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Abstract 

 The capacity of serially-ordered auditory-verbal short-term memory (AVSTM) is 

sensitive to the timing of the material to be stored, and both temporal processing and AVSTM 

capacity are implicated in the development of language.  We developed a novel “rehearsal-

probe” task to investigate the relationship between temporal precision and the capacity to 

remember serial order. Participants listened to a sub-span sequence of spoken digits and 

silently rehearsed the items and their timing during an unfilled retention interval. After an 

unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An 

initial experiment showed cyclic distributions of item responses over time, with peaks 

preserving serial order and broad, overlapping tails. The spread of the response distributions 

increased with additional memory load and correlated negatively with participants’ auditory 

digit spans. A second study replicated the negative correlation and demonstrated its 

specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. 

The results are consistent with the idea that a common resource underpins both the temporal 

precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for 

investigating links between temporal processing and AVSTM capacity in the context of 

speech and language abilities. 

[Words: 198] 
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Introduction 

Auditory-verbal short-term memory (AVSTM) is related to a range of speech, language 

and cognitive skills including vocabulary development (Baddeley, Gathercole, & Papagno, 

1998; Leclercq & Majerus, 2010), word learning (Majerus, Poncelet, Elsen, & van der 

Linden, 2006; Service, Maury, & Luotoniemi, 2007), reading (Anvari, Trainor, Woodside, & 

Levy, 2002; Martinez Perez, Majerus, & Poncelet, 2012), verbal reasoning (Kane et al., 2004) 

and verbal IQ (Cantor, Engle, & Hamilton, 1991).  AVSTM is sensitive to phonemic 

similarity, word length and articulatory suppression in ways that suggest it operates as a 

“phonological loop”, a serially organised speech input-output system comprising a 

phonological buffer store that loses information rapidly but can be refreshed by subvocal 

rehearsal (see Baddeley, 2007 for an overview). However, the mechanisms of representation 

within the phonological loop, and specifically representation of temporal and serial 

information, are much less clear. A deeper understanding of these mechanisms is vital 

because serial order is not just a byproduct of AVSTM, but a defining characteristic, essential 

to its function.  

Accordingly the capacity of AVSTM is typically measured using immediate serial recall 

(ISR) tasks, where an arbitrary sequence of spoken items must be remembered in the correct 

order. Span is the limit on the number of items beyond which accurate serial recall is the 

exception rather than the rule. For familiar items such as digits, span is around 7 items and 

reflects principally memory for serial order. Thus, order errors predominate when span is 

exceeded (Aaronson, 1968) and their distribution reflects ordinal distance within the 

sequence, with migrations to adjacent positions the most frequent (Bjork & Healy, 1974). 

Order errors are highly sensitive to temporal characteristics of spoken sequences such as their 

rhythmic structure (Frankish, 1985; Hartley, Hurlstone, & Hitch, 2016; Hitch, Burgess, 
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Towse, & Culpin, 1996; Ryan, 1969a, 1969b). These results indicate that the capacity-

defining limits of memory for serial order should not be considered independently of timing.  

However, although links between AVSTM for serial order and temporal properties (speech 

rate, duration, rhythm) of verbal materials have been well studied, a limitation of previous 

empirical studies is that performance is typically measured in terms of memory for item 

order, not item timing. Thus it is not clear to what extent the precision of an underlying 

temporal representation is subjected to the same capacity limitations that determine accurate 

maintenance of serial order.  

This issue has some significance for current debates surrounding the role of auditory 

temporal processing in more general speech and language abilities in children and adults, 

where one prominent claim is that variability in processing temporal information is predictive 

of phonological development and skills (Goswami, 2011; Tierney & Kraus, 2014). This view 

is supported by evidence showing that temporal variability in auditory input processing is 

linked to speech and language abilities in typical and atypical development (Benasich & 

Tallal, 2002; Grube, Cooper, & Griffiths, 2013; Thomson & Goswami, 2008; Wolff, Michel, 

& Ovrut, 1990; Wolff, 2002; Woodruff Carr, White-Schwoch, Tierney, Strait, & Kraus, 

2014). In addition, both children and adults with atypical language development show 

characteristic deficits in AVSTM for serial order (Corkin, 1974; Martinez Perez, Majerus, 

Mahot, & Poncelet, 2012; Martinez Perez, Majerus, & Poncelet, 2013), and individual 

differences in the variability of rhythmic tapping are related to AVSTM (digit span) in typical 

adults (Saito, 2001). The relationships among variability in auditory temporal processing, 

serial order AVSTM and speech and language skills could be explained under the assumption 

that memory for serial order relies on the accurate perception and stable representation of 

auditory timing. 
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Indeed, some computational models of short-term memory propose mechanisms whereby 

serial order information is derived from aspects of timing (Brown, Preece, & Hulme, 2000; 

Burgess & Hitch, 1999; Hartley & Houghton, 1996; Hartley et al., 2016). In these models, 

each item is associated with the state of a temporally-sensitive context signal at encoding. 

When this signal is replayed at retrieval, a competitive queuing mechanism is proposed in 

which the items are reactivated by the signal in parallel, and the item with the highest 

activation is selected for retrieval and then supressed. Other models use the same competitive 

queuing system but propose a positional rather than time-based mechanism to encode item 

order, where the state of the context signal changes in response to each item (irrespective of 

the inter-item interval), and the sequence timing is therefore not retained (see Hurlstone, 

Hitch, & Baddeley, 2014 for a review of competitive queuing and Macken, Taylor, & Jones, 

2015 for an example of an account that does not use this mechanism). In both types of 

competitive queuing models, patterns of recall and order errors are well explained by noise 

introduced in the item activation levels when the context signal is replayed. Items that have 

been encoded with more similar contexts are more likely to be confused with one another at 

retrieval, and items with fewer contextual competitors (e.g. the first and last items) are more 

likely to be retrieved correctly. 

One reason for the continued existence of models with both temporal and positional 

coding systems is that, empirically, the extent to which ISR depends on accurate memory for 

sequence timing is not well understood.  It could be that ISR depends only on a coarse-

grained representation of sequence timing sufficient to discriminate serial order, with no need 

for greater precision. Alternatively, a fine-grained representation of sequence timing might 

impact the ability to recall items in the correct order – this type of account might provide a 

more parsimonious explanation for effects linking timing to memory capacity and to speech 

and language. 
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While direct evidence on the temporal precision of AVSTM is lacking, previous work has 

begun to examine the relationship between STM for sequence order and timing. For example, 

Farrell and McLaughlin (2007) presented irregularly-timed sequences and compared post-

cued recognition memory for their serial order or temporal rhythm. Patterns of performance 

differed between the two recognition tasks, suggesting a possible dissociation between 

ordinal and temporal information in STM. Although Farrell (2008) found striking similarities 

when he went on to compare the recall of rhythm and order, he interpreted the differences as 

continuing to question the notion of a single timing signal driving memory for serial order. 

However, one problem in interpreting differences between tasks is that they may differ in 

unintended ways, highlighting the value of seeking independent converging evidence. In the 

present studies we examined an alternative approach that involves measuring temporal 

precision in the covert serial recall of isochronous sequences.   

Recent discussions of the nature of capacity limitations in the domain of visuo-spatial 

STM raise issues that may be equally applicable to AVSTM.  In visuo-spatial STM, the 

questions concern whether items are represented with fixed or variable precision, and 

whether or not limited resources can be dynamically allocated to precision. Broadly speaking, 

theoretical accounts of visual memory capacity can be categorised as fixed slot or dynamic 

resource models.  Fixed slot models (e.g. Luck & Vogel, 1997) assume that a limited number 

of items can be remembered with a given precision, and that no information is retained for 

additional items beyond the number of slots.  By contrast, resource models (e.g. Ma, Husain, 

& Bays, 2014) propose that a shared pool of resources can be used to represent items of any 

number or complexity, such that the precision of the item representations decreases as the 

overall cognitive load increases.  Other models are more nuanced, involving combinations of 

fixed slots and dynamic resource allocation (see e.g. Zhang & Luck, 2008). The tasks used to 

investigate these issues measure the precision with which continuous features such as 
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location, colour and orientation can be remembered as a function of variables such as 

cognitive load (Wilken & Ma, 2004).  

Although little work has been done to determine whether there is an analogous issue in 

AVSTM, it has been suggested that the flexible resource allocation model applies to non-

verbal auditory memory (Joseph, Teki, Kumar, Husain, & Griffiths, 2016). A recent study by 

Kumar et al. (2013) found that the precision of immediate memory for the pitch of auditory 

tones decreased with increasing memory load (number of tones in the sequence). Similarly, 

Teki and Griffiths found that precision in the reproduction of auditory temporal intervals 

decreased with increased memory load (number of durations in the sequence). However, it is 

not clear whether these results generalise to temporal precision in memory for sequences of 

spoken words. In the present study, our initial aim was to test whether a similar trade-off 

exists between memory load and the temporal precision of sequence representations in 

AVSTM. If so this would suggest flexible allocation of limited resources to temporal 

precision in AVSTM broadly analogous to precision in visuo-spatial STM (Ma et al., 2014). 

To achieve this aim we first had to devise a method of measuring temporal precision for 

sequences in STM.  The method we developed was somewhat analogous to auditory-motor 

synchronization-continuation tasks (Thomson & Goswami, 2008) where an auditory-motor 

‘entrainment’ period is followed by unpaced tapping in which the participant attempts to 

maintain the same timing. Timing variability in these tasks is measured by the standard 

deviation of the inter-tap intervals.  However, unlike tapping tasks, which typically assess 

synchronization to tones, our task was designed to assess the temporal precision of rehearsing 

novel sequences in AVSTM where the entrainment stimulus is a series of spoken words.  

Another important difference from the finger-tapping paradigm is that our task does not 

involve overt behaviour and requires instead subvocal rehearsal of the input sequence.  Overt 

actions such as finger-tapping or spoken repetition would provide continuous sensorimotor 
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feedback about timing that might influence participants’ performance. Furthermore, overt 

speech may differ qualitatively from inner speech, for instance in the necessity for discrete 

item selection and/or the abstractness of item representations (Oppenheim & Dell, 2008, 

2010). 

In our novel “rehearsal-probe” task1, a listener is presented with an auditory-verbal 

sequence and instructed to subvocally rehearse it exactly as presented, that is, with accurate 

item and inter-item timing in addition to item and order accuracy. The listener continues 

subvocalising the sequence in this manner until hearing a probe consisting of a brief tone and 

is instructed to respond with the item being rehearsed when the probe was presented.  By 

presenting the probe after variable and unpredictable delays, the response data provide a 

picture of the time-course of the listener’s sequence reproduction.  In particular, by 

cumulating responses after the same probe delay across multiple trials, we are able to 

quantify the temporal variability of responses. We use short, subspan sequences presented 

twice over before the start of rehearsal in order to eliminate or at least reduce serial order 

errors and allow a focus on the accuracy of timing. However, we note that, in our view, a 

serial order error is necessarily an error of timing in which the temporal imprecision is big 

enough to change the item’s serial position. Thus, rather than treating coarse-grain serial and 

fine-grain temporal errors as distinct phenomena with distinct causes, we investigate the more 

parsimonious possibility that they have a common origin.  In Experiment 1 we show that 

temporal precision decreases when AVSTM is loaded with irrelevant items, and is positively 

correlated with AVSTM span. Experiment 2 goes on to show that the relationship between 

temporal precision and span replicates with a larger sample and remains when individual 

differences in non-verbal IQ and visuo-spatial STM are controlled. These findings are 

consistent with the idea that fine-grained sequence timing and serial order depend on 

common limited resources that are specific to AVSTM. 
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Experiment 1 

Our first experiment had two aims, one of which was to establish the rehearsal-probe task 

as a useful method for assessing the temporal precision of regularly-paced subvocal rehearsal. 

If this task provides a valid measure of subvocal rehearsal timing, we would expect to see 

systematic variation in the frequency of responding with each item in the sequence as a 

function of the delay of the probe. Thus, the frequency of responding with any particular item 

would peak around the time-points when it would be expected to be rehearsed (based on the 

presented timing) and would decline with increasing temporal interval either side. The widths 

of these frequency distributions would provide an empirical index of the temporal precision 

of the rehearsal sequences. 

The second aim was to explore the hypothesis that the temporal precision of subvocal 

rehearsal is constrained by the resources that underpin AVSTM storage capacity. To achieve 

this we made use of the STM preload paradigm (Baddeley & Hitch, 1974; Cocchini, Logie, 

Della Sala, MacPherson, & Baddeley, 2002; FitzGerald & Broadbent, 1985; Halford, 

Maybery, O’Hare, & Grant, 1994; Morris, Gick, & Craik, 1988), and required participants to 

hold irrelevant letters in AVSTM while performing the rehearsal-probe task.  The logic of the 

preload paradigm holds that, if the two tasks depend on the same set of limited resources, 

then increasing the load in the first (preload) task will result in fewer resources available, and 

consequently a functional increase in memory load, for the second task.  In the present study, 

the temporal precision of rehearsal in the probe task is expected to decrease when the number 

of preload items is increased. If, on the other hand, temporal precision is invariant to memory 

load, temporal precision should remain the same despite a change in the size of the letter 

preload list.  
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We also took the opportunity to seek converging evidence for a dynamic trade-off 

between temporal precision and memory load by examining the relationship between 

individual differences in AVSTM span and temporal precision. We assume that individuals 

with lower AVSTM spans have fewer of the resources that underpin storage capacity than 

high-span individuals, and will therefore use a higher proportion of these resources to 

maintain and rehearse a sub-span sequence of any given length.  Thus, the memory load 

experienced when performing the rehearsal-probe task with a fixed number of items will be 

higher for low-span than high-span individuals.  If the temporal precision of rehearsing a sub-

span sequence is limited by the same resources that limit span, then the temporal variability 

of rehearsal should correlate negatively with digit span. 

Method 

Participants    

Participants were 25 undergraduate volunteers from the University of York (18 women, 

mean age 19.50 years, range 18 to 22 years).  Participants were eligible if they spoke English 

as a first language and did not report a diagnosed hearing problem or developmental language 

disorder (e.g. dyslexia, SLI). A small cash reward or course credit hours was given as 

compensation.   

Materials 

The digits 0 through 9 were recorded monaurally at 44100 Hz in a sound-attenuated booth 

by a female native English speaker.  Post-recording processing of the sound files was carried 

out using Audacity (Mazzoni & Dannenburg, 2000) and Praat (Boersma & Weenink, 1992) 

software.  Each digit recording was adjusted to a duration of 400 ms, matched for maximum 

amplitude, and all pitch contours were aligned and reduced by 50%.  Finally, the acoustic 
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onsets of the digits were adjusted so that their p-centres would occur at regular intervals 

during sequence presentation (see Supplementary Material for more information about pitch 

modification and p-centre adjustment). The letter stimuli were recorded and processed in the 

same manner as the digit stimuli, with the exception that they did not undergo pitch contour 

manipulation or p-centre adjustment (see Supplementary Material for details).  The probe 

stimulus was a 150 ms 440 Hz steady-state tone with 15 ms onset and offset ramps.  Stimulus 

sequences were presented via an E-Prime program (Psychology Software Tools, Inc., 

Pittsburgh, PA). 

Design 

 The experiment had a within-subjects design in which all participants completed 

alternating blocks of high and low memory load trials. A set of 8 probe delays was distributed 

randomly within each block.  Probe times were selected such that, given perfect rehearsal 

timing, they would occur during the second rehearsal cycle, at either the beginning or end of 

each of the four 400 ms items (i.e. excluding the 100 ms inter-item silences). This resulted in 

the following set of times: 2067, 2333, 2567, 2833, 3067, 3333, 3567, and 3833 (in ms from 

the offset of the last digit in the presented sequence to the onset of the probe tone). The 

dependent variables were the temporal variability of rehearsal (computed as the circular 

standard deviation of response distributions, see Results section), and digit span. 

Procedure 

Participants were tested individually in a quiet room in a single session with digit span 

data collected prior to the rehearsal-probe task.  

In the digit span task, participants heard random sequences of digits presented at one item 

per second, starting with a list length of 3 and increasing up to 12. The 3-10 digit sequences 
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never contained a repeated item, while the 11- and 12-digit sequences contained 1 or 2 non-

adjacent item repetitions, respectively. Stimuli were the same as in the rehearsal-probe task 

and spoken immediate serial recall was recorded by the experimenter.  There were three trials 

at each list length, and the task continued until the participant responded incorrectly to all 

three sequences of a given length or completed all three at length 12.  Digit span was scored 

as the average list length of the last three correct trials.  For example, if a participant 

responded correctly to all three 5-digit lists, one 6-digit list and no 7-digit lists, then the score 

was calculated as (6 + 5 + 5)/3 = 5.33.   

In the rehearsal-probe task participants were told that, in each trial, they would hear a 

sequence of 4 digits repeated twice in succession (this was in order to provide rhythmic 

continuity between the end and beginning digits). They were told to continue silently 

rehearsing the list in the same order and at the same pace as during presentation until they 

heard a brief tone, at which point they were to respond with the digit they were currently 

rehearsing by pressing the corresponding number key on the keyboard. They were asked not 

to speak aloud or move any part of their body while rehearsing and were monitored by the 

experimenter throughout.   

Before starting the rehearsal-probe task, the experimenter demonstrated three trials with 

the rehearsal phase spoken aloud.  After hearing the tone, the experimenter explained, e.g., “I 

was saying the number 7 when I heard the tone, so I’m responding with number 7” before 

pressing the ‘7’ key on the computer keyboard.  Participants then completed six practice 

trials; three with overt rehearsal followed by three with silent rehearsal.  The overt rehearsal 

trials allowed the experimenter to verify that the participant understood the task and was able 

to correctly identify the digit being articulated when they heard the probe.  If the participant 

responded incorrectly during the overt practice trials the experimenter reviewed the 

instructions and the trials were repeated.  No feedback was given about participants’ overt 
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rehearsal timing, except in the case of serious deviations from the task instructions, such as 

rehearsing the digits as quickly as possible, or stopping after the first rehearsal list cycle.  In 

these cases, the experimenter clarified the instructions and the practice trials were repeated. 

After practicing the rehearsal-probe task alone, it was combined with a memory preload. 

Each trial began with a quasi-random sequence of 2 or 6 auditory letters and ended with their 

serial recall via corresponding key presses on the computer keyboard. The rehearsal-probe 

task was sandwiched in between, with a 1-second silent interval separating the end of the 

letter sequence presentation and start of the rehearsal task. The letters and digits were 

presented at the same isochronous rate of two items per second.  Figure 1 illustrates the 

procedure. After a digit response was made to the rehearsal probe, letter recall began with a 

visual cue (“Letters?”) and ended with a key press (Enter).  There was no time limit for 

responses to the rehearsal probe or the letter recall cue.  Participants were told they had to 

remember both the letters and the numbers accurately in each trial, and were asked not to 

guess. 

Figure 1 here 

Participants were informed about the length of the letter sequences at the start of each 

block of trials and completed the low load condition in the first of the alternating blocks. 

There were 16 trials in each block (two for each of eight probe times) and three blocks per 

condition, resulting in six trials for each probe time per condition.  Probe times were selected 

randomly within blocks and blocks were separated by self-paced breaks, with participants 

encouraged to rest between blocks. 

Results 
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One participant responded with the item from the same serial position across all probe 

times, so their data were excluded from further analysis.  For the remaining 24 participants, 

performance on the rehearsal-probe task was only examined on trials where correct recall of 

the preload (letter) list exceeded a threshold.  This was to ensure the validity of the memory 

load manipulation.  The criteria were recall of both letters in the low load condition and of at 

least three letters in the high load condition, in both cases irrespective of order. Applying 

these thresholds excluded 9.0% and 12.9% of trials in the low and high memory load 

conditions respectively, and ensured a minimum difference of at least one stored letter 

between them.  After removing trials with item errors in response to the rehearsal probe 

(0.3% and 0.9% in the low and high load conditions respectively), the proportions of 

responses corresponding to the item in each serial position were calculated at each probe 

interval.  Figure 2 shows the means and standard errors for the proportions of responses for 

each item and probe time. As expected, the frequency of responding with each of the 4 items 

peaked near the times corresponding to perfect performance and declined on either side.  The 

considerable overlap among the curves shows that the consistency of responses within probe 

times was not perfect, but nor were the responses random.  The distributions were cyclical, 

most clearly for the first and last items. Thus, as probe delay increased, the frequency of first 

item responses rose, then declined and finally began to rise again, while over the same period 

the frequency of final item responses declined and then rose. 

Figure 2 here 

Because of the cyclical nature of the response distributions, circular standard deviations 

(CSDs) were used to measure their temporal variability. CSD is similar to linear standard 

deviation, but measures dispersion around the mean in terms of phase. To calculate phases, 

the duration of the rehearsal cycle was represented by the circumference of a circle, with the 

beginning and end of the cycle represented by the same point (0 or 2π radians). The 8 probe 
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delays were then mapped on to the circumference, converted to phase angles and the 

frequencies of responses at each phase angle used to calculate the CSD for each of the 4 

distributions.  The calculation was performed using MATLAB (The MathWorks Inc., 2010) 

and the MATLAB CircStats toolbox (Berens, 2009).  First, a mean resultant vector for each 

distribution was computed by averaging unit vectors corresponding to each data point (i.e. the 

angular probe time corresponding to a single response).  The circular variance was then 

computed as one minus the resultant vector length, which ranged from 0 (no variance) to 1 

(maximum dispersion).  Finally, the CSD was estimated as the square root of two times the 

circular variance2. 

Table 1 shows the CSDs for the 1st, 2nd, 3rd and 4th items in the sequence and the mean 

CSD over all items as a function of memory load. Overall, CSDs were larger in the high load 

condition and were similar for all 4 items in the sequence with the possible exception of a 

slight reduction for the last item (see also Figure 2). A two-way (load x serial position) 

repeated-measures ANOVA on CSDs confirmed a statistically significant effect of load, 

F(1,21) = 10.28, MSE = 0.03, p = .004, no effect of serial position, F(3,63) = 1.04, MSE = 

0.04, p = .383, and no interaction, F(3,63) = 2.13, MSE = 0.02, p = .105. 

Table 1 here 

Examination of individual differences in performing the rehearsal-probe task revealed a 

statistically significant negative correlation between individual mean CSDs averaged over the 

two load conditions and auditory digit span scores, r = -.59, p = .003.  Figure 3 shows the 

scatterplot. 

Figure 3 here 

Discussion 
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We begin by considering the utility of the rehearsal-probe task as a tool for analysing the 

time-course and temporal precision of subvocal rehearsal. In broad terms it is clear that 

performance exhibits a number of relevant features. Thus (a) the probability of responding 

with an item from each of the 4 positions varied cyclically with the delay of the probe, (b) the 

peaks of the distributions occurred close to (but consistently slightly after) the times 

corresponding to perfectly timed subvocal rehearsal, (c) the distributions had broadly similar 

shapes, and finally (d) the width of the distributions, as measured by the CSD, was sensitive 

to the experimental manipulation of memory load and showed systematic individual 

differences. Lags in the peaks of the distributions, while not relevant to the response 

dispersion measure, might reflect a separable source of temporal deviation in this task.  For 

instance, these lags could indicate a static delay at the start of the rehearsal period or in the 

process of detecting the probe and selecting an item for response.  

As regards theoretical interpretation, the twin observations that (a) the timing of rehearsal 

was significantly more variable with a high memory preload and (b) participants with lower 

auditory digit spans tended to rehearse with less temporal precision provide converging 

evidence for a resource-based account of AVSTM in which shared resources limit both 

temporal precision and storage capacity.  

Thus, as an interim summary, the pattern of performance in the rehearsal-probe task is 

broadly consistent with covert serial recall, and CSD appears to be a robust measure of its 

temporal precision and gives results consistent with the hypothesis that common resources 

constrain both span and temporal precision in AVSTM. 

Experiment 2 

Although Experiment 1 provided evidence for a correlation between the temporal 

precision of subvocal rehearsal and digit span, the sample size and the absence of control 
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variables limit the strength of the conclusion drawn. We therefore conducted a second study 

with the aim of replicating the correlation using a larger sample and ruling out the possibility 

that it is mediated by general ability or non-verbal STM. To this end we included measures of 

intelligence and visuo-spatial STM in addition to digit span.  

Intelligence is highly correlated with executive attentional control in working memory 

(Conway, Kane, & Engle, 2003; Engle, Tuholski, Laughlin, & Conway, 1999) and has been 

shown to relate to variability in motor-timing tasks (Madison, Forsman, Blom, Karabanov, & 

Ullén, 2009), even when motivation is manipulated (Ullén, Söderlund, Kääriä, & Madison, 

2012). Because we were interested in the specificity of the relationship between auditory 

temporal precision and memory for serial order, it was important to control for any aspect of 

this association that could be attributable to more general processes. By measuring individual 

differences in non-verbal IQ we aimed to control for shared variance between performance 

on the digit span and rehearsal probe tasks that can be attributed to more general individual 

differences factors such as attention, motivation, executive control and motor-timing abilities.  

We also considered the possibility that domain-general STM abilities might account for 

some of the relationship between the digit span and rehearsal probe tasks, even after 

controlling for differences in non-verbal IQ. To this end we used a visuo-spatial STM task as 

it requires modality-independent STM processes shared with the digit span and rehearsal 

probe tasks, such as attentional control (Cowan et al., 2011; Majerus et al., 2010, 2016), and 

does not overlap with the critical elements of the two latter tasks, viz. STM for serial order 

and auditory temporal processing. Visuo-spatial STM reflects a separate system from 

AVSTM (see e.g. Baddeley, 1986; Cocchini et al., 2002; Smith & Jonides, 1997) but as there 

is some evidence for modality-independent serial ordering processes (Hurlstone et al., 2014; 

Majerus et al., 2010), it was important to ensure that individual differences in serial order 

were not captured by the domain-general STM control measure. For this reason we assessed 
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visuo-spatial STM using the Visual Pattern Test (VPT; Della Sala, Gray, Baddeley, 

Allamano, & Wilson, 1999; Wilson, Scott, & Power, 1987) which measures span for 

simultaneously presented visuo-spatial patterns. Unlike auditory-verbal digit span, and 

alternative tests of visuo-spatial STM such as Corsi Blocks (Corsi, 1972), the VPT involves 

no element of serial ordering.  

 In contrast to Experiment 1, there was no within-participant load manipulation, as the 

aim was only to replicate and extend the between-participant results. We also used a longer 

list of 6 rather than 4 digits in the rehearsal-probe task in an attempt to increase its sensitivity 

to individual differences in AVSTM capacity, while still ensuring that participants were 

rehearsing sub-span sequences. We planned to use regression analysis to determine the extent 

to which variance shared between auditory digit span and the variability of rehearsal timing 

can be accounted for by individual differences in IQ and visuo-spatial STM.  We expected to 

replicate the negative correlation between auditory digit span and timing variability during 

rehearsal. A further prediction was that regression analysis would show that temporal 

variability predicts digit span scores even after controlling for any variance accounted for by 

non-verbal IQ and visuo-spatial STM. 

Method 

Participants 

Participants were 40 undergraduate and postgraduate volunteers (29 female, mean age 

19.8 years, range 18 to 24 years) from the University of York.  The compensation, eligibility 

criteria, ethical approval and informed consent details were the same as those described 

earlier. 

Design 
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All participants completed the rehearsal-probe, digit span and visual pattern span tasks 

together with a measure of nonverbal IQ.  

Materials 

The stimuli for the rehearsal-probe and digit span tasks were the same as in Experiment 1.  

Non-verbal IQ was measured using the Matrix Reasoning subset of the WASI battery 

(Wechsler, 1999), and visual STM was measured using the Visual Patterns Test (Della Sala et 

al., 1999; Wilson et al., 1987). 

Procedure 

Digit span was administered first, followed by the rehearsal-probe task, WASI Matrix 

Reasoning, and the VPT. The entire session lasted between 50 and 60 minutes. Apart from 

the differences described here, the procedures for administering and scoring the digit span 

and rehearsal-probe tasks were the same as in Experiment 1.   

Unlike Experiment 1, here we administered the rehearsal-probe task on its own, without 

any preload (i.e. letter recall) task. Sequences for the rehearsal-probe task consisted of 6 

digits selected at random from the set 0-9 without replacement.  Figure 4 shows the structure 

of a single trial.  Probe times were selected randomly on each trial from a set of 14, 12 of 

which were such that, if the sequence were perfectly replicated during the rehearsal delay, 

probes would occur either during the beginning (75 ms after onset) or end (325 ms after 

onset) of one of the six digits during the second rehearsal list cycle.  The two additional probe 

times were added to extend the probe period beyond the second rehearsal cycle in order to 

avoid participants’ anticipation of the probes.  These probe times were aligned to occur at the 

end of the first rehearsal cycle and the beginning of the third cycle.  The resulting 14 probe 

times were evenly spaced, occurring every 250 ms from 2825 to 6075 ms after the end of 
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sequence presentation (see Supplementary Material). Each probe time occurred 3 times per 

block of 42 trials and participants completed a total of 126 trials (9 trials x 14 probe times) 

after demonstration and practice as described in the Experiment 1 Procedure. 

Figure 4 here 

The WASI Matrix Reasoning task consists of a series of 35 abstract visual matrices with 

one blank (missing) square. Participants were asked to indicate which of five image options 

below the matrix would complete the pattern if it were inserted in the location of the missing 

square. Verbal responses were recorded by the experimenter.  The 35 items were ordered in 

increasing difficulty. In accordance with the test manual, participants started with the 7th 

matrix and worked onwards until they met the stopping criterion (either four consecutive 

wrong answers, or four out of five consecutive wrong answers), or reached the end of the test.  

The dependent measure was the average of the index numbers of the three most complex 

matrices that were responded to correctly (i.e. if the last three correct responses were to 

matrices 20, 23, and 24, then the score was 22.33).  The maximum possible score was 34.  

In the VPT, participants were shown patterns of filled and empty squares within grids of 

increasing size, and were asked to recall the pattern by filling in a blank grid after a short 

delay (example stimuli and more details are provided in the Supplementary Material).  

Participants completed three trials per grid size, starting with the smallest (grid 1, 4 squares) 

and continuing until all three trials at a given grid size were incorrect or all trials for the 

largest size (grid 14, 30 squares) were completed.  The dependent measure was the average 

grid number of the three largest grids to which the participant responded correctly.  There 

were 14 grid sizes in total, so the maximum possible score was 14. 

Results 
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Rehearsal-probe task. After removing the trials where no response was given or an extra-

list response was given (0.73% and 0.97% of the data, respectively), proportions of responses 

for items in each serial position were calculated across probe times. Figure 5 summarises 

performance in the rehearsal-probe task in terms of the proportions of responses for each 

serial position across probe times, averaged over all participants.  The main features are 

broadly similar to those shown previously for 4-item sequences, with the exception of a 

stronger tendency for the response distributions to become wider and flatter over time. As 

before, the cyclic nature of the distributions is clearly shown, with the frequency of first item 

responses rising during the final item and that of final item responses declining during the 

first item. 

Figure 5 here 

A one-way ANOVA on CSDs revealed that the serial position effect was statistically 

significant, F(5,195) = 14.68, MSE = 0.12, p < .001. Pairwise comparisons with Bonferroni 

correction showed that the mean CSD was significantly lower for position 1 compared to 

positions 2-4 (all ps < .01) and for position 6 compared to positions 2-5 (all ps < .05).  

Table 2 here 

 Individual differences analyses. Descriptive data for all measures are presented in 

Table 3.  

Table 3 here 

Relationships between the measures were initially examined using two-tailed Pearson’s r 

correlations (see Table 4).  These revealed a statistically significant negative correlation 

between mean CSD and digit span (see Figure 6) and a statistically significant albeit weaker 
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positive correlation between VPT and digit span.  Non-verbal IQ correlated negatively and 

non-significantly with mean CSD and positively but non-significantly with VPT. 

Table 4 here 

Prior to regression analysis the data were examined and found to have met the 

assumptions of independence of errors (Durbin-Watson = 1.83), homoscedasticity and no 

multicollinearity (maximum VIF = 1.16, minimum tolerance = 0.86).  A multiple linear 

regression analysis was conducted to determine the amount of variance in digit span scores 

uniquely accounted for by each variable.  The results are shown in Table 4. 

Entry into the regression was forced, with WASI MR entered first, VPT entered second 

and mean CSD entered third.  The rationale was that non-verbal intelligence and non-verbal 

STM should be controlled for in order to make a more conservative estimate of the amount of 

variance in verbal STM capacity accounted for by individual differences in mean CSD.  

There were no cases with undue influence over the model parameters (all Cook’s Distance 

values < 1). The outcome of this analysis was very clear in showing that only CSD emerged 

as a statistically significant predictor of auditory digit span. 

Table 5 here 

Discussion 

We begin by noting the robustness of the distinctive pattern of cyclical response 

distributions over elapsed time in the rehearsal-probe task, with those for 6 items looking 

remarkably similar to those for 4 items in Experiment 1. While timing precision appears to be 

more variable here than in Experiment 1, this is to be expected given the longer sequence 

length (6 digits rather than 4) and the longer probe delays. Unlike in Experiment 1, here there 

was a significant serial position effect. This looks to be an effect of time rather than position, 
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given that response variability for the 6th item is noticeably greater at later compared to 

earlier probe times (see Figure 5). We note also the robustness of individual differences in 

performance in the rehearsal-probe task in that the ability to recall auditory-verbal sequences 

in the correct serial order, as measured by digit span, was once again strongly related to the 

temporal precision of rehearsing sub-span sequences.  The present results went further by 

showing that temporal precision was a statistically significant predictor of variation in digit 

span scores even after controlling for individual differences in nonverbal IQ and visuo-spatial 

STM.  Thus it seems that there is not only a close but a highly specific relationship between 

the ability to time item rehearsal precisely when operating below span and the capacity to 

recall such items in the correct order.  

General Discussion 

We set out to establish the rehearsal-probe task as a method for studying the time-course 

of subvocal rehearsal in AVSTM, and to explore the hypothesis that temporal precision in 

AVSTM is constrained by the resources that also limit its storage capacity. In two 

experiments we observed lawful patterns of data; response proportions for each item rose and 

fell over the rehearsal delay times, and peaked in the expected serial order.  The response 

patterns proved to vary meaningfully both between individuals and in response to 

experimental manipulation of STM load.  In particular, the CSDs of responses for each item 

across probe times provide, we argue, a useful measure of the temporal variability of 

sequence representations during STM maintenance.  Overall, these experiments demonstrate 

the utility of the rehearsal-probe task for investigating the temporal precision of auditory-

verbal sequence representations without the use of overt motor execution to mark ongoing 

event timing. The responses from this task form a rich source of information about rehearsal 

timing, including not only precision but other characteristics such as the overall rate and 
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static offset (i.e. phase shift). In future research, the rehearsal-probe method may prove to be 

a useful tool for addressing questions about the temporal properties of subvocal rehearsal, for 

example in different populations, in relation to individual differences measures, or in 

response to changes in sequence stimuli and timing.  

 In Experiment 1 a preload manipulation was used to increase the load on domain-specific 

AVSTM resources while keeping all aspects of the rehearsal task (number of items, sequence 

timing, probe timing) constant. We found that increasing the storage load in AVSTM resulted 

in a decrease in the temporal precision of rehearsing a sequence of only 4 digits.  It appears 

that timing precision in AVSTM is not static within individuals, but varies in response to a 

change in load on the resources that determine the number of items that can be stored in the 

correct serial order. Our results are broadly consistent with the previous findings that 

increased memory load leads to poorer precision in recall for auditory temporal intervals 

(Teki & Griffiths, 2014) and for the pitch of tones (Kumar et al., 2013). These results have 

been used to support a dynamic resource allocation account of non-verbal auditory memory 

(Joseph et al., 2016). 

We also found that individual differences in the temporal variability of rehearsing sub-

span digit sequences were negatively correlated with the storage capacity of AVSTM as 

measured by auditory digit span.  This correlation was found in two experiments using 

different list lengths, suggesting that it reflects a reliable, general relationship. It also seems 

to be specific to AVSTM as it persists when differences in nonverbal IQ and visuo-spatial 

STM are controlled for. The correlation is important given that digit span does not demand 

precise encoding and maintenance of temporal information beyond the coarse-grained 

relative timing of digits necessary to distinguish their order. A trivial explanation would be to 

argue that CSD simply reflects the tendency to make order errors rather than temporal 

variability of the sequence representation.  However, given that the digit sequences were 
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short (span or sub-span length) and presented twice over, any errors during recall would have 

been infrequent.  Also, if the differences in response variability could be explained by order 

errors alone then there should be ceiling effects (i.e. perfect or near-perfect timing) for high-

span participants, but this was not the case. It therefore seems unlikely that span- and load-

related differences in the rehearsal-probe task response distributions merely reflect order 

errors during rehearsal.  

We interpret our data on individual differences and memory load as converging evidence 

for the view that a common pool of resources limits the precision with which temporal 

information is represented in AVSTM and the number of items that can be stored in the 

correct order. Our working hypothesis is that, in contrast with the fixed time-based storage 

capacity in the early models of the phonological loop (Baddeley, Thomson, & Buchanan, 

1975), AVSTM is a more flexible system in which resources are dynamically allocated to 

temporal precision with implications for amount stored. We note that this interpretation is 

analogous to accounts of visuo-spatial STM capacity in terms of the assignment of limited 

resources to the precision of representing dimensions such as location, colour and orientation 

(Ma et al., 2014), raising the interesting possibility that general principles may apply across 

modalities. The resources involved in AVSTM would nevertheless seem to be quite separate, 

given our evidence that they are independent of individual differences in visuo-spatial pattern 

span.  

We note however other possible ways of interpreting the relationship between temporal 

processing and AVSTM load/capacity reported here. Rather than there being a dynamic 

trade-off in resource allocation, serial order storage capacity may directly constrain temporal 

precision or vice versa. For instance, increased load on AVSTM capacity may impact the 

speed with which items can be selected and retrieved, which in turn could impact the ability 

to reproduce a sequence of items at a consistent pace3. Indeed, in isolation, our data 
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(Experiment 1) shows that manipulating memory load affects the precision of timing. 

However, consideration of earlier evidence argues against a simple unidirectional 

relationship, in that manipulating the timing of items affects memory capacity where the load 

(i.e., the total number and duration of items) is held constant (Hartley et al., 2016; Ryan, 

1969a). Thus at present it seems that the most parsimonious explanation of these reciprocal 

effects is that they depend on common resources. Further research will be needed to exclude 

more complex explanations and to further characterise both shared and dissociable 

mechanisms of timing and serial order in AVSTM. 

The present evidence of a relationship between temporal precision and overall storage 

capacity in AVSTM is relevant to the possibility of a unifying theoretical account of 

correlations between AVSTM and temporal information processing in other tasks (Grube et 

al., 2013; Saito, 2001; Tierney & Kraus, 2013) and its sensitivity to temporal variables such 

as the rhythmic structure of a sequence (Frankish, 1985; Hitch et al., 1996; Ryan, 1969a, 

1969b). One way this might be achieved is through shared mechanisms whereby serial order 

information is derived from temporal information, as in computational models in which order 

is represented by the activation of internal oscillators tuned to different frequencies in the 

input (Brown et al., 2000; Burgess & Hitch, 1999; Hartley et al., 2016). Other competitive 

queuing models explain serial order recall using purely positional codes or gradients (e.g. 

Henson, 1998; Page & Norris, 1998; but see also e.g. Hughes, Chamberland, Tremblay, & 

Jones, 2016; Macken, Taylor, & Jones, 2015), where changes in the context signal are driven 

by the presentation of a new item, irrespective of the (absolute or relative) timing between 

items. Thus in models with positional coding systems, no information about sequence timing 

is retained beyond that which discriminates order.  Without a temporally-sensitive 

mechanism for the representation of serial order, it is not clear how models in this latter 
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category could explain the reciprocal patterns of effects among sequence timing, serial order 

STM and load/capacity (Hartley et al., 2016; Hitch et al., 1996).  

More generally, our findings may shed light on the relationship between auditory-

temporal processing and language development.  In particular, some researchers have argued 

that the precision of auditory temporal processing across multiple timescales is critical for the 

development of phonological skills (Goswami, 2011; Tierney & Kraus, 2014).  Indeed, 

phonological deficits have been found to co-occur with auditory timing imprecision (e.g. 

Flaugnacco et al., 2014; Grube et al., 2013; Thomson & Goswami, 2008; Wolff, 2002) and 

reduced AVSTM capacity for serial order (e.g. Brady, Shankweiler, & Mann, 1983; Martinez 

Perez, Majerus, Mahot, et al., 2012; Martinez Perez et al., 2013; Rapala & Brady, 1990).  

While this issue remains controversial due to conflicting findings regarding the prevalence of 

temporal processing deficits in dyslexia (Papadopoulos, Georgiou, & Parrila, 2012; 

Protopapas, 2014) and alternative explanations for the co-occurrence of phonological and 

AVSTM impairments (e.g. Marshall, Snowling, & Bailey, 2001; Ramus & Szenkovits, 2008), 

our findings suggest some scope for reconciliation.  In providing empirical evidence for a 

relationship between timing precision and serial order in AVSTM, our results are consistent 

with the view that developmental links between auditory temporal processing, serial order 

STM and phonological skills reflect the coupling of auditory timing and serial order in 

phonological learning. An important task for future work will be to determine whether these 

results extend to temporal precision for non-isochronous and unpredictably-timed spoken 

word sequences, which more closely resemble the temporal characteristics of natural speech. 

In conclusion, we have shown that the rehearsal-probe task provides a robust and 

sensitive method for sampling the time-course of maintaining items in AVSTM via paced 

subvocal rehearsal.  Using this task to study the rehearsal of short sequences, we have found 

that the availability of items varies cyclically over time, with overlapping distributions that 
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preserve serial order. We have demonstrated that the CSD of these distributions provides a 

measure of the temporal precision of maintenance. Two experiments have shown further that 

the CSD increases as a function of the storage load on AVSTM and correlates negatively and 

selectively with individual differences in AVSTM span. We conclude the time-course of 

subvocal rehearsal can be measured reliably using the probe technique, and interpret the 

results as converging evidence that a common pool of resources limits both the temporal 

precision of representations in AVSTM and its overall storage capacity. We suggest that 

these resources may be key to further understanding the role of temporal information in the 

encoding of serial order in AVSTM and, more generally, the part played by temporal and 

serial representation in speech and language.  

[Words: 7,771] 
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Table 1. Mean CSDs (SEM in parentheses) for the 4 serial positions and the two memory 
load conditions in Experiment 1; 2-letter (low) and 6-letter (high) memory preload.  The 
maximum possible CSD value is 1.41, and the minimum possible CSD is 0.52 in this 
experiment. 

 Serial Position  

Load 

condition 
1 2 3 4 Mean 

Low 0.73 (0.03) 0.70 (0.03) 0.70 (0.04) 0.62 (0.05) 0.69 (0.03) 

High 0.73 (0.04) 0.76 (0.03) 0.83 (0.04) 0.76 (0.07) 0.77 (0.03) 

Mean 0.73 (0.03) 0.73 (0.02) 0.76 (0.03) 0.69 (0.05)  
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Table 2. Mean CSDs (SEM in parentheses) for the 6 serial positions in Experiment 2.  The 
maximum possible CSD value is 1.41, and the minimum possible CSD is 0.26 in this 
experiment. 

Serial Position  

1 2 3 4 5 6 Mean 

0.61 (0.03) 0.72 (0.04) 0.73 (0.04) 0.73 (0.03) 0.66 (0.03) 0.58 (0.03) 0.67 (0.03) 
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Table 3. Means, standard deviations, and range of possible scores on all measures in 
Experiment 2.  

Measure Mean SD Range of possible scores 

Mean circular standard deviation 0.67 0.19 0.26 - 1.41 

Digit span average  6.94 1.06 5.00 - 12.00† 

WASI Matrix Reasoning average  29.65 2.84 0.00 - 34.00 

Visual Patterns Test average  10.06 1.72 0.00 - 14.00 

Note: WASI = Weschler Abbreviated Scale of Intelligence; average = average of last three correct trials.  
† Digit span lowest possible score is based on the eligibility criteria of at least one correct response to a 6-digit 
trial.  One correct response at list lengths of 4, 5 and 6 (and no correct responses for 7-digit lists) results in an 
average digit span score of 5. 
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Table 4. Pearson's r correlations between measures in Experiment 2. 

Measure Mean CSD Digit span VPT 

Mean CSD 1.00   

Digit span -.59*** 1.00  

VPT  -.13 .32* 1.00 

WASI MR -.26 .07 .30 

Note: * p < .05, **p < .01, ***p < .001; CSD = circular standard deviation; WASI MR = Weschler Abbreviated 
Scale of Intelligence, Matrix Reasoning task; VPT = Visual Patterns Test. 
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Table 5. Results of multiple linear regression analysis of factors predicting the variance in 
digit span scores in Experiment 2. 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

WASI MR  .03 .06 .07 -.01 .06 .02 -.06 .05 -.17 

VPT     .20 .10 .32* .18 .08 .29* 

Mean CSD       -3.37 .74 -.59*** 

R .07 .32 .65 

R2 <.01 .10 .43 

F for ΔR2 .20 3.93 20.55*** 

Note: * p<.05, ***p<.001; WASI MR = Weschler Abbreviated Scale of Intelligence, Matrix Reasoning task; 

VPT = Visual Patterns Test; CSD = circular standard deviation. 
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Figure 1. Representation of a single trial in the low preload (2-letter lists, top row in A and C 
panels) and high preload (6-letter lists, bottom row in A and C panels) conditions in 
Experiment 1.  Boxes represent the 500 ms items (400 ms sounds and 100 ms inter-stimulus 
intervals, adjusted to align item-specific p-centres).  Colours denote the serial positions 
within the letter and digit lists.  Note that the digit rehearsal portion of the trial, between the 
letter sequence presentation and letter recall probe, was equivalent in the low (2-letter) and 
high (6-letter) preload conditions.  After the rehearsal-probe portion of the trial is finished, a 
visual cue appears to signal the start of the response period for the 2- or 6-letter preload list.   



TEMPORAL PRECISION IN SHORT-TERM MEMORY / 40 
 

 
 

 

Figure 2. Mean proportions of responses for each serial position across probe times in the low 
(2-letter preload; A) and high (6-letter preload; B) load conditions from Experiment 1.  The 
widths of the ribbons at each probe time reflect the SEMs.  Rectangles above the plot show 
the item timing if the sequence were rehearsed exactly as presented. 
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Figure 3. Scatterplot of the relationship between digit span scores and mean CSDs, averaged 
over the two load conditions from Experiment 1.  The solid line shows the linear regression 
model for mean CSD predicted by digit span.  The y-axis minimum is the mean CSD value 
that would be obtained from perfectly consistent responses in this task (0.52).  The maximum 
possible mean CSD value is 1.41. 



TEMPORAL PRECISION IN SHORT-TERM MEMORY / 42 
 

 
 

 

Figure 4. Representation of a single trial in the rehearsal-probe task in Experiment 2.  The 
boxes represent the 400 ms sequence items and 100 ms inter-item silence (with item-specific 
adjustments to align p-centres).  The colours of the boxes denote the serial positions of the 
list items.  Each trial begins with the perceptually isochronous presentation of a 6-digit 
sequence, repeated twice (A).  Immediately after the end of the second sequence presentation, 
the participant begins rehearsing the list exactly as it was presented, until s/he hears a tone 
(B).  Upon hearing the tone, the participant stops rehearsing and responds with the digit that 
s/he was currently rehearsing at the same time that the tone was presented by pressing the 
corresponding digit on the keyboard (C).  After a response is made, the trial ends and there is 
a short inter-trial interval followed by fixation cross signalling the start of the next trial. 
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Figure 5. Response proportions for the six serial positions across probe times in Experiment 
2.  The response proportions are averaged over all participants, and the widths of the ribbons 
at each probe time reflect the SEMs. Rectangles above the plot show the item timing if the 
sequence were rehearsed exactly as presented. 
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Figure 6. Scatterplot showing the negative correlation between digit span scores and temporal 
variability (mean CSD) for 6-digit rehearsal lists from Experiment 2.  The line shows the 
simple linear regression for mean CSDs as predicted by digit span scores.  The y-axis 
minimum is the mean CSD value that would be obtained from perfectly consistent responses 
in this task (0.26).  The maximum possible mean CSD is 1.41.  
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1 We refer to this task as the rehearsal-probe task because of the similarities with rehearsal 

in STM, namely the repetition of a memory sequence via inner speech. However, we are not 

suggesting that the subvocal repetition in this task is equivalent to natural rehearsal as it is 

used to recall sequences over short intervals, where there are no constraints on the timing or 

order of item repetition. 

2 This equation produces a range of possible CSD values from 0 to the square root of 2.  

However, in the rehearsal-probe task, the minimum possible CSD is a function of the number 

of probes per item and the number of items in the sequence, and is greater than zero. This 

minimum value is stated in the Results section of each experiment. 

3 We would like to thank Steve Majerus for suggesting this interpretation. 


