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X - 2 CALAIS ET AL.: LARGE EARTHQUAKES IN SCRS

Large earthquakes within stable continen-3

tal regions (SCR) show that significant amounts4

of elastic strain can be released on geological5

structures far from plate boundary faults, where6

the vast majority of the Earth’s seismic ac-7

tivity takes place. SCR earthquakes show spa-8

tial and temporal patterns that differ from those9

at plate boundaries and occur in regions where10

tectonic loading rates are negligible. However,11

in the absence of a more appropriate model,12

they are traditionally viewed as analogous to13

their plate boundary counterparts, occuring14

when the accrual of tectonic stress localized15

at long-lived active faults reaches failure thresh-16

old. Here we argue that SCR earthquakes are17

better explained by transient perturbations18

of local stress or fault strength that release elas-19

tic energy from a pre-stressed lithosphere. As20

a result, SCR earthquakes can occur in regions21

with no previous seismicity and no surface ev-22

idence for strain accumulation. They need not23

repeat, since the tectonic loading rate is close24
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to zero. Therefore, concepts of recurrence time25

or fault slip rate do not apply. As a consequence,26

seismic hazard in SCRs is likely more spatially27

distributed than indicated by paleoearthquakes,28

current seismicity, or geodetic strain rates.29

D R A F T September 10, 2016, 4:34pm D R A F T



X - 4 CALAIS ET AL.: LARGE EARTHQUAKES IN SCRS

1. Introduction

Shortly after the discovery of plate tectonics, it was recognized that significant amounts30

of elastic strain can be released by large earthquakes on geological structures far from plate31

boundary faults, where the vast majority of the Earth’s seismic activity takes place [Sykes32

and Sbar , 1973; Sbar and Sykes , 1977; Sykes , 1978]. Johnston [1989] discussed issues posed33

by large events in stable continental regions (SCRs), which he defined as “areas where the34

continental crust is largely unaffected by currently active plate-boundary processes”. The35

diffuse and weak imprint on geology and topography of the active tectonic processes36

causing these earthquakes suggested that they involve very low strain rates [Johnston37

et al., 1994; Johnston, 1996], as now confirmed by space geodetic measurements [e.g.,38

Calais et al., 2006; Sella et al., 2007; Nocquet , 2012; Tregoning et al., 2013]. Parts of39

SCRs appear devoid of seismic activity, while others show scattered low to moderate40

magnitude earthquakes that are rarely localized on well-defined crustal structures, as41

opposed to plate boundaries.42

Large earthquakes in SCRs are rare: only two dozen events with magnitude 6 or higher43

are reported in the historical record worldwide (Figure 1). They are however widespread,44

and affect every continent. The 1811-1812 New Madrid events in the Mississippi valley45

of the central U.S., the 1988 Tennant Creek earthquakes in Australia, the Basel (1356),46

Verviers (1692), Lisbon (1755), or Nice (1887) earthquakes in western Europe, the 181947

and 2001 earthquakes in the ancient Kachchh rift basin in Western India, or the 169048

Manaus and 1955 Parecis basin earthquakes in Brazil are examples of such events in his-49

torical times. Some occur at passive margins, glaciated or not in the Late Pleistocene50
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[Stein et al., 1989; Wolin et al., 2012], while others occur well inside continents, previ-51

ously glaciated or not [Johnston, 1996]. About half of all SCR events occur within rifted52

crust at passive margins or within continental interiors, while the other half occur in53

other geological settings [Schulte and Mooney , 2005]. Tesauro et al. [2015] argue that54

SCR earthquakes in North America tend to follow craton edges and that tectonic stress55

accumulates there, but that correlation is not clear elsewhere [Schulte and Mooney , 2005;56

Wolin et al., 2012].57

Although rare, SCR earthquakes can cause widespread damage because attenuation58

of seismic energy with distance is typically low in plate interiors [Hanks and Johnston,59

1992] so that even moderate-size events can be devastating. Examples are the Mw6.260

1993 Latur earthquake (India) that caused over 8,000 fatalities and 300 million dollars in61

property damage [Greene et al., 2000] or the Mw7.7 2001 Bhuj earthquake (India) that62

caused more than 20,000 fatalities and more than 4 billion dollars in total damage [Maurer63

and Oblitas , 2001]. A repeat of the 1811-1812 M7-7.5 New Madrid earthquakes in the64

central U.S. today is estimated to cost up to 300 billion dollars in damage [Spencer et al.,65

2008] and similar figures would likely result from repeats of the 1756 Düren (Germany) or66

1356 Basel (Switzerland) earthquakes in these highly populated regions of western Europe67

[Allman and Smolka, 2001]. Even though SCR earthquakes release only a few percent of68

the total seismic energy of the planet, they strike regions where the population and the69

infrastructures are often ill-prepared, even in developed countries.70

Because SRC earthquakes are infrequent, occur in regions where present-day strain rates71

are very low, and rupture faults that are difficult to identify geologically, quantifying the72
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associated hazard is a challenge [Ellsworth et al., 2015; Petersen et al., 2015]. Yet, accurate73

hazard estimates in SCRs are important for engineering design, in particular in the “post–74

Fukushima” era [Joskow and Parsons , 2012] for nuclear infrastructure that are designed75

for safety on a 10,000 yr timescale. Because our understanding of the earthquake process76

in SCRs leaves much to be desired, hazard calculations often implicitly use concepts and77

methods developed for plate boundaries.78

In this paper, we briefly review the current paradigm [Kuhn, 1962] – i.e., the conceptual79

framework shared and applied by the seismology community to explain the earthquake80

process. We then describe common characteristics of large SCR earthquakes and review81

the state of knowledge on strain build-up in SCRs. We separate these two issues because,82

contrary to plate boundaries where the earthquake energy budget is dominated by stress83

loading of well-defined active faults where major events occur, the balance between energy84

release and strain build up in SCRs is less well understood. We finally discuss the state of85

stress and its variations in SCRs and how they may trigger earthquakes. We argue that the86

geological and geophysical data currently available require a paradigm shift and propose87

that SCR earthquakes are better explained by transient perturbations of local stress or88

fault strength than by the slow and localized accrual of tectonic stress on long-lived active89

faults.90

2. The paradigm

The current paradigm for the earthquake process is well established, at least in general91

[e.g., Kanamori and Brodsky , 2004] (Figure 2, top). Stress builds up on faults over time92

as a result of steady plate motions, until their frictional strength is exceeded – at which93
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point they rupture in an earthquake with a certain stress drop. Once unloaded by the94

earthquake, the fault takes a variable amount of time to be reloaded to the point of rupture95

depending on its strength, the magnitude of the stress drop, and the reloading stressing96

rate. Hence strain - the associated measurable quantity - continues building up and97

the fault will eventually rupture again so that the cycle repeats, regularly or irregularly.98

Over several such cycles, a balance results between the rates at which stress (or strain)99

accrues and is released. As a result, “geological slip rates” (actually strain release rates)100

should agree with “geodetic slip rates” (actually strain accumulation rates) so that a fault101

system conserves energy. As a corollary, past earthquakes, strain accrual rates, and fault102

segmentation contain some predictive information for long to medium-range forecasting103

of future earthquakes [e.g., Field et al., 2014].104

This view is supported by geodetic studies at plate boundaries showing that steady plate105

motions are accommodated by localized elastic deformation of the crust that accumulates106

at steady rates close to active faults. Fault slip during large earthquakes episodically re-107

leases this elastic strain so that, over a few hundred years, the rates of strain accumulation108

and release balance. For instance, Tong et al. [2014] show that geodetic and geologic slip109

rates agree within uncertainties along the San Andreas fault, one of the best known active110

plate boundary fault systems. This reasoning also holds for slower systems within broad111

regions of continental deformation such as the Wasatch fault separating the 3600 m high112

Wasatch range from the Great Salt Lake basin. Paleoseismological data showing that the113

major normal fault strand has slipped at an average rate of 1.7±0.5 mm/yr over the past114

10 ka [Friedrich et al., 2003] are consistent with the 1.6±0.4 mm/yr strain loading rate115
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determined from GPS measurements [Chang et al., 2006]. In addition, the Gutemberg-116

Richter relation derived from the instrumental earthquake catalog, consistent with the117

rate of paleoearthquakes identified on the Wasatch fault [Schwartz and Coppersmith,118

1984; McCalpin and Nishenko, 1996] with one M7 event per ∼1,000 years [Pechmann119

and Arabasz , 1995; Stein et al., 2005], which requires a strain accumulation rate on the120

order of 1.5 mm/yr, consistent with the geodetic observations.121

Whether this steady state model applies to SCRs remains an open question with far-122

reaching consequences since it is the underlying principle for probabilistic earthquake123

hazard calculations. Traditionally, faults in SCRs have been viewed as analogous to their124

plate boundary counterparts, although accumulating strain at very slow rates. If so, large125

earthquakes should repeat over time on individual faults as they do at plate boundaries126

but with very long recurrence intervals, and faulting should reflect a consistent and ob-127

servable strain-rate field. This view is consistent with the interpretation of present-day128

intraplate seismic clusters as indicative of long-lived deformation [Page and Hough, 2014].129

However, unambiguous measurements of strain accumulation on seismically active geo-130

logic structures far from plate boundaries remain elusive. In addition, there is increasing131

evidence from the paleoearthquake record that SCR faults experience long periods of seis-132

mic quiescence separated by short periods of clustered activity [Clark et al., 2012], and133

that the loci of large earthquakes varies over time among fault systems [Liu et al., 2011].134

Alternatively, intraplate faults may be releasing strain stored in the elastic crust over135

long intervals but not necessarily localizing observable interseismic strain at their time of136

failure [Calais and Stein, 2009]. Transient variations in crustal stress or fault strength,137
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if large enough compared to the background tectonic stressing rates, may trigger rupture138

[Long , 1988; Calais et al., 2010], releasing elastic energy from a pre-stressed lithosphere139

[Feldl and Bilham, 2006]. Once the available stresses on a fault segment have been released140

in an earthquake, the low background tectonic stressing-rate is insufficient to reload that141

segment to failure threshold on an observable timescale. Faults may consequently appear142

to fail only once, as described below for a number of SCR ruptures [Crone et al., 2003].143

Thus some clusters of present-day intraplate seismicity are long aftershock sequences144

of large events [Stein and Liu, 2009; Boyd et al., 2015]. In this view, SCR seismicity145

is predominantly a transient feature triggered or inhibited by secondary, non-tectonic146

sources of stress change rather than a steady-state response of faults to constant tectonic147

loading.148

3. Some characteristics of large SCR earthquakes

Scientific interest in large SCR earthquakes was enhanced after the 1968 Meckering, 1986149

Marryat Creek, and 1988 Tennant Creek earthquakes in Australia, and the 1989 Ungava150

earthquake in northern Canada. These events, which formed scarps up to 30 km long151

and 2 m high, reactivated pre-existing faults within Precambrian crust. They occurred in152

landscapes lacking geomorphological features indicative of surface-rupturing earthquakes153

during at least the past hundreds of thousands of years [Adams et al., 1991; Crone et al.,154

1992; Machette et al., 1993; Crone et al., 1997a; Bent , 1994].155

Such sporadic occurrence of large earthquakes, sometimes in the form of a single event156

on an old fault lacking evidence of Quaternary or recent activity, is a characteristic shared157

by other SCRs (Figure 3). The M6.3 1969 Ceres (South Africa) earthquake, for instance,158
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which ruptured a 20 km–long strike-slip fault segment that did not reach the surface,159

occurred in a region with no evidence for previous earthquake activity [Smit et al., 2015].160

The Hebron fault in western Namibia shows a well–preserved, 40 km–long scarp with up161

to 10 m–throw that formed during a single Holocene event with no evidence for other162

Quaternary rupture [Viola et al., 2005; White et al., 2009]. In central India, the 40-163

50 km–long Tarpi fault scarp formed in the Holocene in one (or more) thrust-faulting164

earthquakes with no evidence for previous events or additional rupture since then [Copley165

et al., 2014]. In Australia, one of the most arid and slowly eroding SCRs where scarps166

may be preserved for tens of thousands to millions of years, Clark et al. [2012] identified167

300 small scarps and noted their poor spatial correlation with contemporary seismicity168

[Clark and Leonard , 2015].169

In the Central and Eastern U.S., where environmental conditions are less favorable for170

the preservation of scarps, Madole [1988] and Crone and Luza [1990] report two surface–171

breaking events 1,200–1,300 years ago that ruptured a ∼60 km–long segment of the Pa-172

leozoic Meers fault in Oklahoma, with no evidence for other events in at least the past173

120,000 years. Crone et al. [1997b] report evidence for three large earthquakes during174

the past 25 ka on the 44 km–long Cheraw fault in Colorado, with the most recent event175

in the early Holocene. Large historical earthquakes occurred in 1755 (M>6.0, near Cape176

Ann, MA), 1811-1812 (M7–7.5, near New Madrid, MO), 1843 (M6.3, northeast Arkansas),177

1895 (M6.6, near New Madrid, MO), and 1886 (∼M7 near Charleston, SC) [e.g., Johnston178

et al., 1994].179
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The New Madrid sequence consisted of four M>7 earthquakes between December 1811180

and February 1812 [Nuttli , 1973; Johnston, 1996; Hough et al., 2000]. Seismicity continues181

today and likely outlines the 1811-1812 ruptures of the Cottonwood Grove and Reelfoot182

faults [Mueller et al., 2004; Johnson et al., 2014]. Liquefaction features in the upper183

Mississippi embayment show earthquakes similar in magnitude and location to the 1811–184

1812 events in 1450±150 C.E., 900±100 C.E., 300±200 C.E., and 2350±200 B.C.E. [Tuttle185

et al., 2002]. Holbrook et al. [2006] use reconstructed Holocene Mississippi River channels186

to document possible additional events – or clusters of events – at 2244±269 B.C.E and187

1620±220 B.C.E likely related to activations of the Reelfoot fault. Put together, these188

observations suggest that, during the Holocene, the region experienced millennial-scale189

temporal clustering of earthquakes interrupted by very long – up to several thousand190

years – intervals of seismic quiescence. The lack of significant topography in the region –191

indicating a relatively short period of fault activity – together with seismic reflection and192

trenching studies that find an increase in slip rate on the Reelfoot fault by four orders of193

magnitude about 10 kyr ago [Van Arsdale, 2000], show that the NMSZ must have been194

recently activated.195

Contrary to other SCRs, Western Europe underwent relatively recent, large-scale tec-196

tonic activity with the emplacement of the Cenozoic rift system of western and central197

Europe [Illies et al., 1981; Dèzes et al., 2004]. Some of the most seismically active re-198

gions today follow the overall trace of that structure, such as the Roer Valley Graben,199

bounded by Quaternary scarps related to earthquake activity [Ahorner , 1975; Camelbeeck200

and Meghraoui , 1998; Vanneste et al., 2013]. Paleoseismological investigations along its201
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western border have identified a 12 km–long by 15–20 m–high scarp along the Bree fault202

that offsets the 350–700 ka main terrace of the Maas River by about 40 m [Camelbeeck and203

Meghraoui , 1996, 1998]. One of the trenches across the Bree scarp shows evidence for five204

earthquakes in the past 100 ka, the most recent ∼3 ka B.P. associated with a 10 km–long205

by 0.5 m–high rupture scarp [Vanneste et al., 2001]. On the opposite side of the Roer206

graben (Peel fault), similar investigations identified three large earthquakes within the207

past 25 ka [van den Berg et al., 2002]. Detailed geomorphic analyses of the Bree and Peel208

scarps show that these border faults of the Roer Valley Graben were continuously active209

since the Middle Pleistocene, with earthquake magnitudes likely ranging from 6.3 to 7.0210

[Camelbeeck et al., 2007; Vanneste et al., 2013].211

The largest known earthquake in the Roer Valley Graben is the M5.7 18 February 1756212

earthquake near Düren, Germany [Camelbeeck et al., 2007]. However, the three largest213

historical earthquakes in this part of Europe with estimated magnitude around or greater214

than 6.0 occurred outside of the graben in 1382 (southern North Sea), 1580 (Dover Strait),215

and 1692 (Verviers, northern Belgian Ardenne). Therefore, most of the seismic energy216

release since the Middle Ages in this part of Western Europe occurred outside the Roer217

Valley Graben, despite the graben’s dominance in Western European seismic activity over218

the Quaternary. A recent offshore survey in the epicentral area of the 1580 Dover Strait219

earthquake showed no evidence for persistent faulting during the Quaternary [Garcia-220

Moreno et al., 2015]. Similarly, the Hercynian–age Hockai fault activated during the 1692221

Verviers earthquake shows no evidence for previous events in the Quaternary [Lecocq et al.,222

2008].223
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The largest documented paleo-earthquakes in stable Europe likely occurred in the tec-224

tonically stable Fennoscandian craton in the late Pleistocene/early Holocene between 11225

and 9 ka [Muir-Wood , 1989; Olesen et al., 2004; Mörner , 2005; Lagerbäck and Sundh,226

2008; Jakobsson et al., 2014; Olesen et al., 2013; Smith et al., 2014]. They formed nu-227

merous scarps ranging from small-scale fractures to the 150 km–long Pärvie fault scarp,228

with offsets exceeding 15 m in places [Muir-Wood , 1989; Lagerbäck and Sundh, 2008].229

Some of these earthquakes may have been larger than M8 [Muir-Wood , 1989; Lagerbäck ,230

1992; Arvidsson, 1996; Lindblom et al., 2015] whereas the historic and instrumental seis-231

micity of Fennoscandia rarely exceeds Mw5. There is little field evidence for on-going or232

repeated ruptures, but trenches across some faults indicate that faulting occurred in a233

single event [Lagerbäck and Sundh, 2008]. The clustering of these events 11-9 ka ago is a234

strong indication of a link with the last deglaciation [Muir-Wood , 1989; Mörner , 2005], as235

demonstrated by mechanical modelling studies [Wu et al., 1999; Wu and Johnston, 2000;236

Lambeck and Purcell , 2003; Turpeinen et al., 2008; Steffen et al., 2014].237

These examples illustrate the diversity of faults capable of generating large earthquakes238

in SCRs. Some occur in regions devoid of current seismicity or evidence for Quaternary239

ruptures. Some appear to have ruptured only once in recent times, while others show240

evidence for multiple events, sometimes clustered in time, separated by quiescent intervals241

of 10,000 to more than 100,000 years. Steady-state earthquake activity does not appear242

to persist in the long-term on any single fault. Hence seismic activity in SCRs appears to243

be episodic and sometimes clustered on faults that are active during relatively short time244
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intervals, and then migrates to other structures [Crone et al., 1997a; Stein et al., 2009;245

Crone et al., 2003; Clark et al., 2012].246

A spectacular example of this “clustered and migrating” nature of large earthquakes in247

low strain rate regions is the North China plain, a flat–lying area bounded by the Shanxi248

rift and the coast of the Yellow Sea to the west and east, and extending north–south from249

Beijing to Shanghai. Geodetic strain rates in this region are very low, less than 10−9 yr−1
250

[Calais et al., 2006; Zhao et al., 2015]. Liu et al. [2011] use a historical earthquake251

catalog complete to M>6 since 1300 A.D that includes 49 events with M>6.5 and at252

least four earthquakes with M>8 to show that these large earthquakes migrate between253

fault systems across distances much larger that their rupture length, hence precluding254

static stress transfer as triggering mechanism. Over the time interval considered, none255

of the fault systems was activated more than once. The slow tectonic loading in such a256

system therefore appears to be shared by many faults of similar strength. Individual fault257

may remain stable for a long time and become active for a short period only. Liu et al.258

[2011] also document complementary transfer in moment release rate between some faults:259

increase on one correspond to decrease on the other, indicating that they are mechanically260

coupled over large distances.261

These examples of SCR earthquakes and active – or capable [Machette, 2000] – faults262

show a variety of behaviors that is not seen at plate boundaries. Faults like Meers, Hebron,263

or Tennant Creek are isolated structures that show no evidence for more than one event264

in the paleoearthquake record. Faults like the Reelfoot fault in the NMSZ or the Bree265

fault in the Lower Rhine Graben show repeated earthquakes over 10,000 to 100,000 yr.266
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In North China and Western Europe, faults are organized in a system with indications of267

long–distance interactions between them [Liu et al., 2011].268

The lack of persistence of the seismic activity on the rarely activated faults in SCRs269

raises three additional issues. First, the behavior described above implies that a meaning-270

ful recurrence interval cannot be defined for many SCR faults, particularly those where271

only one earthquake or long intervals of seismic quiescence are documented. Hence, the272

notion of a “seismic cycle” or that of a “slip rate”, which fail to capture their highly273

non-steady state behavior, may not be applicable to SCR faults.274

Second, if these inherited structures are only reactivated a few times – some perhaps275

only once – with long intervals of seismic quiescence, they are likely not loaded individually276

at a constant rate, in contrast to plate boundary faults. The most active SCR region in277

the late Holocene, the New Madrid seismic zone, shows strain accumulation at a rate that278

is indistinguishable from zero while the seismic energy release over the past 3,000 years279

would require at least 2 mm/yr of strain accrual at steady-state [Calais and Stein, 2009;280

Craig and Calais , 2014]. This argues against interseismic strain localization on individual281

SCR fault zones.282

Third, the single or episodic activity of most SCR faults does not represent their long-283

term behavior, during which the faults are mostly inactive. Their short time intervals of284

seismicity require shorter term stress or fault strength variations, and thus argues against285

earthquake triggering being a direct manifestation of tectonic stresses, which change slowly286

on time scales of millions of years.287
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4. Is there measurable strain within SCRs?

Earthquakes provide information on the rate at which elastic strain is released, which288

is related to – but distinct from – the rate at which it builds up in the crust. Space289

geodetic techniques such as the Global Positioning System (GPS), widely used to measure290

strain accumulation on plate boundary faults, have therefore been deployed to detect291

strain accrual on seismogenic SCR faults. The heavily populated New Madrid Seismic292

Zone (NMSZ) in the central U.S., locus of four earthquakes of magnitude 7 or greater in293

1811-1812 (see above) and where seismic activity continues today, became a prime target294

for both geodetic investigations and for research on paleoearthquakes and local crustal295

structures that may accommodate long term faulting.296

Early geodetic measurements combining space and terrestrial data [Liu et al., 1992]297

claimed 5-7 mm/yr of relative motion across the southern branch of the NMSZ (Fig-298

ure 4). It was argued that this rate was in agreement with a steady-state fault system299

releasing one Mw8 earthquake every 500 to 1000 years, as expected then [Johnston, 1996].300

However, similar observations in the northern part of the NMSZ led to inconclusive re-301

sults, showing motions less than 3 mm/yr across the fault system [Snay et al., 1994].302

Similarly, episodic GPS measurements over the entire NMSZ reported no motion within303

uncertainties, placing an upper bound on deformation of 2.5 mm/yr [Newman et al., 1999].304

Argus and Gordon [1996] and Dixon et al. [1996] used continuously recording GPS sta-305

tions throughout the plate interior to establish an upper bound of 2 mm/yr for residual306

motions across the Central–Eastern U.S., that was later reduced to 0.5 mm/yr thanks to307

longer time series and a much larger number of measurement sites [Calais et al., 2006].308
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Analyses of continuous GPS data within the NMSZ continued to show no motion within309

uncertainties with an upper bound that decreased as time series duration increased [Calais310

et al., 2005; Calais and Stein, 2009]. Strain rates in the NMSZ “comparable in magni-311

tude to those across active plate boundaries” [Smalley et al., 2005] were later shown to312

result from an unexplained instrumental offset in the data [Calais et al., 2005]. A recent313

comprehensive reanalysis of continuous GPS data in the Central-Eastern U.S. confirms314

earlier results with motions that are consistently within the 95% confidence limit of zero315

deformation and places an upper bound on strain accrual of 0.2 mm/yr and 0.5 mm/yr in316

the New Madrid and Wabash Valley Seismic Zones, respectively [Craig and Calais , 2014;317

Boyd et al., 2015].318

Thus, the best geodetically studied SCR region, which experienced M7+ earthquakes in319

1811-1812 as part of a longer Holocene sequence of large events, shows no demonstrable320

deformation and a maximum rate of strain accrual . 0.2 mm over 200 k, or . 10−9 yr−1.321

More importantly, this upper bound on strain accrual is too low to account for the moment322

released by known large earthquakes of the past ∼5,000 years in the NMSZ (Figure 5;323

Craig and Calais [2014]). Taken together, the geodetic and paleoseismological data there-324

fore exclude steady–state fault behavior over that time period. Thus the rate at which325

the NMSZ is loaded, its mechanical strength, or both, vary with time. The fact that326

strain is currently not accumulating fast enough to account for large Holocene earth-327

quakes also implies that the NMSZ seismic activity must be releasing elastic strain energy328

that accumulated over a longer time interval.329
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Similar results are available for other plate interiors. Nocquet and Calais [2003] used330

continuous GPS measurements to show that Central Europe, defined as the region east331

of the Rhine Graben and north of the Alps and the Carpathians, behaves rigidly at a332

0.4 mm/yr level. An updated Europe-wide solution [Nocquet , 2012] confirms these findings333

and lowers the upper bound to 0.2 mm/yr for stable Europe, i.e., the continental region334

south of 52◦ N where the effect of Glacial Isostatic Adjustement (GIA) is insignificant335

and north of the tectonically active Alpine belts. This upper bound of 0.2 mm/yr applies336

to the seismically active Pyrenees [Rigo et al., 2015] and the Rhine Graben [Nocquet and337

Calais , 2004; Fuhrmann et al., 2013]. In South Africa, Saria et al. [2013] and Hackl et al.338

[2011] analyze a country–wide continuous GPS network and show that relative motions339

are indistinguishable from zero with an upper bound of 0.6 mm/yr. Beavan et al. [2002]340

use continuous GPS stations on the Pacific and Australian Plates and show that they each341

fit a rigid plate model with an RMS residual of 0.4 mm/yr. Tregoning et al. [2013] recently342

updated this number for the Australian continent, showing that present-day deformation343

is indistinguishable from zero with an upper bound of 0.2 mm/yr.344

The search for tectonic strain accumulation within plate interiors has so far failed to345

identifiy seismically active regions where strain currently accrues at a measurable rate.346

However, horizontal deformation caused by GIA in plate interiors is easily captured by347

space geodetic measurements, at least in the current uplift areas. The BIFROST perma-348

nent GPS network in Sweden and Finland provided the first three-dimensional map of349

GIA over Fennoscandia [Johansson et al., 2002; Lidberg et al., 2010; Kierulf et al., 2014].350

Larger-scale studies have also identified horizontal motions outside of the uplifting areas351
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in Western Europe [Nocquet et al., 2005] and North America [Calais et al., 2006; Sella352

et al., 2007] indicating that large parts of those two continental interiors are experiencing353

long-wavelength strain caused by GIA.354

Figure 6 shows a recently updated geodetic solution for stable North America following355

the methods described in Calais et al. [2006]. The velocities are residuals with respect356

to a subset of GPS stations located south of 42◦N whose velocities fit a rigid rotation357

model with a reduced χ2 close to unity. The regional pattern is consistent with that358

expected from GIA [Peltier et al., 2015], with extension (up to 10−8 yr−1) coincident with359

the uplift areas and shortening (1–3×10−9 yr−1) associated with the subsiding forebuldge.360

A comparison with instrumental seismicity shows an interesting anticorrelation with GIA361

strain rates, except perhaps in the Lower St Lawrence area [Mazzotti et al., 2005]. In362

other words, intraplate areas that are being strained as a result of GIA are not the ones363

that experience seismicity today. In addition, if GIA strain accrual was responsible for364

NMSZ earthquakes, the ∼1 mm/yr N–S shortening observed between the Great Lakes365

and the Gulf of Mexico would cause left-lateral and normal slip on the NE-SW–oriented366

New Madrid faults [Craig and Calais , 2014]. This is opposite to observations that show367

right-lateral and reverse motion consistent with large-scale tectonic stresses [Hurd and368

Zoback , 2012a]. These observations indicate that GIA strain accrual did not trigger New369

Madrid earthquakes, as also infered by Wu and Johnston [2000] on the basis of a modeling370

study.371
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5. The state of stress in SCRs

Stresses within the continental lithosphere result from the superposition of forces along372

plate boundaries that are transmitted into their interiors, forces at the base of the litho-373

sphere resulting from the relative motion between plates and mantle flow (the “shear374

tractions”), and buoyancy forces arising from lateral gradients of gravitational poten-375

tial energy caused by topography and intralithospheric density distributions [Fleitout and376

Froidevaux , 1983; Bird et al., 2008]. These “tectonic stresses” remain regionally coherent377

over very long times – millions of years – because the underlying processes vary slowly.378

Similarly, stresses within continents vary only slowly with distance. Stress indicators,379

notably earthquake focal mechanisms, show broad areas with consistent maximum com-380

pressive horizontal stress (Shmax) directions consistent with plate-driving forces, locally381

modified by lithospheric properties in some regions [Zoback and Zoback , 1989; Müller382

et al., 1992; Heidbach et al., 2007, 2010]. In North America, Shmax shows a very consis-383

tent WSW-ENE direction across the central and eastern U.S., all the way to southeastern384

Canada [Hurd and Zoback , 2012a; Herrmann et al., 2011]. This consistency is visible385

both in “natural” earthquakes and in the human–induced seismicity currently widespread386

thoughout Oklahoma and part of Texas. McNamara et al. [2015] show that well–induced387

earthquakes in central Oklahoma, some with magnitudes reaching 5.7 [Keranen et al.,388

2013, 2014], occur on faults that are favorably oriented in a ENE-WSW compressive389

stress field, with focal mechanisms consistent with this background tectonic stress field.390

The same observation holds for the NMSZ, where Hurd and Zoback [2012b] show focal391
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mechanism P-axes consistent with ENE-WSW Shmax orientation over much of the central392

and eastern U.S.393

That the crust breaks on pre-existing faults favorably oriented with respect to the re-394

gional tectonic stress field with source mechanisms consistent with that stress field does395

not necessarily mean that this background tectonic stress is responsible for bringing in-396

dividual faults to failure. For instance, the mechanism triggering recent seismicity in397

Oklahoma and Texas is wastewater injections following oil recovery, which increase pore398

pressure at depth, lowering effective normal stress on faults and bringing them closer to399

failure [Keranen et al., 2014]. This mechanism was likely the cause of the Mw5.7, Novem-400

ber 2011 earthquake in central Oklahoma, which was broadly felt and caused damage in401

the epicentral region [Keranen et al., 2013]. Ample evidence shows that earthquakes are402

sometimes triggered by fluid injections during oil recovery or mining operations and by the403

filling of water reservoirs [Rothé, 1968; Raleigh et al., 1972; Simpson, 1976; Gupta, 1985].404

Two mechanisms have been invoked to explain the latter, either the increase of elastic405

stresses due to the flexure of the crust under the load, or the lowering of effective normal406

stress on faults as water diffuses down to hypocentral depths [Simpson et al., 1988].407

Seismic swarms of natural origin are also attributed to fluid overpressure following the408

diffusion of mantle volatiles [Weise et al., 2001; Špičák and Horálek , 2001; Cappa et al.,409

2009] or meteoric water [Hainzl et al., 2006; Costain and Bollinger , 2010; Got et al., 2011;410

Leclère et al., 2013] to seismogenic depth. Many such studies argue that fluid overpressure411

at depth plays a key role in earthquake nucleation by lowering effective stress on fault412
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segments that are nearly critically stressed for shear failure [Sibson, 1990; Cappa et al.,413

2009; Wang and Manga, 2009].414

Alternately, earthquakes can be triggered by changes in elastic stresses driven by the415

loading or unloading of the crust by surface or ground water. González et al. [2012] showed416

that stress changes caused by water extraction from a shallow aquifer likely triggered a417

Mw5.1 earthquake near Lorca, Spain, in 2011. Its source mechanism indicates reverse418

faulting on the SW-NE–oriented Murcia fault and reflects the regional stress field imparted419

by the oblique convergence between Nubia and Eurasia [Nocquet and Calais , 2004]. Heki420

[2003] explains seasonal cycles in earthquake occurrence in northern Japan as a result of421

the modulation of the regional stress field by stresses of a few kPa caused by snow loading.422

Bollinger et al. [2007] and Bettinelli et al. [2008] report seasonal strain and stress variations423

in the Nepal Himalaya that correlate with seasonal variations in seismicity, with summer424

seismicity suppressed by stress-loading accompanying monsoon rains.425

Though most of the triggered earthquakes referred to above are small, some may be426

much larger. In northern Sweden and Finland, the series of M7–8 end-glacial earthquakes427

around 9,500 years ago has been interpreted as a result of decreased normal stresses on428

steeply dipping reverse faults as the Fennoscandian ice sheet was rapidly melting [Wu429

et al., 1999; Turpeinen et al., 2008; Steffen et al., 2014]. In the Basin and Range province430

of the Western U.S., Hetzel and Hampel [2005] show that the increased slip rate on the431

Wasatch fault since about 17 ka – more specifically the “strain release rate”, determined432

from the paleoearthquake record [e.g., Friedrich et al., 2003] – could be explained by the433

stress changes induced by a regression of Lake Bonneville and the melting of glaciers in434
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the Uinta and Wasatch mountains. In the upper Mississippi embayment of the Central435

U.S., Calais et al. [2010] showed that an intense erosional event between 16 and 10 ka436

caused upward flexure of the lithosphere and a reduction of normal stresses in the upper437

crust sufficient to unclamp pre-existing faults close to critical failure, possibly triggering438

the sequence of large Holocene earthquakes in the region. Once a large earthquake has439

occurred, stress changes may trigger additional regional events via elastic (coseismic) or440

viscoelastic (postseismic) stress transfer and a clustered sequence of events may develop441

[Kenner and Segall , 2000; Mueller et al., 2004].442

It therefore appears that the background tectonic stress field in the lithosphere can443

be effectively modulated by stress changes of external, non-tectonic, origin. Where the444

tectonic stressing rates are fast, as is typically the case at plate boundaries, external445

forcing may have only a minor modulating effect on the seismic cycle [Luttrell et al.,446

2007]. Luttrell and Sandwell [2010] show that eustatic sea level changes can modify stress447

on near shore faults at ∼100 Pa/yr, which is about 100 times slower than the stressing448

rate due to plate motions at major plate boundaries such as California or New Zealand.449

In SCRs, however, tectonic stressing occurs at rates that are at least 100 times lower450

than at major plate boundaries, so external forcings may dominate and localize earthquake451

activity in space and time. Hence, the timing and location of SCR earthquakes may452

be largely independent of long-term tectonic loading under a regional, essentially time-453

invariant, tectonic stress field, but instead be determined by small transient stress changes454

in a crust close to failure equilibrium. Regardless of the specific transient stress change455
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that brings a fault to failure, the resulting rupture mechanism will however be consistent456

with the background static tectonic stress field, which defines the style of faulting.457

The hypothesis that SCR faults are in a state of failure equilibrium is supported by (1)458

in situ stress measurements in deep wells, which agree well with predictions from Coulomb459

frictional-failure theory [Zoback et al., 1993], (2) seismicity induced by fluid injection and460

reservoir impoundment, as described above, and (3) triggering of earthquakes by small461

static Coulomb stress changes caused by nearby earthquakes [Stein et al., 1992, 1996].462

That SCR faults are critically stressed does not necessarily limit the strength of the crust463

as a whole. Townend and Zoback [2000] show that, for a high crustal permeability –464

hence near-hydrostatic pore pressures – critically stressed faults maintain a high crustal465

strength, allowing SCR crust to sustain large differential stresses.466

Seismically active areas within SCRs are sometimes interpreted as the result of lo-467

cal concentrations of tectonic stress or as mechanically weak regions [e.g., Sykes , 1978].468

Various mechanisms have been proposed including stress concentration at intersecting469

faults [Talwani , 1999], around buried intrusions in the crust [Campbell , 1978; Zoback and470

Richardson, 1996; Pollitz et al., 2001], or at the tip of a low velocity upper mantle seismic471

anomaly [Zhan et al., 2016]. Other proposed mechanisms involve local weakening of the472

lower crust either thermally– [Grollimund and Zoback , 2001; Kenner and Segall , 2000]473

or geochemically–induced [Chen et al., 2016] or bulk weakening in regions where the me-474

chanically strong mantle lithosphere is absent [Tesauro et al., 2015]. Although all these475

mechanisms are plausible, they would persist over long geologic time intervals, whereas476

SCR seismicity does not. For instance, Van Arsdale [2000] show that the NMSZ was ac-477
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tivated around 10,000 yrs ago after millions of years of tectonic quiescence during which478

all the processes listed above would have been operating, had they existed. Therefore,479

although such mechanisms may locally perturb the long-term, static, tectonic stress field480

of a continental interior, they do not explain why SCR seismicity is episodic, with long481

and variable seismically quiet time intervals, and some faults rupturing only once.482

Moreover, even if these processes were concentrating stress, the overall stress changes483

inside continents – including regions of stress concentration – arising from boundary and484

buoyancy forces, must occur at very low rates, as shown by the lack of detectable strain485

accumulation in continental interiors. The series of large earthquakes identified in the486

NMSZ in the past 3,000 yrs in the absence of detectable strain buildup (<0.2 mm/yr487

over 100 km) argues against the notion that large SCR earthquakes release elastic strain488

energy that accumulates locally over short (∼1,000 yrs) time scales, as described above.489

In addition, the notion that SCR earthquakes preferentially occur within zones of crustal490

weakness is at odds with a number of observations Zoback et al. [1985]. The frictional491

strength of faults and unfaulted rock are similar, as shown by laboratory and in situ stud-492

ies, so that there is no reason why pre-existing fault zones in the crust would have low493

strength. Also, seismically active areas in SCRs show no evidence of the anomalous stress494

field expected near weak regions. In North America, for instance, Shmax directions are495

uniform throughout the central and eastern U.S., with little to no variations in the seismi-496

cally active NMSZ [Hurd and Zoback , 2012b]. Hence Zoback and Zoback [1981] conclude497

that “seismicity in the central and eastern U.S. appears to be occurring in response to a498

broad, regionally uniform regional stress field”.499

D R A F T September 10, 2016, 4:34pm D R A F T



X - 26 CALAIS ET AL.: LARGE EARTHQUAKES IN SCRS

6. Conclusion: a possible mechanism for large SCR earthquakes

It appears that SCR earthquakes release strain from a pre-stressed lithosphere where500

faults are at failure equilibrium and can be triggered by small transient stress changes501

caused, for instance, by surface load variations or fluid diffusion in the crust. If so, these502

earthquakes do not require a significant tectonic loading rate, which has not been observed503

in continental interiors [Nocquet , 2012; Tregoning et al., 2013; Craig and Calais , 2014],504

or long term strain localization on specific crustal structures. This mechanism requires505

the lithosphere to be accumulating and storing elastic strain over longer intervals than is506

observable by geodesy or paleoseismology.507

Unfortunately, there is no present way to directly test the hypothesis of stored back-508

ground strain. However, the lack of evidence for localized interseismic strain accumu-509

lation in SCRs, together with observations that faults communicate over regions much510

larger than their length [Liu et al., 2011], suggest that they draw elastic energy from a511

broad, shared elastic strain reservoir. Similarly, the fact that strain from far-field motions512

is currently not accumulating fast enough to account for large earthquakes in the U.S.513

midcontinent indicates that large earthquakes there release elastic strain energy stored in514

the crust over long geologic time intervals [Calais et al., 2010; Craig and Calais , 2014; Liu515

et al., 2014].516

Another indirect line of evidence is Craig et al. [2016]’s observation that the end-glacial,517

reverse-faulting earthquakes of Fennoscandia occurred while the horizontal strain-rate was518

extensional. Consequently, faulting did not release extensional strain accumulating at the519

time of failure, but instead released compressional strain that had accumulated through520
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long-term tectonic forcing (Figure 7). This forcing is likely due to the ridge-push force521

exerted by the cooling and thickening oceanic lithosphere formed at the Mid-Atlantic522

Ridge [Gölke and Coblentz , 1996; Pascal et al., 2010], with a possible contribution from523

compressional stresses generated by ice loading during the last glacial period.524

In addition to tectonic forcing, Schrank et al. [2012] show that thermal-elastic stresses525

in excess of 100 MPa can be stored in the crust during the burial of granite, placing the526

buried rock in highly pre-stressed state. Experiments show that below 400◦C, expected in527

the brittle upper crust, only 10% of the total elastic energy is dissipated, with relaxation528

times of millions of years. Therefore, thermal elasticity may also bring the continental529

crust close to failure and contribute to a stress reservoir from which earthquakes can draw530

elastic energy.531

Large earthquakes outside plate boundaries also occur within “stable oceanic regions”,532

as shown on Figure 1, but in much fewer numbers. Though this difference could be due533

to a lack of historical information on oceanic regions, it may also reflect the fact that the534

oceanic crust is more homogeneous than continental crust, if only because its age never535

exceeds 200 million years, and less subject to local or regional perturbations of stress or536

fault strength. For instance, hydrological loads do not change ocean bottom pressures, as537

shown by the very low secular/seasonal gravity changes derived from GRACE over the538

oceans compared to continental regions [e.g., Wouters et al., 2014].539

If faults in SCRs are at failure equilibrium in a pre-stressed crust able to sustain large540

differential stresses, then the occurrence of SCR earthquakes in time and space is better541

explained by transient perturbations of stress or fault strength than by the slow accu-542
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mulation of tectonic stress on long-lived active faults. In other words, while tectonic (or543

thermal) stress provides the energy that is released during large SCR earthquakes, earth-544

quake occurrence results from a local and temporary perturbation of stress or crustal545

strength near a fault that is favorably oriented relative to the regional tectonic stress546

field. These transient perturbations may result from fluid pore pressure increase at earth-547

quake nucleation depth, or from local changes in “secondary stresses” – for instance caused548

by surface loading/unloading. Hence, earthquake sequences appear episodic and clustered549

– sometimes involving a single rupture – rather than persistent.550

If faults in SCRs are activated by transient loading stresses or fluid overpressures and551

draw energy from a long-lived and broadly distributed “strain reservoir”, they need not be552

steady-state systems, on any time scale. For the same reasons, large SCR earthquakes may553

occur in the absence of geodetic evidence for local strain accumulation around the faults554

that are activated. If so, geodetic measurements may contain limited information about555

the seismic potential of faults in SCRs, as shown by the lack of correlation between current556

strain accrual and seismicity in stable North America (Figure 6). The same holds for the557

location of past large earthquakes or current seismicity, which indicate where strain release558

occurred but not necessarily where it accrues today in preparation for future events. In559

that view, seismic hazard in SCRs is likely to be more spatially distributed than indicated560

by paleoearthquakes, current seismicity, or geodetic strain rates.561
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Figure 1. Worldwide seismic activity (http://earthquake.usgs.gov/). Large circles show

M>6 intraplate earthquakes: red for stable continental regions, white for stable oceanic regions.
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Figure 2. Stress changes and earthquake sequence. Top: a sequence of plate boundary

earthquakes occurs as a result of tectonic loading, at a rate that may slightly vary with time, and

temporal variations in fault strength [Kanamori and Brodsky , 2004]. Bottom: in SCR settings,

stress accrues at very slow rates and earthquakes occur as a result of fault strength change (black

line, e.g., fluid pore pressure increase at seismogenic depth) or of transient stress perturbations

(blue line, e.g., hydrological or sedimentary load change).
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Figure 3. Compilation of surface-breaking earthquake recurrence data for SCR settings

updated from [Crone et al., 2003; Clark et al., 2012]. Data for the Roer Valley Graben are from

Vanneste et al. [2001], Frechen et al. [2001], and van den Berg et al. [2002]

.
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Figure 4. Maximum permissible deformation rates in the NMSZ as a function of publication

year. Circles show continent-wide studies; squares show NMSZ studies. Red are publications

claiming rates significantly different from zero; blue are upper bounds for publications claiming

rates not significantly different from zero. The decrease in rates as a function of time reflects more

precise site velocity estimates because of both more precise site positions and longer observation

time spans.
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Figure 5. Earthquake recurrence interval as a function of slip rate across the New Madrid fault

zone in steady-state, with two end-member values of coseismic slip for magnitude 7 (magenta

and red curves) and magnitude 8 (blue and black curves) earthquakes. Numbers by each curve

indicate the assumed coseismic slip in meters. Note that the GPS and paleoseismology domains

do not overlap [Newman et al., 1999; Craig and Calais , 2014].
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Figure 6. Comparison between current geodetic horizontal strain rates and seismicity in the

North American plate interior. (A) Raw GPS site velocities after the removal of a rigid plate

rotation. Ellipses are 95% confidence. (B) Spatially averaged residual velocities calculated using

a nearest neighbor scheme with a search radius of 800 km [Calais et al., 2006]. (C) Residual

velocity field interpolated to triangle vertices and corresponding principal strains. (D) Historical

and instrumental seismicity, NEIC catalog (neic.usgs.gov).
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Figure 7. Evidence for the release of long-term tectonic strain stored in continental interiors

[Craig et al., 2016]. (A) Rate of change of applied normal stress on a fault representative of the

overall trend of the majority of known major end-glacial faults in Fennoscandia (strike = 035◦,

and dip = 40◦). (B). Long-term tectonic stress (principal directions) resulting to the ridge-push

force exerted by the cooling and thickening oceanic lithosphere formed at the Mid-Atlantic Ridge

[Gölke and Coblentz , 1996]. (C) Second invariant of the deviatoric strain rate tensor, overlain

by the principle axes of the horizontal strain rate tensor (colored blue for extension and red for

compression).
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