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ABSTRACT

Aims. We study the generation of transversal oscillations in coronal loops represented as a straight thin flux tube under the effect of
an external driver modelling the global coronal EIT wave. We investigate how the generated oscillations depend on the nature of the
driver, and the type of interaction between the two systems.
Methods. We consider the oscillations of a magnetic straight cylinder with fixed-ends under the influence of an external driver
modelling the force due to the global EIT wave. Given the uncertainties related to the nature of EIT waves, we first approximate the
driver by an oscillatory force in time and later by a shock with a finite width.
Results. Results show that for a harmonic driver the dominant period in the generated oscillation belongs to the driver. Depending on
the period of driver, compared to the natural periods of the loop, a mixture of standing modes harmonics can be initiated. In the case
of a non-harmonic driver (modelling a shock wave), the generated oscillations in the loop are the natural periods only. The amplitude
of oscillations is determined by the position of the driver along the tube. The full diagnosis of generated oscillations is achieved using
simple numerical methods.

Key words. magnetohydrodynamics (MHD) – Sun: corona – waves

1. Introduction

Latest high-resolution coronal observations have shown that
coronal structures are very dynamic entities with flows and
waves propagating along them. Waves and oscillations in coro-
nal loops have received increased attention in the last few years
due to the possibility to use the observed properties to diagnose
not only the magnetic field in these structures, but also the sub-
resolution space distribution of loops, plasma properties, etc.
(e.g. Roberts et al. 1984; Aschwanden et al. 1999; Nakariakov
et al. 1999; Banerjee et al. 2007; Verth et al. 2007; Arregui
et al. 2008; Verth & Erélyi 2008). One specific type of oscil-
lations observed in coronal loops is the fast kink mode which
disturbs the symmetry axis of the loop (for a full description of
these waves see, e.g. Edwin & Roberts 1983) and it is nearly
incompressible.

Many of kink waves and oscillations have their origin in
the interaction of coronal loops with various external sources
and drivers (see, e.g. Hindman & Jain 2008; Erdélyi &
Hargreaves 2008). One of the possible explanations of oscilla-
tions in coronal loops and/or prominence fibrils is that they have
their origin in the interaction of these loops with global coronal
waves, e.g. EIT waves. EIT waves (Thompson et al. 1999) are
waves generated by sudden energy releases (flares, coronal mass
ejections, etc.) and they are able to propagate over very large
distances in the solar low corona.

Observational evidence for large-scale coronal impulses ini-
tiated during the early stage of a flare and/or CME has been
provided by the EIT instrument onboard SOHO, TRACE/EUV,

⋆ EIT: Extreme-Ultraviolet Imaging Telescope.

STEREO/EUVI. EIT waves propagate in the quiet Sun with
speeds of 250–400 km s−1 at an almost constant altitude. At a
later stage in their propagation EIT waves can be considered
as a freely propagating wavefront which is observed to interact
with coronal loops (see, e.g. Wills-Davey & Thompson 1999).
Using TRACE/EUV 195 Å observations, Ballai et al. (2005)
have shown that EIT waves – seen in this wavelength – are
waves with average periods of the order of 400 s. Since at the
height where the EUV lines are formed, the magnetic field can
be considered vertical, EIT waves were interpreted as fast mag-
netohydrodynamic (MHD) waves. This interpretation was con-
firmed using multi-wavelength STEREO/EUVI observations by
Long et al. (2008). Recently, Attrill et al. (2007a,b) proposed that
the diffuse EIT coronal bright fronts are due to driven magnetic
reconnections between the skirt of the expanding CME mag-
netic field and the favorably orientated quiet Sun magnetic field.
According to this latter model, the propagation process of the
front consists of a sequence of successive reconnection events.

Although a large consensus was reached on the trigger mech-
anism of these global coronal waves and effects EIT waves can
generate, the nature of these large scale disturbances is still un-
known, despite the multitudes of models. The main reason of this
uncertainty is the lack of high temporal and spatial resolution as
well as the limited field of view (in the case of TRACE/EUV).

The present paper investigates the temporal and spatial vari-
ations of transversal oscillations in a coronal loop under the in-
fluence of an external driver representing the coronal global EIT
waves. Strictly speaking a coronal loop application would re-
quire the consideration of an external magnetic field. However,
we consider this study as a starting point in a much more
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Fig. 1. A schematic representation of the working model. The straight
flux tube, arbitrarily inclined with respect to the vertical direction, is
under the influence of different forces which will generate transversal
oscillations in the coronal loop which has fixed ends in the dense pho-
tosphere.

complex analysis. Due to the uncertainties in resolving the na-
ture of EIT waves, we will discuss separately the cases of a
harmonic driver and a driver of a finite width with a pulse-like
temporal distribution. It should be noted here that the study of
the present papers apply not only to EIT waves as external driver,
but it could be applied to any external source.

In the next section we introduce the working model and de-
rive the governing equation of transversal oscillations based on
the principle of force equilibrium in conjunction with the con-
tinuity of mass and magnetic flux. The governing equation is
solved for the a driving force when its particular form is not
specified. Section 3 is devoted to the study of the periodical mo-
tion of the coronal loop under the influence of a few particular
drivers. Finally, in Sect. 4 we summarize our results and dis-
cuss some possible key extensions which were neglected here
but they could be added to this model in subsequent studies.

2. Wave equations and solutions

Let us suppose that a flux tube is situated in a magnetic free
environment and it is under the effect of gravity. This model
could approximate (in the first order) a magnetic loop in the
solar corona. We consider the magnetic rope in the thin-flux-
tube approximation inclined at an arbitrary angle with respect to
the vertical. Let us suppose the directions l and t to be oriented
along the loop and in a transversal direction. We assume that
the EIT wave is acting with a force F (per unit volume) on the
tube and the direction of this force is directed along the x-axis.
For the sake of simplicity all dissipative effects are neglected. A
schematic representation of the model is shown in Fig. 1. Part of
the discussion of this paper is using the model and derivation de-
veloped by Spruit (1981) where the transversal waves were stud-
ied in a magnetic flux tube in the convective zone/photosphere.

Any vector a can be decomposed with respect to the parallel
and perpendicular direction of the tube such as

a‖ = ( l̂ · a) l̂, a⊥ = ( l̂ × a) × l̂.

The forces acting on the tube are the pressure force, the Lorentz
force, the gravitational force and the force from the EIT wave.

These forces are going to be decomposed along the two charac-
teristic directions. We suppose that the homogeneous magnetic
field is untwisted and it has a single component, along the tube,
i.e. B = B l̂.

The parallel component of the motion is driven by the paral-
lel components of acting forces. Since the Lorentz force has no
field aligned component, it will appear only in the perpendicular
direction. The parallel force equilibrium requires that

ρi

(

du
dt

)

‖

= −∂l p + ρig · l̂ + F · l̂ (1)

where the operator ∂l is defined as ∂l = l̂ · ∇ and ρi is the den-
sity inside the loop. Along the perpendicular direction the forces
acting on the tube will be

F⊥ = −
[

l̂ × ∇
(

p + B2/µ
)]

× l̂ +

(

(B · ∇)B

µ

)

⊥

+ ρi( l̂ × g) × l̂ + ( l̂ × F) × l̂. (2)

According to Spruit (1981), the Lorentz force can be simply
written as
(

(B · ∇)B

µ

)

⊥

=
B2

µ
t. (3)

We suppose that the tube is in equilibrium with its environment
and the total pressure inside the tube is balanced by the external
pressure, i.e.

∇(p + B2/µ) = ∇pe = ρeg, (4)

where pe and ρe are the pressure and density outside the tube.
With this in mind, the perpendicular component of the forces
acting on the tube becomes

F⊥ =
B2

µ
t + (ρi − ρe)( l̂ × g) × l̂ + ( l̂ × F) × l̂. (5)

The perpendicular component of forces acts to move the plasma
mass (per unit volume) of (ρi+ρe) in the tube and in the exterior.
Therefore the equilibrium of forces in the transversal direction
can be simply given as

(ρi + ρe)

(

du
dt

)

⊥

= v2Aρi t + (ρi − ρe)( l̂ × g) × l̂ + ( l̂ × F) × l̂, (6)

where we introduced the internal Alfvén speed v2A = B2/(µρi).
It should be mentioned that in the original derivation by Spruit
(1981) the appearance of the term containing ρe on the left hand
side of Eq. (6) was attributed to the apparent increase of tube’s
inertia. Combining Eqs. (1) and (6), the total equation of motion
is given by

du
dt
= −

1
ρi
∂l p l̂ +

(

g · l̂
)

l̂ +
1
ρi

(

F · l̂
)

l̂ +
ρi

ρi + ρe
v2A t

+
ρi − ρe

ρi + ρe
( l̂ × g) × l̂ +

1
ρi + ρe

( l̂ × F) × l̂. (7)

Let us write the Cartesian components of the unit vectors l̂ =

(lx, ly, lz) and t̂ = (tx, ty, tz), so the cartesian components of
Eq. (7) can be written as
(

du
dt

)

x

= −
1
ρi
∂l plx + glxlz +

ρi

ρi + ρe
v2Atx −

ρi − ρe

ρi + ρe
glxlz

+
F

ρi + ρe
+

Fρe

ρi(ρi + ρe)
l2x,
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(

du
dt

)

y

= −
1
ρi
∂l ply + glylz +

ρi

ρi + ρe
v2Aty −

ρi − ρe

ρi + ρe
glylz

+
Fρe

ρi(ρi + ρe)
lxly,

(

du
dt

)

z

= −
1
ρi
∂l plz + gl

2
z +

ρi

ρi + ρe
v2Atz +

ρi − ρe

ρi + ρe
g(1 − l2z )

+
Fρe

ρi(ρi + ρe)
lxlz. (8)

These equations must be supplemented by the continuity and in-
duction equations which can be combined into a single equation
of the form

d
dt

(

ρ

B

)

+
ρ

B
(∂lul + u · t) = 0, (9)

where vl = u · l̂ and t = ∂l l̂. Now suppose that the flux tube
is nearly vertical and let us denote the horizontal displacement
of the tube by ξ(z, t). In order to simplify the mathematics we
suppose that these displacements are small. According to Spruit
(1981) the components of the unit vector l̂ and t̂ can be written as

lx =
∂ξ

∂z
, lz = 1 + O(ξ2),

tx =
∂2ξ

∂z2
+ O(ξ2), tz = O(ξ2). (10)

In addition we assume that the tube is in the xz-plane, so we
choose ly = ty = 0. Now the remaining two equations of the
system (8) reduce to
(

du
dt

)

x

=

(

−
1
ρi

∂p

∂z
+ g −

ρi − ρe

ρi + ρe
g

)

∂ξ

∂z
+
ρiv

2
A

ρi + ρe

∂2ξ

∂z2

+
F

ρi + ρe
+

Fρe

ρi(ρi + ρe)

(

∂ξ

∂z

)2

, (11)

and
(

du
dt

)

z

= −
1
ρi

∂p

∂z
+ g +

Fρe

ρi(ρi + ρe)
∂ξ

∂z
· (12)

In the above equations we restricted ourselves to linear motion
only. Next we assume that the vertical displacements are small
and of the same order as ξ. In order to obtain a closed equation,
in addition, we assume that the force, F acting externally on the
tube is of the same order as ξ. Collecting terms of the same order
(with respect to ξ) in the two equations we obtain that
(

du
dt

)

x

=
dvx
dt
+ O(ξ2) =

∂2ξ

∂t2
+ O(ξ2),

∂p

∂z
= ρig + O(ξ2). (13)

After inserting these two relations back into Eq. (11) we obtain

∂2ξ

∂t2
= −
ρi − ρe

ρi + ρe
g
∂ξ

∂z
+
ρiv

2
A

ρi + ρe

∂2ξ

∂z2
+

F

ρi + ρe
· (14)

The above equation describes the propagation of transversal os-
cillations of a vertical flux tube when the oscillations are driven
by an external force, F. Similar to Spruit (1981), the first term

on the right hand side is due to stratification and is propor-
tional to the buoyancy force, while the second term is due to
the restoring force due to the magnetic tension in the tube. This
equation (without the external force) has been originally derived
by Lamb (1932). Equation (14) is similar to the equation de-
rived by Spruit (his Eq. (29)) apart from the driving term on
the right hand side of our equation. The propagation of kink
modes described by a KG equation was studied earlier by, e.g.
Musielak & Ulmschneider (2003), Erdélyi & Hargreaves (2008)
& Hargreaves (2008).

In what follows we are going to solve Eq. (14) for a coro-
nal loop when the driving force is due to the incident EIT wave.
Before presenting the solutions we introduce a new function, Q,
defined as ξ = Q exp [λz] and we choose the value of the param-
eter λ such that all first derivatives with respect to z vanish. After
a straightforward calculation we obtain that when

λ = g
ρi − ρe

2ρiv
2
A

the governing Eq. (14) reduces to

∂2Q

∂t2
−
ρiv

2
A

ρi + ρe

∂2Q

∂z2
+ g2 (ρi − ρe)2

4(ρi + ρe)ρiv
2
A

Q =
Fe−λz

ρi + ρe
, (15)

which is a nonhomogeneous Klein-Gordon (KG) equation. A
nonhomogeneous KG equation has been also derived earlier by
Rae & Roberts (1982) and the inhomogeneous part described
the effect of the external medium. In their analysis the inho-
mogeneous part was neglected by considering a situation where
the temporal variations of the parameters outside the loop are
very slow compared to changes inside the tube. For kink modes,
Roberts (2004) has obtained a similar equation.

The transversal waves described by Eq. (15) will propagate
with the speed given by the second term on the left hand side

cK =

√

ρi

ρi + ρe
vA (16)

which is the kink speed. This quantity has been previously dis-
cussed within the context of wave propagation in magnetic flux
tubes by, e.g. Edwin & Roberts (1983). The coefficient of the
third term has dimension of s−2 and its square root is given by

ωc =
g

2vA

√

(ρi − ρe)2

(ρi + ρe)ρi
, (17)

and constitutes the cut-off frequency for kink modes propa-
gating in coronal loops. For typical coronal parameters (vA =
900 km s−1, ρi/ρe = 10) the cut-off frequency of kink oscillations
is about 0.13 mHz. With these new notations, Eq. (15) becomes

∂2Q

∂t2
− c2

K
∂2Q

∂z2
+ ω2

c Q = F , (18)

where F = Fe−λz/(ρi + ρe).
Employing a normal mode analysis (Q ∼ ei(ωt−kz)) for the

homogeneous part of Eq. (18), the dispersion relation of these
linear waves is given as

ω = ±

√

k2c2
K + ω

2
c . (19)

Due to the particular k-dependence of the dispersion rela-
tion waves are dispersive, i.e. waves with larger wavelength
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(shorter k) propagating faster. The group speed of these waves
is given as

∂ω/∂k = ±
kc2

K
√

k2c2
K + ω

2
c

,

so, waves with smaller wave number will have smaller group
speed, the maximum of the group speed (at k → ∞) being cK.

Equation (18) has been studied in the context of pulse
propagation in the solar photosphere and chromosphere (see,
e.g. Roberts & Webb 1978; Rae & Roberts 1982; Kalkofen
et al. 1994; Sutmann et al. 1998; Hassan & Kalkofen 1999;
Musielak & Ulmschneider 2001, 2003; Hindman & Jain 2008;
Erdélyi & Hargreaves 2008). The solution of the KG equation
represents the propagation of a wave with the speed cK followed
by a wake oscillating with the frequency ωc.

An extension of the KG equation has been discussed
by Ballai et al. (2006) when the dissipation (kinematic vis-
cosity in their analysis) modified the KG equation into a
Klein-Gordon-Burgers equation where the dissipative term was
given as a mixed (space and time) derivative.

In what follows we present an analytical solution to Eq. (18)
in the most general form and particular solutions will be de-
ducted. Let us suppose that the boundary and initial conditions
used for solving Eq. (18) are given by

Q(0, t) = Q(L, t) = 0,

Q(z, 0) = u1(z),
∂Q

∂t
(z, 0) = u2(z). (20)

First we apply the Laplace transform to Eq. (18) and we obtain

c2
K
∂2Ψ

∂z2
− (s2 + ω2

c)Ψ = −Φ − su1(z) − u2(z), (21)

where Ψ(z, s) and Φ(z, s) are the Laplace transforms of the func-
tions Q(z, t) and F (z, t) defined as

Ψ(z, s) =
∫ ∞

0
Q(z, t)e−stdt, Φ(z, s) =

∫ ∞

0
F (z, t)e−stdt.

Given the nature of the boundary conditions we further apply a
finite Fourier sine transform defined as

Fs[ f (x)] =
1
L

∫ L

0
f (x) sinαnx dx,

where we introduced

αn =
nπ

L
·

After applying the Fourier sine transform we obtain

(s2 + ω2
c + c2

Kα
2
n)Ψ(n, s) = Φ(n, s) + su1(n) + u2(n), (22)

where the functions with an overline represent the Fourier trans-
formed functions. From Eq. (22) we obtain that

Ψ(n, s) =
Φ(n, s) + su1(n) + u2(n)

s2 + ω2
c + c2

Kα
2
n

· (23)

Now we apply an inverse Fourier transform which results in

Ψ(z, s) =
2
L

∞
∑

n=1

sinαnz

s2 + ω2
c + c2

Kα
2
n

[∫ L

0
Φ(ζ, s) sinαnζ dζ

+ s

∫ L

0
u1(ζ) sinαnζ dζ +

∫ L

0
u2(ζ) sinαnζ dζ

]

.(24)

In order to obtain Q(z, t), we need to apply an inverse Laplace
transform to the function Ψ(z, s). When calculating this trans-
form we will take into account the results of the convolution
theorem, i.e.

L−1
{

f (s)g(s)
}

= f ∗ g =

∫ t

0
f (τ)g(t − τ)dτ,

as well as the inverse Laplace transforms of the quantities

L−1

⎛

⎜

⎜

⎜

⎜

⎝

1

s2 + ω2
c + c2

Kα
2
n

⎞

⎟

⎟

⎟

⎟

⎠

=

sin
√

ω2
c + c2

Kα
2
nt

√

ω2
c + c2

Kα
2
n

=
1
ωn

sinωnt,

and

L−1

⎛

⎜

⎜

⎜

⎜

⎝

s

s2 + ω2
c + c2

Kα
2
n

⎞

⎟

⎟

⎟

⎟

⎠

= cos
√

ω2
c + c2

Kα
2
nt = cosωnt,

with ωn =

√

ω2
c + c2

Kα
2
n being the natural frequency of the loop

and the mode corresponding to n = 0 being the cut-off frequency.
It is interesting to note that the ratio of periods corresponding to
the fundamental mode (n = 1) and the first harmonic (n = 2) is
given by

T1

2T2
=

1
2

√

ω2
c + 4c2

Kπ
2/L2

ω2
c + c2

Kπ
2/L2

· (25)

Due to the presence of the cut-off frequency this period ratio is
not 1 but is slightly smaller, however it can approach the ob-
served period ratio (Verwichte et al. 2004; McEwan et al. 2006)
if the cut-off is made unrealistically high. For typical coronal and
loop conditions, the natural periods of a loop of L = 200 Mm
and cK = 1000 km s−1 are 400 s, 200 s, and 133 s, respec-
tively while for a 300 Mm loop these periods will be in a ratio
600/300/200. If the length is fixed at 200 Mm and let the kink
speed to be 1100 km s−1 the periods of the first three modes will
be 364/182/121. It should be pointed out that Eq. (25) is sim-
ilar to the findings in McEwan et al. (2006) though their equa-
tion was written for slow standing modes (see their Eq. (24)).
However, observers have not reported harmonics for slow waves
whereas reports on higher harmonics for kink modes are in abun-
dance.

In the light of these relations, the inverse Laplace transform
of, e.g. the first term in Eq. (24) will be of the form

L−1

⎛

⎜

⎜

⎜

⎜

⎝

Φ(ζ, s)
s2 + ω2

n

⎞

⎟

⎟

⎟

⎟

⎠

=
1
ωn

∫ t

0
Φ(ζ, τ) sin (ωn(t − τ)) dτ. (26)

Applying a term-by-term inversion to the function Ψ(z, s) given
by Eq. (24) we obtain

Q(z, t) =
2
L

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞
∑

n=1

sinαnz

ωn

∫ L

0
sinαnζ dζ

∫ t

0
Φ(ζ, τ)

× sin (ωn(t − τ)) dτ+
∞

∑

n=1

sinαnz

[

cosωnt

∫ L

0
u1(ζ) sinαnζ dζ

+
sinωnt

ωn

∫ L

0
u2(ζ) sinαnζ dζ

]}

. (27)

The solution of the nonhomogeneous Klein-Gordon equation
given by Eq. (27) can be simplified once the forms of the func-
tions u1 and u2 are known. In what follows we will discuss a few
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particular cases and will investigate the possibility of generat-
ing oscillations in coronal loops triggered by an incident wave
modelling the coronal global EIT wave.

The simplest particular case is when we have zero initial con-
ditions, i.e. u1(z) = u2(z) = 0, and

F (z, t) = f (t)δ(z − z0), (28)

where δ(z) is the Dirac-delta function. In this case the solution
of the inhomogeneous KG equation is given by

Q(z, t) =
2
L2

∞
∑

n=1

sinαnz sinαnz0

ωn

×

∫ t

0
f (τ) sin (ωn(t − τ)) dτ, (29)

where we used the property that

δ(z − z0) sinαnz =

{

sinαnz0, if 0 ≤ z0 ≤ L
0, otherwise.

When deriving Eq. (29) we took into account that the δ-function
has a dimension of L−1 and a variable change of the form z̃ =
z/L and z̃0 = z0/L is needed. The extra L in the denominator
of Eq. (29) arises after we apply the property that δ[L(z̃ − z̃0)] =
L−1δ(z̃− z̃0). If we further assume that f (τ) = δ(τ) (i.e. the source
consists of an impulse acting at z = z0) the solutions describing
the oscillations in a fixed-ends loop is given by

Q(z, t) = 2cKL

×

∞
∑

n=1

sinαnz sinαnz0

ωn

sinωnt = G(z, t/z0), (30)

which constitute the Green function for the coronal loop mod-
elled as a straight structure fixed at z = 0, L. Once the Green
function is known, the solution of the inhomogeneous KG equa-
tion for an arbitrary external action F (z, t) can be written as

Q(z, t) =
∫ L

0
dz′

∫ t

0
G

(

z, t − τ/z′
)

F (z′, τ)dτ. (31)

The present analysis does not include any information about the
radius of the tube geometrical or the internal structure of the tube
and external magnetic field, factors which could be important.
However, it is easy to estimate the magnitude of the external
force required to induce oscillations in the tube. The magnetic
tension force in the tube with constant circular cross-section is
(B2/µ)πR2 where R is the constant radius of the tube. The ex-
ternal force must be at least as large as the tension of the tube.
Writing a simple force equilibrium equation in transversal di-
rection to the axis fo the tube we obtain that the external force
acting on the tube in a point z0 along the tube has to be larger
than

B2

µ
πR2

⎡

⎢

⎢

⎢

⎢

⎣

1

(1 + λ2
ez2

0)1/2
+

1

(1 + λ2
e(L − z0)2)1/2

⎤

⎥

⎥

⎥

⎥

⎦

,

where 1/λe is the maximum displacement of the tube and is
given by (see, e.g. Edwin & Roberts 1983)

λe = k

√

c2
K − c2

Se

c2
Se

,

with cSe being the sound speed in the magnetic free region out-
side the coronal loop and k = πn/L is the longitudinal wavenum-
ber. For a loop length of 200 Mm and cK = 1000 km s−1,

cSe = 200 km s−1 we obtain a maximum displacement of the
fundamental mode of 12.9 Mm.

In the following section we are going to discuss a few partic-
ular cases referring to the nature of the driver and find the equa-
tion giving the transversal displacement of the loop as given by
Eq. (27).

3. Drivers of particular form

The discussion of these separate particular cases is needed as the
true nature of EIT waves is not known. As specified before, the
force on the right hand side of Eq. (14) is the force which acts
on the coronal loop and represents the effect of the incident EIT
wave on the coronal loop. Obviously it is difficult to estimate
the value (or the direction) of this force, however, some estima-
tions can be made (see also the end of the previous section). If
we suppose that the entire energy of the EIT wave (EEIT) is con-
verted into inducing oscillations of the loop, the energy of the
EIT wave will work toward displacing the loop. Therefore we
can write that

EEIT =
F

λe
·

Obviously the energy of EIT waves is quantity which cannot be
directly measured however, previous indirect estimations (Ballai
2007) show that these energies are in the range of 1016–1019 J.

3.1. Harmonic drivers

Let us suppose that the EIT wave is a wave and its action of the
coronal loop is described by a force of the form

F = EEITλe
δ(z − z0)e−λzeiωEITt

ρi + ρe
, (32)

where ωEIT is the frequency of EIT waves. This form of the ex-
ternally acting force is inserted back into Eq. (27), yielding

Q(z, t) = −
4EEITλe

L3(ρi + ρe)

∞
∑

n=1

e−λz0 sinαnz sinαnz0

(ω2
EIT − ω

2
n)

×

{[

sin
(

ωn + ωEIT

2
t

)

sin
(

ωn − ωEIT

2
t

)]

+ i(ωEIT sinωnt − ωn sinωEITt)} . (33)

The presence of the sinαnz0 in the expression Q(z, t) simply
means that the amplitude of generated oscillations will depend
on the height (along the loop) where the EIT wave interacts with
the loop. The maximum amplitude of oscillations (in the case of
modes with odd n) will be reached when the EIT wave hits the
top of the loop, i.e. the interaction occurs at z0 = L/2. In this
case there will be no modes generated corresponding to an even
n (for instance for an interaction of this type we will not have
first harmonics present in the loop). This statement supports the
conclusions drawn by Ballai (2007) where a list with possible
factors which can influence the characteristics of loop oscilla-
tions was given. The singularity in the denominator of Eq. (33)
is just apparent, its effect is balanced by the numerator. If we
concentrate only on the real part of Eq. (33), it is also obvious
that the resulting signal will not have a well defined standing
mode pattern, instead the oscillations will be a superposition of
different oscillations. The real part of Eq. (33) is numerically
represented in Fig. 2 (in all subsequent figures we will always
use the real part). The period of the driver EIT wave is left to
vary between 50 and 800 s.
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Fig. 2. The periods of oscillations generated by an EIT wave acting at
z = z0. The period of the driver is changed in the interval 50 to 800
s. The horizontal lines represent the natural periods of the loop, i.e.
Tn = 2π/ωn. The inclined line corresponds to the periods of the EIT
wave, the driver of the oscillations in the coronal loop.

The pattern of oscillations which can be generated in the
coronal loop depends on the characteristics of the driver. For
each period of the driver (in between 50 and 800 s) a wavelet
analysis has been carried out for the temporal part of Eq. (33).
The power of the signal has been summed up inside the cone
of influence set at a confidence level of 95% and the results are
shown in Fig. 2 which is color-coded, the red color corresponds
to the highest power, while the black color represents the lowest
power. Depending on the period of the EIT wave, various oscilla-
tion modes can be excited. For the example shown in Fig. 2, the
loop has a length of 200 Mm and a kink speed of 1000 km s−1.
The natural periods corresponding to these values are in a ratio
of 400/200/133, values represented by the horizontal lines.

Let us consider a driver which has a period larger than 600 s.
In this case, the modes which can be excited will be the fun-
damental mode (corresponding to 400 s) and the first harmonic
but with a very low power. The oscillation pattern of the driver
is still present but much weaker than the oscillation of the fun-
damental mode. As the period of the driver becomes smaller,
other harmonics can be excited. For a period between 200 and
400 s the pattern of the driver is preserved (see the inclined bright
direction) but a considerable amount of the fundamental mode
and first harmonic can be generated. Higher harmonics are also
present but their power is very small. For a period of less than
200 s the dominant oscillations will be the first and second har-
monics, while the fundamental mode is extremely weak. The red
regions correspond to the cases when the period of the driver
matches (or is very close) to one of the natural periods of the
loop. In that case there is a resonance between the driver and the
coronal loop.

In reality, however, if the EIT wave is an oscillating front
colliding with the coronal loop, then the interaction occurs not
only in one point, but in two, symmetrically situated from the
ends of the loop. Let us suppose now that the driver is a front
which interacts with the loop at the same time in two points, at
z0 and at L − z0. In this case, the driver will have the form

F = EEITλe
[δ(z − z0) + δ(z − L + z0)]e−λz

ρi + ρe
eiωEITt.

Sources at z0 and L-z0
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Fig. 3. The same as in Fig. 2 but now the oscillations are generated by
an EIT wave interacting with the coronal loop at z = z0 and z = L − z0.

For this expression the resulting oscillations will be described
by a similar function as given by Eq. (33) but now the spatial
dependence will contain in the numerator the expression

eλz0 sinαnz0 + e−λ(L−z0) sinαn(L − z0).

This situation can be achieved if the front of the EIT wave is per-
fectly perpendicular to the coronal loop. For this particular driver
the corresponding period-diagram is shown in Fig. 3. According
to expectations, in this case no modes corresponding to an even
n will be excited. In contrast to the first case, for driver’s period
larger than the period corresponding to the first natural period
(400 s) the EIT wave will excite modes which will carry predom-
inantly the characteristic of the driver and in a smaller quantity
the properties of the fundamental mode. No first harmonic can
be generated, instead for a narrow range of the driver’s period,
(a small interval around 200 s) the oscillations will comprise ad-
dition from the fundamental mode and the second harmonic.

In reality it is more likely that the front of the incident EIT
wave is not completely perpendicular to the axis of the loop,
now the two interaction points between the loop and EIT wave
will separated by a delay time, i.e. the time required for the front
to reach the other half of the loop. The delay time can be easily
calculated (see for details Ballai 2007) and depends on the length
of the loop, the speed of propagation of the EIT wave and the
attack angle, i.e. the angle the front of the EIT wave makes with
the vertical plane of the coronal loop. In this case, the acting
force will have a spatial and temporal dependence of the form

δ(z − z0)eiωEITt + δ(z − L + z0)eiωEIT(t−Td)H(t − Td),

where Td is the delay time and H(t) is the Heaviside step func-
tion. After inserting this form back into Eq. (27) we obtain that
the modified transversal displacement of the coronal loop is of
the form

Q(z, t) = −
4EEITλe

L3(ρi + ρe)

∞
∑

n=1

sinαnz

(ω2
EIT − ω

2
n)

×
{

e−λz0 sinαnz0 [cosωnt − cosωEITt] − e−λ(L−z0)

× sinαn(L−z0) [cosωn(t−Td)−cosωEIT(t−Td)]}. (34)

As a particular case we have chosen the situation when the delay
time corresponds to an integer number of EIT wave’s period. In
the case of two external forces acting in phase upon the coro-
nal loop the possible modes appearing in the coronal loop are

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809833&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809833&pdf_id=3
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Tdelay = 2 TEIT
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Fig. 4. The same as in Fig. 3 but now the oscillations are generated by
an EIT wave acting at z = z0 and z = L − z0 and the second interaction
is delayed by a time corresponding to the double of EIT waves’ period.

shown in Fig. 4. It is obvious that the period of generated oscil-
lations will contain the period of the EIT wave as the strongest
component. For periods larger than the natural period of the fun-
damental mode the generated oscillation will be dominated by
the period of the fundamental mode with a weaker signal resem-
bling the characteristics of the driver and a very weak period
corresponding to the first harmonic. For periods of the driver
situated between the natural periods of the loop, the possibility
of mode generation goes parallel with the case explained in the
case of a single driver. It can be easily shown that the distribution
of possible periods in the coronal loop is similar even when the
delay time is not an integer number of EIT waves’ period.

3.2. Non-harmonic driver

EIT waves have also been explained in terms of a non-wave
feature (i.e. not having a harmonic behaviour). In this context
we could list the models proposed by, e.g. Delanée (2000) and
Attrill et al. (2007) where EIT waves were associated with de-
formations and evolutions of magnetic fields resulted after the
release of the CME. In order to include this possible explana-
tion of EIT waves, let us suppose an external force acting on the
coronal loop of the form

F = EEITλe

e−λz

[

H(z − z0) − H(z − z′0)
]

ρi + ρe
δ(t), (35)

which means that the external driving force is represented by a
finite width (|z0 − z′0|) front which has no temporal component
other than a Dirac-delta function. If the form of external force
given by Eq. (35) is inserted back into Eq. (27), we obtain that
the temporal part of the transversal displacement of the magnetic
tube modelling a coronal loop is given by
∫ t

0
δ(t′) sinωn(t − t′)dt′ ∼ sinωnt,

which means that this form of the EIT wave (a single finite width
front) will produce oscillations in the coronal loop at the natural
frequency of the loop only.

It is possible that the two forms of the external driver (the
harmonic and non-harmonic) treated here coexist in the sense
that they are the manifestation of the same phenomenon but at

different distance from the source, therefore a more careful anal-
ysis will be needed in the future.

4. Conclusions

The generation and propagation of oscillations in coronal loops
modelled by a straight magnetic cylinder with fixed ends is stud-
ied when the coronal loop is under the effect of an EIT wave, as
a driver. We found that if all forces acting on the flux tube are
taken into account, the governing equation describing the propa-
gation of standing transversal (kink) waves is described by an
inhomogeneous Klein-Gordon-type equation and the inhomo-
geneous part of the equation is represented by the force (over
a unit volume) by EIT waves. The evolutionary equation con-
tains information about the propagation speed of waves (here the
kink speed) and the cut-off frequency of kink modes. The cut-off
value is determined by the densities inside/outside the loop and
the Alfvén speed (i.e. magnetic field).

Using the combined Laplace and Fourier sine transform
techniques, the governing equation is solved, such that the solu-
tion takes into account general initial and boundary conditions.

Particular solutions have been found in the case of an EIT
wave considered first as a wave with a frequency ωEIT, and later
as a shock wave with finite front thickness (a non-harmonic
driver). The results show that in case of a non-harmonic driver
the periods of generated modes always belong to the natural pe-
riods of the loop. On the other hand, in the case of a periodic
driver – for an arbitrary period of the driver – there will be a
mixture of standing modes which could explain on the observed
period ratio. The analysis carried out here for different type of
drivers show that the generated oscillations will carry predomi-
nantly information about the driver rather than the loop itself.

The oscillations described in this paper were all modelled
in the framework of ideal MHD. In reality coronal loop oscilla-
tions are observed to decay relatively rapidly and several mech-
anisms have been proposed to explain this damping (Ruderman
& Roberts 2005; Terradas et al. 2005, 2007; Selwa et al. 2007).
The inclusion of a dissipative (or energy lost) mechanism in the
present model will be addressed in a future study. It could be
possible that in the case of a loop oscillating as a whole in the
kink mode, the friction with the environment could be also an
important factor whose inclusion in the model could result in a
possible explanation of the damping of these oscillations.

The present study can be further extended to the case when
the external EIT wave acts not only on a single magnetic loop but
on a system of adjacent loops. In this case the primary displace-
ment of the first coronal loop (generated by the incoming EIT
wave) will be the driver for the oscillations in the second loop
(and so on), leading to coupled loop oscillations. In order to de-
scribe a realistic loop, the present model is going to be expanded
to consider the effect of an external magnetic field. It is expected
that the presence of this field will generate an additional force
which will tend to suppress the oscillation of the tube.
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