run all together. Further, vie eim-
sider the thermal energy and its impact on the energy consunmipfitimthe evolving
technologies of containers, further work will investigate the applicability ofyusiis
research in that contexhd consider attributing the system’s energy consumption to
container instances instead of VM instances.
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