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Abstract. The excessive use of energy consumption in Cloud infrastructures has 
become one of the major cost factors for Cloud providers to maintain. In order to 
enhance the energy efficiency of Cloud resources, proactive and reactive man-
agement tools are used. However, these tools need to be supported with energy-
awareness not only at the physical machine (PM) level but also at virtual machine 
(VM) level in order to enhance decision-making. This paper introduces an en-
ergy-aware profiling model to identify energy consumption for heterogeneous 
and homogeneous VMs running on the same PM and presents an energy-aware 
prediction framework to forecast future VMs energy consumption. This frame-
work first predicts the VMs’ workload based on historical workload patterns us-
ing Autoregressive Integrated Moving Average (ARIMA) model. The predicted 
VM workload is then correlated to the physical resources within this framework 
in order to get the predicted VM energy consumption. Compared with actual re-
sults obtained in a real Cloud testbed, the predicted results show that this energy-
aware prediction framework can get up to 2.58 Mean Percentage Error (MPE) for 
the VM workload prediction, and up to -4.47 MPE for the VM energy prediction 
based on periodic workload pattern. 

Keywords: Cloud Computing, Energy Efficiency, Energy-Aware Profiling, En-
ergy Prediction, Workload Prediction, Cloud Workload Patterns 

1 Introduction 

With the wide adoption of Cloud Computing, energy consumption has become one of 
the main issues for Cloud providers to maintain. A Cloud infrastructure along with its 
cooling resources consume a large amount of energy in order to operate, which may 
cause ecological and economic issues. The ICT industry is responsible for about 2 per-
cent of the global CO2 emission, which is similar to the amount caused by the aviation 
industry, as stated by Gartner [1]. For economic aspects, a data centre may consume 
about 100 times more energy compared to a typical office with the same size [2]. In 
terms of maintenance, Cloud providers consider energy consumption as one of the larg-
est cost factors [3] with a big impact on the operational cost of a Cloud infrastructure 
[4]. Therefore, various energy efficient techniques have been introduced recently to 
help the Cloud providers reduce the energy consumption cost of their infrastructure, 
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which can then lead to reducing the cost of operational expenditure (OPEX) and having 
less impact on the environment. 

The impact of energy consumption is not only dependent on the efficiency of the 
physical resources, but also on the efficiency of the tools deployed to manage these 
resources as well as the efficiency of the applications running on these resources [5]. 
Different methods have been used to efficiently manage the Cloud resources, all of 
which can be based on certain thresholds, called reactive, or based on prediction, called 
proactive. For example, once exceeding a certain threshold, 80% of CPU utilisation, 
some actions take place by reactive methods to add more resources and avoid perfor-
mance degradation. With prediction, proactive methods have the advantage of taking 
some actions at earlier stages to avoid getting that threshold and maintain the expected 
performance. To enable such optimisation and the energy efficient design of Cloud ap-
plications, the applications’ designers and developers should be provided with energy-
aware information to support their programming decisions. Also, the deployment tools 
should incorporate energy-ware information to make energy-efficient decisions when 
deploying these applications on the Cloud resources. As discussed in [6], having ap-
propriate tools for energy monitoring and profiling is essential to get better energy-
awareness and then help for energy optimisation at all layers of such large-scale system. 
Also, predicting the workload of a Virtual Machine (VM) can help make effective de-
ployment strategies and energy efficient resource allocation methods [7]. Thus, man-
aging the Cloud paradigm in all different levels and reducing the energy consumption 
has been an active area of research as it can result in reduction of OPEX costs for the 
Cloud providers. 

Cloud applications can experience different workload patterns based on the users’ 
usage behaviours, and these workload patterns are depicted by the utilisation of the 
resources hosting these applications. As stated in [8], there are mainly five Cloud work-
load patterns, namely: static workload experiencing the same and stable resource utili-
sation over a period of time; periodic workload experiencing repeated resource utilisa-
tion peaks in time intervals; continuously changing workload experiencing a resource 
utilisation that continuously decreases or increases over time; unpredicted workload 
experiencing a resource utilisation randomly over time, and once-in-a-life-time work-
load experiencing a resource utilisation peak once over time. These different workload 
patterns consume energy differently based on the resources they utilise. Thus, it is im-
portant to have reactive and proactive methods to efficiently manage these resources 
when being utilised. In order to do that, current energy usage for physical and virtual 
resources has to be profiled so that such reactive methods can rely on it. Consequently, 
future energy usage can be predicted so that such proactive methods make use of. En-
ergy consumption can be directly measured at the Physical Machine (PM) level, but it 
is difficult and not directly measured at the VM level. Thus, enabling energy-awareness 
at different levels is a key aspect towards efficiently managing the Cloud paradigm. 

In our previous work [9], we proposed and implemented a system architecture to 
enable energy-aware profiling for Cloud infrastructure resources at both physical and 
virtual levels. In this paper, we extend our work to consider heterogeneity when profil-
ing energy consumption for different sizes of VMs running on a single PM. Also, we 
extend this architecture to enable energy prediction for the VMs requested to run Cloud 



applications by considering previously profiled and stored data as well as the incoming 
workload’s characteristics before service deployment. The outcomes of this work can 
help and add value to enhance the energy efficiency of Cloud environment by feeding 
into other deployment models or scheduling strategies to enable energy efficient man-
agement of Cloud resources, which can lead to lowering the cost of OPEX for Cloud 
providers. This paper’s main contributions are: 

 Energy-aware profiling model that enables energy-awareness for homogeneous and 
heterogeneous VMs in Clouds. 

 Energy-aware prediction framework that forecasts the future energy usage for VMs 
prior to deployment. 

This paper is structured as follows: a discussion of the related work is summarised 
in the next section. Section 3 presents the system architecture followed by a discussion 
of the energy-aware profiling model for attributing PM’s power consumption to heter-
ogeneous and homogeneous VMs, and a discussion of the energy-aware prediction 
framework for forecasting the future VMs’ energy usage before their deployment. Sec-
tion 4 discusses the experimental set up followed by results and evaluation in Section 
5. Finally, Section 6 concludes this paper and discusses future work. 

2 Related Work 

Djemame et al [10] emphasised the importance of optimising the energy efficiency of 
the Cloud paradigm at different layers and proposed an architecture that addresses en-
ergy efficiency at all Cloud layers and all through Cloud application life-cycle. Moni-
toring and profiling as well as forecasting the energy consumption is a key step towards 
enhancing and optimising the energy efficiency in the Cloud paradigm. However, VMs’ 
energy consumption cannot be measured and profiled directly as they do not have direct 
hardware interfaces. Therefore, their energy information can be indirectly identified via 
modelling the energy consumed by the servers in which they are hosted [9, 11–13]. 

Further, uncertainty issues associated with the Cloud environment makes it more 
difficult to do such prediction, like predicting job runtime. Tchernykh et al [14] have 
emphasised the difficulty of dealing with uncertainty in Cloud environment especially 
since its workload can change dramatically over time. So, they have reviewed and clas-
sified the uncertainty issues associated with a Cloud environment and discussed some 
approaches to mitigate them. For example, some looked at the historical data of appli-
cations to predict the runtime job of similar applications to be executed [15]. 

Tchernykh et al [16] have presented an experimental study for several online sched-
uling strategies in a Cloud environment with different workloads. In the experimental 
results, they used and analysed eight allocation strategies based on three group catego-
ries, namely, knowledge-free, energy-aware, and speed-aware. The energy model used 
in their work simply considers summing up the machine’s idle power and the extra 
variable power, which depends on the workload. However, they do not consider the 
workload in their model when calculating the variable power consumption. Also, the 
workload used in their work is based on HPC jobs for parallel and grid environments 



and not precisely on real Cloud environments that should also consider the complexity 
of virtualisation aspects. 

Some work focuses on predicting power consumption based on historical data while 
others use performance counters, which are queried from chips or OS. But, relying on 
performance counters would not work appropriately in heterogeneous environments 
with different server’s characteristics, as argued by Zhang et al [17]. Therefore, they 
presented a best fit energy prediction model BFEPM that flexibly selects the best model 
for a given server based on a series of equations that consider only CPU utilisation [17]. 
Dargie [18] proposed a stochastic model to estimate the power consumption for a multi-
core processor based on the CPU utilisation workload and found out that the relation-
ship between the workload and power is best estimated using a linear function in a dual-
core processor and using a quadratic function in a single-core processor. Further, Fan 
et al [19] have introduced a framework to estimate the power consumption of servers 
based on CPU utilisation only and argued with their results that the power consumption 
correlates well with the CPU usage. As their framework produced accurate results, they 
argued that it is not necessary to use more complex signals, like hardware performance 
counters, to model power usage. Their work also indicates that the activity of other 
system components, other than CPU, may have either small effect on power usage or 
their activity correlates well with the CPU activity. 

In terms of future prediction based on historical data, estimating the energy con-
sumption of a Cloud application prior to deployment on VMs would require under-
standing the characteristics of the underlying physical resources, like idle power con-
sumption and variable power under different workload, and the projected virtual re-
sources usage, as stated in [20]. Thus, it is essential to get the predicted VMs’ workload 
first in order to get their predicted energy. Some work has predicted future workload in 
a Cloud environment based on Autoregressive Integrated Moving Average (ARIMA) 
model [21–24]; nonetheless, their objectives do not consider predicting the energy con-
sumption. For example, Calheiros et al [24] introduced a Cloud workload prediction 
module based on the ARIMA model to proactively and dynamically provision re-
sources. They define their workload as the expected number of requests received by the 
users, which are then mapped to predict the number of VMs needed to execute users’ 
requests and meet the Quality of Service (QoS). 

Compared with the work presented in this paper, ARIMA model is used to predict 
the VM workload, defined as VM CPU utilisation, which is then mapped within the 
energy-aware prediction framework to get the forecasted VM energy consumption for 
the next time interval. Then, having predicted the VM workload and its energy con-
sumption, other methods can rely on this information to help introduce a proactive re-
source provisioning and scheduling that aim to not only utilise resources efficiently and 
meet the demands, but also consider the energy efficiency aspects as well. This can 
drive towards a cost reduction of the energy consumption and OPEX for Cloud service 
providers. 



3 Energy-Aware Profiling and Prediction 

Enabling energy-awareness in the Cloud paradigm is a key step towards optimising its 
energy efficiency. An energy-aware profiling model is introduced for Cloud infrastruc-
tures where the service operation takes place in order to understand how the energy has 
been consumed; this profiled information can then be used to help the software devel-
opers and reactive management tools make energy-efficient decisions when optimising 
the applications and efficiently managing the Cloud resources. Also, an energy-aware 
prediction framework is proposed to predict the energy consumption of VMs, requested 
to execute the application, prior to service deployment, which can help and facilitate 
such proactive deployment tools with energy-awareness to efficiently manage the 
Cloud resources. The overall system architecture of this work will be discussed in the 
next subsection, followed by a detailed discussion of the energy-aware profiling and 
prediction within this architecture. 

3.1 System Architecture 

The system architecture is aimed at enabling energy-awareness at the deployment and 
operational levels of the Cloud paradigm. As depicted in Figure 1, this architecture 
consists of a number of components, mainly, the Resource Monitoring Unit (RMU), 
Energy-aware Profiling Unit (EPU), Reporting and Analysis Unit, and Energy-aware 
PREdiction Unit (EPREU). The highlighted components, EPU and EPREU, are the 
main focus of this paper. 

Starting at the bottom layer when the Cloud infrastructure is operating to run the 
Cloud services, the resources’ usage and physical energy consumption along with the 
number of assigned VMs to each PM are dynamically collected by RMU. EPU has an 
appropriate energy model that takes as input the monitored data from RMU and outputs 
 

 

Fig. 1. System architecture 



the attribution of the energy consumption to each VM based on the energy consumption 
of their physical hosts. Then, EPU profiles and populates these measurements to a 
knowledge database, which can be further used by the Reporting and Analysis Unit to 
provide energy-aware reports to the application developers to help them learn how their 
applications consume energy and make such energy-efficient decisions accordingly to 
optimise their applications. Also, these measurements can be very useful for such re-
source management tools by enhancing their energy-awareness and making energy-
efficient decisions when, for example, scheduling the tasks and balancing the workload. 
Further, this energy-related information of VMs, which can be used by different cus-
tomers and run on the same PM, can help the service providers introduce a new pricing 
mechanism that charge the customers based not only on their IT resources usage, but 
on their energy usage as well. 

Moving up to the middle layer when the Cloud services are about to be deployed, 
EPREU has a framework consisting of a number of models that predict the energy con-
sumption of VMs prior to service deployment by considering the type of these VMs 
and their historical data. The predicted energy consumption for VMs can help other 
deployment strategies make energy-efficient decisions proactively. 

3.2 Energy-Aware Profiling Model 

The energy consumption of PMs can be directly measured and mainly consists of two 
parts, idle and active. The idle energy is consumed when the PM is turned on but not 
running any workload. The active energy is the extra energy added to the idle when the 
PM is busy and running some workload. As the case with the PM, the total energy 
consumption of the VM equals its idle energy consumption plus its active energy con-
sumption. Yet, the energy consumption of VMs is difficult to identify and not directly 
measured. 

In our previous work [9], we introduced an energy-aware profiling model that attrib-
utes the PM’s energy consumption to VMs. It attributes the PM’s idle energy evenly 
among the number of VMs running on it, and attributes the active energy based on VM 
CPU utilisation mechanism. This model enables a fair attribution of a PM’s energy 
consumption to homogeneous VMs. 

In this paper, we extend our work and introduce a new energy-aware profiling model 
that fairly attributes the energy consumption to homogeneous and heterogeneous VMs 
running on the same PM. This new model works by fairly attributing the PM’s idle 
energy to VMs based on the number of Virtual CPUs (VCPUs) assigned to each VM, 
and the active energy to VMs based on the VM CPU utilisation mechanism as well as 
the number of VCPUs assigned to each VM. 

As shown in Equation 1, ܸܯ௫௉௪௥ is the power consumption of the targeted VM; ܲܯூௗ௟௘௉௪௥  is the idle power consumption of the PM where the VMs are hosted; ܸܯ௫ೇ಴ುೆ  and ܸ ௫௎௧௜௟ܯ  are the number of assigned VCPUs and the CPU utilisation of 
that VM; ܸܯ஼௢௨௡௧  is the number of VMs running on the same PM; ܸܯ௬ೇ಴ುೆ  and ܸܯ௬௎௧௜௟ are the number of assigned VCPUs and the CPU utilisation of a member of the 
VMs set hosted by the same PM, and the active power consumption of the PM is the 
total PM’s power ܲܯ௉௪௥ minus its idle power. 



௫௉௪௥ܯܸ ൌ ூௗ௟௘௉௪௥ܯܲ ൈ ௫ೇ಴ುೆσܯܸ ௬ೇ಴ುೆ௏ெ಴೚ೠ೙೟௬ୀଵܯܸ ൅ ሺܲܯ௉௪௥ െ ூௗ௟௘௉௪௥ሻܯܲ
ൈ ௫௎௧௜௟ܯܸ ൈ ௫௏஼௉௎σܯܸ ሺܸܯ௬௎௧௜௟ ൈ ௬௏஼௉௎ሻ௏ெ಴೚ೠ೙೟௬ୀଵܯܸ                          ሺͳሻ 

Hence, the new energy-aware profiling model can now fairly attribute the idle and 
active energy consumption of a PM to the same or different sizes of VMs in terms of 
the allocated VCPUs for each VM. For instance, when both a small VM with 1 VCPU 
and a large VM with 3 VCPUs are being fully utilized on the same PM, the large VM 
would have triple the value in terms of energy consumption as compared to the small 
VM; so that the energy consumption can be fairly attributed based on the actual physical 
resources used by each VM. 

3.3 Energy-Aware Prediction Framework 

As measuring the current energy consumption is difficult and cannot be performed di-
rectly at the VM level, predicting the future energy consumption is even more difficult 
at this level because it would rely on the estimated PM’s energy to be used. Therefore, 
an energy-aware prediction framework that aims to forecast the energy consumption 
for the new VMs prior to service deployment is presented. This framework includes a 
model that first predicts the workload at the VM level. After that, this predicted VM 
workload is correlated to physical workload in order to estimate the new PM energy 
consumption, from which the predicted VM energy consumption would be based on. 
As depicted in Figure 2, this energy-aware prediction framework includes four main 
steps in order to forecast the VMs’ energy consumption. 

Fig. 2. Energy-aware prediction framework 

Step 1: this framework starts by receiving from the deployment environment pre-
requisite information, which is the requested number of VMs along with their capacity 
in terms of VCPUs to execute the application, before such deployment process takes 
place. Then, by using the ARIMA model, the VM workload, which is VM CPU utili-
sation, is predicted based on historical static and periodic workload patterns. 



The ARIMA model is a time series prediction model that has been used widely in 
different domains, including finance, owing to its sophistication and accuracy; further 
details about the ARIMA model can be found in [25]. Unlike other prediction methods, 
like sample average, ARIMA takes multiple inputs as historical observations and out-
puts multiple future observations depicting the seasonal trend. It can be used for sea-
sonal or non-seasonal time-series data. The type of seasonal ARIMA model is used in 
this work as the targeted workload patterns are reoccurring and showing seasonality in 
time intervals. In order to use the ARIMA model for predicting the VM workload in 
our work, the historical time series workload data has to be stationary, otherwise Box 
and Cox transformation [26] and data differencing methods are used to make these data 
stationary. The model selection can be automatically processed in R package [27] using 
the auto.arima function, which selects the best fit model of ARIMA based on Akaike 
Information Criterion (AIC) or Bayesian Information Criterion (BIC) value. 

Step 2: once the VM’s workload is predicted, the next step is to understand how this 
workload would be reflected on the physical resources and predict the new PM’s work-
load, which is PM CPU utilisation, with consideration of its current workload as the 
PM may be running another VM already. Therefore, the relationship between the num-
ber of VCPUs and the PM’s CPU utilisation is characterised for each PM in the Leeds 
Cloud testbed (this testbed is discussed in Section 4). For instance, Figure 3a shows a 
linear relation between the number of VCPUs and CPU utilisation for a single physical 
host. Thus, using this relation equation can help estimate the new increment of PM’s 
CPU utilisation based on the used ratio of the requested VCPUs for the VM, ܸܯ௫ோ௘௤௏஼௉௎௦, identified by the predicted VM CPU utilisation, ܸܯ௫௉௥௘ௗ௎௧௜௟. This new 
increment of PM’s utilisation would be also added to the current PM’s CPU utilisation, ܲܯ௫஼௨௥௥௎௧௜௟, in order to identify the new total of the predicted PM’s CPU utilisation, ܲܯ௫௉௥௘ௗ௎௧௜௟ , as described in Equation 2. The PM’s idle CPU utilisation, ܲܯ௫ூௗ௟௘௎௧௜௟, is 
subtracted from the current because the relation equation already considers this idle 
value. 

Fig. 3.   (a) On the left: Number of VCPUs vs CPU utilisation for a single host. (b) On the right: 
CPU utilisation vs power consumption for a single host. 
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Step 3: after predicting the PM’s workload, the next step is to predict the PM’s en-
ergy consumption based on the correlation of this predicted workload with PM energy 
consumption. For example, Figure 3b shows a linear relation between the power con-
sumption and the CPU utilisation on the same physical host.  

Considering this relation, Equation 3 is used to predict the PM’s power consumption, ܲܯ௫௉௥௘ௗ௉௪௥ , based on the predicted PM’s CPU utilisation. ܲܯ௫௉௥௘ௗ௉௪௥ ൌ ͲǤ͹ʹͷͶ ൈ ௫௉௥௘ௗ௎௧௜௟ܯܲ ൅ ͷ͵Ǥͺͺ                                ሺ͵ሻ 

Step 4: the final step within this framework is to profile and attribute the predicted 
PM’s energy consumption to the new requested VM and to the VMs already running 
on that physical host based on the energy-aware profiling model introduced in Section 
3.2. Hence, the energy consumption for the new VM prior to deployment will be pre-
dicted for the next interval time using Equation 1, but substituting the ܸܯ௫ೇ಴ುೆ  with ܸܯ௫ோ௘௤ೇ಴ುೆ, ܲ ܸ ௫௉௥௘ௗ௉௪௥, andܯܲ ௉௪௥ withܯ ௫௎௧௜௟ܯ  with ܸܯ௫௉௥௘ௗ௎௧௜௟. 
4 Experimental Set Up 

This section describes the environment and the details of the experiments conducted in 
order to evaluate the work presented in this paper. In terms of the environment, the 
experiments have been conducted on the Leeds Cloud testbed, discussed in details in 
[9]. Briefly, this testbed includes a cluster of commodity Dell servers, and one of these 
servers with a four core X3430 Intel Xeon CPU was used. The server has a WattsUp 
meter [28] attached to directly measure the energy consumption and push it to Zabbix 
[29], which is also used for resources usage monitoring purposes. This testbed currently 
uses OpenNebula [30] version 4.10 as the Virtual Infrastructure Manager (VIM), and 
KVM [31] hypervisor for the Virtual Machine Manager (VMM). 

In terms of the experiments’ design, the aim is to evaluate that the new energy-aware 
profiling model presented in this paper is capable of fairly attributing the PM’s energy 
consumption to homogeneous and heterogeneous VMs. Thus, one scenario is designed  
to show how the energy consumption would be attributed when two small VMs with 1 
VCPU for each are running on the same PM, and another scenario is designed to show 
how the energy consumption would be attributed when a small VM with 1 VCPU and 
a large VM with 3 VCPUs are running on the same PM. Secondly, the aim is also to 
evaluate that the energy-aware prediction framework is capable of predicting the energy 
consumption of the VM prior to service deployment based on historical static and pe-
riodic workload. Thus, a number of direct experiments have been conducted on the 
testbed to synthetically generate static and periodic workload by stressing the CPU on 
different types of VMs, like a small VM with 1 VCPU and a large VM with 3 VCPUs. 
The generated workload of each VM type has four time intervals of 30 minutes each. 
The first three intervals will be used as the historical data set for prediction, and the last 



interval will be used as the testing data set to evaluate the predicted results. The predic-
tion process starts by firstly predicting the VM workload offline using the auto.arima 
function in R package [27] and then completing the cycle of this framework and con-
sidering the correlation between the physical and virtual resources to predict energy 
consumption of the VM prior to deployment on a single PM. This single PM is expected 
to host this VM only, so this VM would have the same energy consumption as the PM. 

5 Results Discussion and Evaluation 

Starting with evaluating the capability of the energy-aware profiling, Figures 4a and 4b 
show the results of attributing the PM’s energy consumption to two homogeneous and 
heterogeneous VMs. The first part of Figures 4a and 4b shows the attribution of the 
PM’s idle energy when the VMs are running but not generating any workload, and the 
second part shows the attribution of the PM’s total energy when the VMs are running 
the same workload at 80% of CPU utilisation. 

Fig. 4.      Energy consumption of a single host attributed to two homogeneous VMs shown on 
the left (a) and to two heterogeneous VMs shown on the right (b). 

Figure 4a shows the results of attributing the PM’s energy consumption to two ho-
mogeneous small VMs, each with 1 VCPU. Based on the results shown on Figure 4a, 
both of the VMs have the same energy consumption as they are homogeneous and have 
the same usage of the actual physical resources. Figure 4b shows the attribution of PM’s 
energy consumption to heterogeneous VMs, one small with 1 VCPU and another large 
with 3 VCPUs. As having triple the size in terms of VCPUs, the large VM’s energy 
consumption during the idle and active states is three times larger than the energy con-
sumption of the small VM. Overall, the results show that the energy-aware profiling 
model is capable of fairly attributing PM’s energy consumption to homogeneous and 
heterogeneous VMs based on their utilisation and size, which reflect the actual physical 
resources’ usage. 

In terms of evaluating the energy-aware prediction framework, Figure 5 presents the 
predicted results for a large VM based on a historical static workload pattern at 80% of 
CPU utilisation, and Figure 6 presents the predicted results for a large VM based on a 
historical periodic workload pattern with two utilisation peaks. 
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Fig. 5.  Prediction results for a large VM based on static workload pattern. (a) On the left: results 
of workload prediction. (b) On the right: results of energy prediction. 

For the prediction based on the historical static workload pattern, Figure 5a shows 
the results of the predicted versus the actual VM workload. Figure 5b shows the results 
of the predicted versus the actual VM energy consumption over a time period. 

As discussed previously, the VM workload prediction within the proposed frame-
work uses the ARIMA model to forecast the next 30 minute period of workload, as 
shown in Figure 5a, based on three historical intervals of workload. Overall, the pre-
dicted VM workload results closely match the actual workload owing to the sophisti-
cation of the ARIMA model. Based on this predicted workload, the VM energy con-
sumption is predicted using the remaining models, as previously discussed, within the 
proposed framework (see Section 3.3). Figure 5b shows the predicted VM energy con-
sumption results, which have a small variation as compared to the actual energy con-
sumption. The reason of this variation is because there is an accumulation of error from 
the previous steps within the framework, especially when correlating the PM CPU uti-
lisation to PM power consumption. As seen on Figure 5b, the actual energy consump-
tion increases in the first part of the interval; this may be due to the thermal energy, 
which is not captured in this work, causing the machine’s fan to run faster and thus 
leading to an increase of PM energy, which is then attributed to the VM. Despite this 
accumulation of error, the proposed framework can predict the VM energy consump-
tion accurately. 

In terms of prediction accuracy, a number of metrics, as summarised in Table 1, are 
used to evaluate the predicted VM workload and energy consumption based on static  

Table 1. Prediction accuracy for a large VM based on static workload pattern 

Accuracy Metric 
 

Predicted VM 
Workload 

Predicted VM Energy 
Consumption 

Mean Error (ME) -0.11 -1.75 
Root Mean Squared Error (RMSE) 0.42 3.28 
Mean Absolute Error (MAE) 0.33 3.04 
Mean Percentage Error (MPE) -0.14 -1.89 
Mean Absolute Percentage Error (MAPE) 0.42 3.17 
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workload. As previously discussed in Section 4, the actual data of the VM workload 
and energy consumption are used as the testing data set for evaluation purposes. 

As shown in Table 1, the accuracy of the predicted VM workload is very high as its 
metrics‘ values are close to zero. The predicted VM energy consumption is less accurate 
as compared with the predicted VM workload, but still achieves a good prediction 
accuracy, with -1.89 of MPE. The reason of the predicted VM energy consumption 
being less accurate than the predicted workload when compared to the actual data is 
due to the accumulated error when correlating this VM workload to physical resources. 

In terms of prediction based on the historical periodic workload pattern, Figure 6a 
shows the results of the predicted versus the actual VM workload. Figure 6b shows the 
results of the predicted versus the actual VM energy consumption over a period of time.  

Fig. 6.    Prediction results for a large VM based on periodic workload pattern. (a) On the left: 
results of workload prediction. (b) On the right: results of energy prediction. 

Despite the periodic utilisation peaks, the predicted VM workload results are closely 
matched with the actual results, which reflect the capability of the ARIMA model to 
capture the historical seasonal trend and give a very accurate prediction accordingly. 
The proposed framework is also capable of predicting the energy consumption of the 
VM with only a small variation as compared to the actual. As shown in Figure 6b, the 
actual VM energy consumption in the middle of the interval has a small peak, which 
was not followed by the predicted VM energy consumption. This is again can be due 
to the thermal energy which is not considered in the proposed framework. 

Table 2. Prediction accuracy for a large VM based on periodic workload pattern 

Accuracy Metric 
 

Predicted VM Workload Predicted VM Energy 
Consumption 

ME -0.02 -3.04 
RMSE 1.51 5.76 
MAE 0.81 4.61 
MPE 2.58 -4.47 
MAPE 5.30 6.43 
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For evaluating the accuracy of the predicted VM workload and energy consumption 

based on periodic workload, different accuracy metrics are used, as shown in Table 2. 
Despite the high variation of the workload utilisation in the periodic pattern, the 

accuracy metrics, as shown in Table 2, indicate that the predicted VM workload 
achieves a good accuracy, with 2.58 of MPE. As previously discussed, the accumulated 
error when correlating the predicted VM workload to the physical resources in order to 
get the energy affects the accuracy of the predicted VM energy consumption. Therefore, 
the predicted VM energy consumption is less accurate as compared with the predicted 
VM workload, but still achieves a good prediction accuracy, with -4.47 of MPE. 

6 Conclusion and Future Work 

This paper has presented and evaluated a new energy-aware profiling model that ena-
bles a fair attribution of a PM’s energy consumption to homogeneous and heterogene-
ous VMs based on their utilisation and size, which reflect the physical resource usage 
by each VM. Also, it has proposed an energy-aware prediction framework to forecast 
the energy consumption of the VM prior to service deployment. A number of direct 
experiments were conducted on the Leeds Cloud testbed to evaluate the capability of 
the energy prediction. Overall, the results show that the proposed energy-aware predic-
tion framework is capable of forecasting the energy consumption for the VM with a 
good prediction accuracy for static and periodic Cloud workload patterns. 

The application of the proposed work is providing energy-awareness which can be 
used and incorporated by other reactive and proactive management tools to make en-
hanced energy-aware decisions and efficiently manage the Cloud resources, leading 
towards a reduction of energy consumption, and therefore lowering the cost of OPEX 
for Cloud providers and having less impact on the environment. 

In future work, we aim to facilitate the proposed prediction framework and make an 
online modeller on the Leeds testbed to make the prediction process dynamic. Also, we 
will consider the scalability aspects with different prediction scenarios to further show 
the capability of the proposed work, like predicting the energy usage for a number of 
VMs to be run on a single or multiple PMs already hosting other running VMs, and 
predicting the energy usage for these VMs to run all together. Further, we aim to con-
sider the thermal energy and its impact on the energy consumption. With the evolving 
technologies of containers, further work will investigate the applicability of using this 
research in that context and consider attributing the system’s energy consumption to 
container instances instead of VM instances. 
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