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Abstract 12 

The evolution of through-going normal-fault arrays from initial nucleation to 13 

growth and subsequent interaction and mechanical linkage is well documented in 14 

many extensional provinces. Over time, these processes lead to predictable spatial 15 

and temporal variations in the amount and rate of displacement accumulated along 16 

strike of individual fault segments, which should be manifested in the patterns of 17 

footwall exhumation.  18 

Here, we investigate the along-strike and vertical distribution of low-19 

temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, 20 

the Livingstone fault, of the Karonga Basin of the northern Malawi Rift.  The fault 21 

evolution and linkage from rift initiation to the present day has been previously 22 

constrained through investigations of the hanging wall basin fill. The new cooling 23 
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ages from the footwall of the Livingstone fault can be related to the adjacent 24 

depocenter evolution and across a relay zone between two palaeo-fault segments.  25 

Our data are complimented by published apatite fission-track (AFT) data and reveal 26 

significant variation in rock cooling history along-strike: the center of the footwall 27 

yields younger cooling ages than the former tips of earlier fault segments that are 28 

now linked. This suggests that low-temperature thermochronology can detect fault 29 

interactions along strike. That these former segment boundaries are preserved within 30 

exhumed footwall rocks is a function of the relatively recent linkage of the system. 31 

Our study highlights that changes in AHe (and potentially AFT) ages 32 

associated with the along-strike displacement profile can occur over relatively short 33 

horizontal distances (of a few kilometers). This is fundamentally important in the 34 

assessment of the vertical cooling history of footwalls in extensional systems: 35 

temporal differences in the rate of tectonically driven exhumation at a given location 36 

along fault strike may be of greater importance in controlling changes in rates of 37 

vertical exhumation than commonly invoked climatic fluctuations.  38 

Keywords: Apatite Helium thermochronology; normal-fault evolution; fault linkage; 39 

East African Rift System 40 

 41 

1. Introduction 42 

The displacement across a crustal-scale normal-fault is accommodated by a 43 

combination of hanging wall subsidence and, as a consequence of isostatic 44 

adjustments, to a lesser extent corresponding footwall uplift (e.g., Jackson and 45 

McKenzie, 1983; Walsh and Watterson, 1987; Stein and Barrientos, 1985). This 46 



process leads to the vertical exhumation of rock through the footwall over time, and 47 

should be a function of the amount and rate of displacement both across and along 48 

strike of the fault at a first order, modified by any climatically driven variation in 49 

exhumation. The amount and rate of displacement along individual normal-faults 50 

within developing fault arrays evolves in a predictable manner (e.g., Walsh and 51 

Waterson, 1987, 1991; Gupta et al., 1998; Cowie et al., 2000; Trudgill and 52 

Cartwright, 1994). Due to the increase in relief and surface-process gradients this 53 

spatial distribution of displacement accumulation along an evolving fault array should 54 

be manifested in the patterns of footwall exhumation. While many studies have 55 

utilized low-temperature thermochronology to determine changes in vertical rates of 56 

exhumation, specifically to constrain the onset of rifting (Fitzgerald, 1992; Bauer et 57 

al., 2010; Woodruff et al., 2013; Torres Acosta et al., 2015) or to elucidate changes 58 

in climatically driven exhumation (e.g., Ehlers et al., 2006; Spiegel et al., 2007), few 59 

studies have utilized the technique to determine along-strike fault displacement 60 

variations through time. Armstrong et al. (2004) demonstrated a lack of along-strike 61 

variation in apatite (U-Th)/He ages (AHe) for the Wasatch fault, USA, such that 62 

mechanical segmentation of the fault is not preserved despite its segmented footwall 63 

topography. Conversely, Krugh (2008) demonstrated different cooling ages in relay 64 

zones that correspond to different timing of mechanical linkage between fault 65 

segments along the Wassuk Range in the Basin and Range province, USA. 66 

The lack of thermochronology case studies is surprising as the manner by 67 

which extensional fault systems grow is well documented from natural examples and 68 

numerical modelling. Normal-faults typically grow through a combination of fault-tip 69 

propagation and displacement accumulation, and through fault linkage to produce 70 

arrays comprising a series of kinematically linked segments (e.g., Dawers et al., 71 



1993; Gupta et al., 1998; Cowie et al., 2000). Isolated faults propagate in length as 72 

stress builds up at the fault tip; when this overcomes the yield strength of the 73 

surrounding rock, it ruptures (e.g., Cowie and Scholz, 1992). As isolated faults 74 

propagate toward each other their stress fields interact to produce a feedback effect, 75 

whereby the displacement on one structure causes slip on another (Cowie, 1998; 76 

Gupta and Scholz, 2000). The anticipated maximum displacement on a single fault is 77 

scaled to its overall length (Schlische et al., 1996; Dawers and Anders, 1995). 78 

Additionally, the spatial distribution of displacement along strike of individual faults 79 

occurs in a relatively predictable pattern due to the mechanisms of fault growth and 80 

linkage (Figure 1).  Fault-displacement profiles, that is the amount of displacement 81 

accumulated across the fault versus distance along strike, of isolated faults have a 82 

bell-shaped (often flat topped) profile with the greatest amount of displacement 83 

occurring toward the center of a fault and displacement minima at the fault tip (Walsh 84 

and Waterson., 1991; Dawers et al., 1993; Cartwright et al., 1995). The idealised 85 

displacement profile demonstrated for isolated faults is also documented for evolving 86 

fault arrays. Interacting faults achieve a combined displacement for the entire length 87 

of the linked array, with maximum displacement in the center and minimum at the tip 88 

(e.g., Gupta et al., 1998; Cowie et al., 2000; McLeod et al., 2000).  Not all faults 89 

achieve this displacement profile through a constant interplay of propagating length 90 

and then acquiring displacement. Some isolated segments achieve their length early 91 

and then accrue displacement. In this case, fault length is often determined by the 92 

interaction with other propagating faults, and structures are initially under-displaced 93 

until the bell-shaped profile is achieved (Walsh et al., 2002).  94 

The ideal model of fault interaction (Figure 1) commences with nucleating 95 

isolated normal-faults (Cowie, 1992). As these isolated faults propagate they interact 96 



with neighboring structures along strike (Cowie et al., 2000). Their fault tips may 97 

propagate past one another, and stress builds up within the region of overlapping 98 

fault tips; while they are inhibited in lengthening further as the fault tip propagates 99 

into the region of reduced stress on the neighboring fault (Gupta and Scholz, 2000). 100 

This leads to a steeper displacement gradient close to the overlapping fault tips, and 101 

the displacement profile of the individual fault segments becomes asymmetrically 102 

skewed toward one another as they interact (Peacock and Sanderson, 1991; Nicol et 103 

al., 1996).  104 

Instead of continuing to propagate as an isolated fault, the fault segments 105 

become mechanically linked across the region of overlap, or “relay” zone to form a 106 

single through-going fault, often abandoning the fault tips as the relay is breached 107 

(e.g., Walsh and Watterson, 1991; Peacock and Sanderson, 1991; Trudgill and 108 

Cartwright, 1994).   109 

During this interaction, therefore, the overall length of the fault becomes the 110 

combined length of the overlapping fault segments. Where previously there was 111 

minimal displacement at the former fault tips, this region is now the center of the 112 

through-going fault after linkage. Thus the displacement amount and rate within the 113 

relay zone increases as the fault moves towards a bell-shaped displacement profile, 114 

with maximum displacement in the center, and minimum at the tip (Gupta et al., 115 

1998). This process can lead to faults appearing to be “under-displaced” in the 116 

region of a former relay zone as the amount of displacement in the center adjusts to 117 

the new fault length (Gupta et al., 1998). Not all faults will follow this idealised 118 

pattern. In the same manner as some fault segments can propagate their length first 119 

and later accrue displacement; fault arrays can rapidly acquire their length and 120 

subsequently accrue displacement (Morley, 1999). 121 



 122 

These patterns of fault growth and linkage should be manifested in AHe 123 

dating, as the cooling history along fault strike should vary, reflecting the different 124 

rates of displacement accumulation on a propagating normal-fault array.  125 

Here, we apply apatite (U-Th)/He dating to the segmented border fault system 126 

of the Karonga Basin of the Malawi Rift, East African Rift System (EARS; Figure 2). 127 

The structural evolution of the Karonga Basin is well constrained from previous 128 

studies that utilized seismic reflection data (Mortimer et al., 2007). Based upon the 129 

distribution of depocenters, the pattern of border fault evolution through the linkage 130 

of fault segments, and the presence of a relay zone has been established. Here, we 131 

investigate whether this established evolution of the border-fault array is reflected in 132 

the footwall AHe cooling ages. Specifically, we aim to determine whether variations 133 

in AHe ages exist at similar elevations along-strike, reflecting fault segmentation. In 134 

contrast to other studies that have looked to reveal fault segments through AHe 135 

analyses, we know the segmentation history and do not rely upon footwall 136 

morphology. Instead we evaluate whether the known variations in the spatio-137 

temporal displacement distribution are recorded in the exhumational cooling of the 138 

footwall.  139 

2. Geologic setting 140 

The EARS (Figure 2) comprises two geologically distinct, and strongly 141 

contrasting branches; the largely amagmatic western and magmatic eastern 142 

branches passing either side of the Tanzania Craton, an area of regional doming 143 

(Wichura et al., 2015), and superimposed upon existing Proterozoic mobile belts 144 

(McConnell, 1972; Shackleton, 1993). The eastern rift is a narrow zone of 145 



extensional basins in northern Tanzania and Kenya with well documented spatio-146 

temporal variations in the onset of rift-related volcanism (George et al., 1998; 147 

Ebinger and Sleep, 1998; Ebinger, 1989; Morley et al., 1992; Morley, 1999; Michon, 148 

2015) that commenced at ca. 43 Ma in Ethiopia. The western rift comprises a series 149 

of deep half-graben basins with footwall escarpments rising 1-2 km (Ebinger, 1984, 150 

1989; Rosendahl, 1987). The onset of rifting within the western rift varies with the 151 

Rukwa Rift initiated 26-25 Ma (Roberts et al., 2012); and <10 Ma in the Albertine 152 

graben (Pickford and Senut, 1994), while it has been shown that extension-related 153 

exhumation in the Rwzenori Mountains of Uganda began during the Eocene (Bauer 154 

et al., 2013). Rifting within the Malawi Rift has previously been considered to have 155 

commenced at the onset of volcanism, ca. 8.6 Ma (Ebinger et al., 1993). However, 156 

based on apatite fission-track cooling ages, Cenozoic cooling within the Malawi Rift 157 

commenced after 40 Ma, with most rapid cooling occurring in the past 20 Ma (van 158 

der Beek et al., 1998). 159 

The Malawi Rift is in the southernmost rift of the western branch of the EARS 160 

and the Karonga Basin refers to the northern lake-filled basin within the rift (Figure 161 

2). It is bounded to the east by a large (>90 km long) crustal-scale normal-fault, the 162 

Livingstone fault, with >2000 m of footwall relief (relative to lake level); the fault 163 

accommodates >4 km of sediments in its hanging wall beneath the deep (up to 600 164 

m) Lake Nyasa (Figure 2). The basin fill and border-fault architecture has been well 165 

documented from seismic reflection data (Rosendahl, 1987; Ebinger et al., 1993, 166 

1987; Scholz, 1989; Mortimer et al., 2007). The sedimentary fill of the hanging wall 167 

comprises three depositional sequences (Scholz, 1989; Ebinger et al., 1993; 168 

Mortimer et al., 2007): Sequence 1 >8.6 Ma to 2.3 Ma, Sequence 2 from 2.3 Ma to 169 

1.6 Ma, and Sequence 3 from 1.6 Ma to present (Ebinger et al., 1993).  170 



The border fault consists of three segments: the northern, central and 171 

southern segments (Figure 2). The tips of the central and southern segments overlap 172 

where there is a notable step in the shoreline, corresponding to a relay structure, 173 

close to the village of Lupingu (red star on Figure 2b). This relay is adjacent to the 174 

deepest portion of the modern-day Lake Nyasa. The northern and central segments 175 

linked to form a continuous structure early in the basin history, and the 176 

corresponding segment boundary is marked by a small step in the lake shoreline 177 

(Figure 2; Mortimer et al., 2007).  At the top of the Livingstone escarpment is a 178 

broad, high-elevation (>2000 m) plateau region (Figure 2).  179 

In addition to the existing seismic studies on the basin, we utilize a 180 

reprocessed dataset of the PROBE (Scholz, 1989) survey to better constrain the 181 

location of the offshore fault tip of the southern fault segment. A monocline located 182 

along strike of the southern segment, with growth strata adjacent to it, pinpoints the 183 

location of the fault tip (Figure 2) and defines the 6 km wide relay zone between the 184 

two fault segments. This monocline developed late during the deposition of 185 

Sequence 2 (post 2.3 Ma), recently in the border-fault evolution. This implies that 186 

mechanical linkage occurred relatively recently. Determining the location of the fault 187 

tip for the central segment within this relay zone relies upon footwall relief from the 188 

SRTM data.  189 

2.1 Evolution of the Livingstone fault 190 

The evolution of the border fault has previously been established (Mortimer et 191 

al., 2007; Figure 3). Importantly, at each stage or Sequence of strata in the hanging 192 

wall units, the most rapid displacement accumulation is likely to have been located in 193 

regions of greatest displacement, identified by regions of greatest sedimentary 194 



thickening (Figure 3b i-iii). Initially, the north and central segments were associated 195 

with significant depocenters from Sequence 1 (Figure 3i), and most of the 196 

displacement occurred in these regions (Figure 3b i).  The central and southern 197 

segments were isolated (scenario A in Figure 1), consistent with the onset of rifting 198 

occurring earlier in the north than south of the basin (Ebinger et al., 1993; Mortimer 199 

et al., 2007). During deposition of Sequence 2 (Figure 3ii) there was a shift in 200 

deposition toward the center and south of the basin as these two segments 201 

overlapped and the relay zone developed between the central and southern 202 

segments. The depocenters associated with the central segment moved toward this 203 

relay zone, although the relay was clearly a ramp between the two faults (scenario B 204 

in Figure 1). At this time, footwall uplift would have migrated toward the relay zone as 205 

displacement skewed (Figure 3ii). The northern segment continued to accrue 206 

displacement. During Sequence 3 (Figure 3iii), the relay zone and southern segment 207 

are important depocenters, and are regions of highest displacement. The relay zone 208 

was breached during the latest stages of Sequence 3 and sediment was deposited 209 

into the hanging wall of this breaching fault as the depocenters migrated towards the 210 

relay zone (Mortimer et al., 2007). At this time, the fault tip of the central segment 211 

was captured into the hanging wall of the through-going fault (scenario C Figure 1). 212 

The cumulative displacement along the border fault (Figure 3iv) shows time to 213 

basement ranges from 2600 to 4000 ms two-way travel time (twt). Evident from this 214 

is the segmentation along the fault that existed during the deposition of Sequence 1. 215 

This sequence accrued significant displacement, and combining the total 216 

displacement through each stage is still reflected in the cumulative throw today 217 

(Figure 3i-iii). The greatest amount of offset of the basement is adjacent to the 218 

central segment. The total displacement adjacent to our samples in the northern and 219 



central segments is similar overall. What this cumulative throw does not highlight is 220 

that the greatest, and probably most rapid, displacement occurring in the most recent 221 

history to the present-day, corresponds to where the lake is deepest (the deepest 222 

depocenters being created in the final stages). This is located adjacent to the relay 223 

zone and toward the southern segment (Figure 2b). These patterns of fault evolution 224 

and hanging wall subsidence can be considered to reflect where the greatest amount 225 

and rate of associated footwall uplift and exhumation were likely to have been 226 

occurring through time; the depocenter distribution thus can be utilized as a proxy for 227 

fault controlled footwall exhumation patterns in the absence of footwall markers for 228 

absolute displacement (Figure 3i-iv).  229 

2.2 Existing Low-Temperature Thermochronology 230 

Van der Beek et al. (1998) used apatite fission track (AFT) analyses to 231 

investigate the denudational cooling history of the Livingstone escarpment and 232 

plateau. The data reveal at least three episodes of cooling and denudation related to 233 

regional tectonic events, the most recent in the Cenozoic associated with the present 234 

day EARS. AFT ages from the footwall scarp on the central fault segment (the 235 

location of the samples of van der Beek et al. (1998) are indicated on Figure 2c) 236 

range between 178 and 50 Ma and exhibit a positive age-elevation profile. A single 237 

AFT age close to the fault tip and at lake level (460 m; sample DD485a; Figure 1) is 238 

128 Ma; this is anomalously old compared to a sample from the base of the scarp 239 

(675 m elevation), which yielded an AFT age of 50 Ma. The data suggest that the 240 

center of the fault segment underwent 2.2 ± 0.4 km of exhumation in the Cenozoic, 241 

assuming a geothermal gradient of 25-30°C/km. In this study, we aim to determine 242 

whether apatite He cooling ages better constrain the evolution of Cenozoic rifting 243 

within this region of the Malawi Rift. 244 



 245 

3. Apatite He dating Methods 246 

The AHe dating technique relies on the production of alpha particles (4He) as a 247 

result of radioactive decay of U, Th and Sm isotopes (Farley et al., 1996). The rate at 248 

which He diffuses through a crystal depends on the grain size, time, radiation 249 

damage and temperature. Helium starts to be retained within apatite crystals at less 250 

than 80°C, with retention increasing dramatically from ~40°C; between ~80 and 40°C 251 

is the partial retention zone (PRZ). The AHe ages therefore record the time since 252 

these samples were open for He diffusion at temperatures in excess of 40°C. The 253 

technique is, therefore, particularly sensitive to processes active in the uppermost 254 

part of the crust. We analysed apatites from 10 samples from the region surrounding 255 

the relay zone, including two from the summit plateau (TAN 10 and 14), one near the 256 

top of the escarpment (TAN 15), four (TAN 16, 17, 18, 20) at, or close to, lake level 257 

on the central fault segment, and three (TAN 3, 7, 9) from the northern segment 258 

(Figure 2). Apatites were separated using standard heavy-mineral separation 259 

techniques. The number of analyses was limited by the quality of the apatite (no 260 

inclusions, good crystal morphology) in the samples. Between 1 and 4 aliquots of 1 261 

to 3 apatite grains were hand-picked for each sample at 218x magnification using a 262 

stereographic binocular microscope. To minimize grain-size variation effects, crystals 263 

of similar radius were selected for each aliquot. He, U and Th analyses were 264 

conducted following procedures outlined in Foeken et al. (2006). Correction for He 265 

recoil loss was made using standard procedures (Farley and Stockli, 2002). The total 266 

analytical uncertainty of He ages of each aliquot is approximately 8%, governed by 267 

uncertainty in blank corrections and U and Th spike concentrations. Aliquots that 268 

yielded analytical uncertainties greater than 10% (n = 5), and that are older than AFT 269 



ages (n = 5) are not reported. He, U and Th concentrations, grain dimensions, 270 

uncorrected ages and corrected ages of our samples are reported in Table 1. Age 271 

reproducibility was variable (Table 1), as a result weighted mean ages with 272 

appropriate error propagation which takes into account repeat grain-age variance are 273 

reported (Table 2) and discussed in the text. The cause of the variability is not clear. 274 

Individual samples showed some variation in U and Th content e.g. Tan 14 U: 10-62 275 

ppm; Th: 45-116, whilst others e.g. Tan 16 U: 31-37 ppm; Th: 6.6-7.6 ppm; showed 276 

little. As a result effective uranium (eU) ([U] + (0.235*[Th]) which is a proxy for alpha 277 

productivity) (Table 1) varies within and between samples, however, there is no 278 

systematic correlation between aliquot age and eU content (see Appendix A).  279 

AHe grains were modelled using the HeFTy (v1.8.2) computer program 280 

(Ketcham, 2005) using measured U, Th, grain size and uncorrected AHe ages. The 281 

time-temperature histories use an inverse modelling approach, for each thermal 282 

history the model was constrained by a surface temperature of 20°C and a fission-283 

track age of 50 Ma (DD490; van der Beek et al., 1998); 120 Ma if located in the relay 284 

zone or 220 Ma if located on the plateau (DD478; van der Beek et al., 1998). The 285 

alpha stopping distance corrections of Ketcham et al. (2011) were used. The 286 

calibrations of both Farley (2000) and the radiation damage and annealing model 287 

(RDAAM) of Flowers (2009) was implemented, the latter specifically for the samples 288 

from the top of the Livingstone plateau, which potentially experienced slow to 289 

moderate cooling (1-0.1°C/km).  Individual aliquot data were modelled for each 290 

sample with the final thermal history profile that is used in the discussion produced to 291 

represent the variability of the best fit solutions within the sample set (Figure 4). 292 

Overall within sample trends are similar suggesting that despite the age variability, 293 

the grains have experienced similar cooling histories.  294 



4. RESULTS: Apatite U/Th-He age distribution. 295 

The lake-level samples between the central and southern segments span 10 km 296 

along fault-strike, and there is more than 30 km between these and samples from the 297 

northern segment (Figure 2 for location). Samples TAN 17 and TAN 18 are located 298 

close to the base of the vertical profile of van der Beek et al. (1998), while the 299 

location of sample TAN 16 is is virtually identical to their sample DD485a (AFT age = 300 

128 Ma at 460 m elevation). 301 

The weighted mean AHe ages (Table 2) range from 2.1 ± 1.3 Ma to 197.4 ± 2.7 302 

Ma with the age distribution consistent with the distribution of sampling both along 303 

fault strike and from a near-vertical profile from the top of the plateau to the base of 304 

the escarpment (Figures 3 and 4). Cenozoic ages occur closest to lake level while 305 

the oldest ages (e.g., TAN 10: 197.4 ± 2.7Ma) were determined for samples from the 306 

plateau, and at an elevation greater than 1500 m (TAN 14). To the south, the 307 

youngest ages are from samples located toward the center of the central fault 308 

segment (TAN 17 = 12.5 ± 7.5 Ma and TAN 18 = 7.1 ± 3.2 Ma).  TAN 16 (29.7 ± 1.2 309 

Ma), the oldest lake-level sample, is located close to the fault tip. TAN 20 (21.6 ± 9.2 310 

Ma), located within the relay zone and at 673 m elevation, yields a similar age to 311 

TAN15 (22.5 ± 3.4 Ma) from the southern segment at 1270 m elevation. The 312 

youngest age, TAN 7 (2.1 ± 1.3Ma), is reported from the northern segment, and is 313 

considerably younger than the other adjacent Oligo-Miocene ages reported. TAN 3 314 

(14.2 ± 1.1 Ma) is within reported error of TAN 9 (12.1 ± 3.5) close to the center of 315 

the northern segment at lake level (Figure 4). 316 

AHe ages not only vary along-strike but also vertically, as shown by the age-317 

elevation relationship (AER; Figure 5). These oldest AHe samples are from the 318 



summit and plateau of the scarp; closer to lake level (460 m) is a spread of younger 319 

(Oligo-Miocene) AHe ages (Figure 5). AERs are frequently used to constrain the 320 

timing of onset of rapid exhumation or, in this case, the onset of extensional faulting 321 

and rift initiation. Given the scatter of Cenozoic ages, care must be taken when 322 

considering the AER for the Livingstone escarpment. Samples used for the AER are 323 

TAN 14 and TAN 15 that are vertically directly above one another and within the 324 

same fault segment, and TAN 20, the closest sample to that profile. There is a 325 

distinct break in slope below 1500 m (between TAN 14 and TAN 15) with the AER 326 

recording at least one order of magnitude increase in the rate of exhumation. This 327 

dramatic change takes place before the late Oligocene/early Miocene (23±3 Ma). 328 

This is likely the latest time of onset of Cenozoic exhumation in this part of the 329 

Malawi Rift. It is in agreement with the AER from apatite fission-track data that 330 

indicated most cooling has occurred in the last 20 million years (van der Beek et al., 331 

1998), and is contemporaneous with the dated onset of Cenozoic rifting in the 332 

Rukwa Rift (Roberts et al., 2012) immediately to the north (Figure 2a).  This is 333 

significantly earlier for the Malawi Rift than has been previously postulated.   334 

The thermal history modelling for all aliquots measured (Figure 4) shows that the 335 

samples from the plateau and the top of the footwall escarpment (TAN 10 and TAN 336 

14) experienced slow cooling through the PRZ from the Jurassic. In contrast, 337 

samples from the footwall escarpment have all cooled to the surface during the 338 

Cenozoic. These samples exhibit somewhat different cooling paths depending upon 339 

their position, both vertically and along strike. Samples TAN 15 (1289 m), TAN 16 340 

(560 m, at the fault tip) and TAN 20 (~700 m, southern segment) have similar 341 

modelled cooling paths, starting relatively flatter and then steepening slightly as they 342 



entered the PRZ between ca.35 and 20 Ma, from which time they cooled relatively 343 

monotonically. 344 

Samples TAN17 and 18 were exhumed through the PRZ more recently (since 345 

c.15 and 9 Ma respectively; Figure 4; Supplementary figure) and more rapidly than 346 

other parts of the border fault.  This would be anticipated given their position at the 347 

center of the fault segment (e.g. Gupta et al., 1998) (Figure 3i-iii). The fact that they 348 

do not record their exhumation onset as early as the vertical profile might suggest 349 

(i.e., late Oligocene-early Miocene) is potentially due to the greater amount of 350 

material that would be exhumed through the central portion of the fault or temporally 351 

variable fault-segment activity. Samples TAN 17 and 18 (Figure 4c) record more 352 

rapid, tectonically driven exhumation in the past 10 Ma at the center of the structure, 353 

as discussed below. 354 

From the northern fault segment (Figure 4b), samples TAN 3 and TAN 9 exhibit 355 

similar cooling paths; TAN 3 commenced cooling slightly earlier (since c.20 Ma) and 356 

more slowly than TAN 9 (since c.15 Ma). These samples are from close to the center 357 

of the fault segment, have similar (although later) cooling histories, and are located 358 

in a similar position to TAN 18 and TAN 17 in the central fault segment. TAN 7 is 359 

exceptionally young (2.1 Ma; Table 2) and may have been reset by hydrothermal 360 

fluid flow. Fluid flow was advocated by van der Beek et al. (1998) elsewhere in the 361 

rift to explain young AFT ages and this sample is located along a cross-cutting fault 362 

(Mortimer et al., 2007) that might explain the fluid pathway.  No thermal history 363 

models are therefore presented for this sample. 364 

 365 

5. Discussion 366 



The new low-temperature cooling ages clearly demonstrate that the fault tip and 367 

relay zone (TAN 16, TAN 20) and the northern segment (TAN 3, TAN 9) commenced 368 

exhumation in the early Miocene while the center of the southern segment (Tan 17, 369 

Tan 18) commenced exhumation more recently. This agrees with the inferred 370 

southward propagation rifting within the Malawi Rift (Ebinger et al., 1993). This is 371 

consistent with the thicker sediments of the Sequence 1 depocenter adjacent to the 372 

northern segment (Figure 3; Mortimer et al., 2007). It is unlikely that ages that record 373 

the onset of rifting will be preserved close to lake level as the rapid exhumation 374 

associated with fault linkage and changes in displacement rate are probably of 375 

greater magnitude than earlier regional uplift associated with Cenozoic rifting. The 376 

individual cooling paths are, therefore, more likely to illustrate local changes in 377 

displacement rate rather than recording the regional exhumation. The AER shows a 378 

break in slope before the Early Miocene (Figure 5) that coincides with the onset of 379 

Cenozoic rifting in the Rukwa Rift (Roberts et al., 2012). While this link should be 380 

treated with caution, it should also be noted that the cooling ages at the fault tips 381 

(which are more likely to preserve regional onset as displacement rates here were 382 

lower) are similar, supporting the contention that it does record the timing of onset of 383 

regional Cenozoic rifting effects in the Malawi Rift.  384 

We consider the variation in AHe ages and cooling paths along the fault 385 

segments of the Malawi Rift, in particular the central segment, in the context of the 386 

evolution of the border fault system and find their distribution along the fault 387 

compelling despite the limited number of data.  Rocks closer to the fault tips have 388 

experienced a more protracted cooling history than those closer to the segment 389 

centers in both the northern and central-southern segments.  Additionally, 390 

segmentation appears to be preserved along the fault: TAN 16 at the fault tip records 391 



older, more slowly exhumed rocks; despite the present-day scenario of a fully linked, 392 

through-going normal-fault bordering an under-filled basin with the maximum 393 

displacement at its center (Figure 3; and lake bathymetry, Figure 1).   394 

Within this context, we combine our AHe ages from the Malawi Rift, with the 395 

established normal-fault evolution (Mortimer et al., 2007; Figure 3) and predicted 396 

models of normal-fault evolution (e.g., Gupta et al., 1998) and envisage the cooling 397 

path of rocks at different locations along strike as they are vertically exhumed in an 398 

evolving, interacting and linking normal-fault system. This allows us to present a 399 

model (Figure 5), focusing upon the relationship between cooling ages along the 400 

central and southern segment, but relevant for the northern segment, which not only 401 

accounts for the observed AHe age distribution in the Malawi Rift, but also considers 402 

the particular scenarios that have led to segmentation being preserved in the cooling 403 

paths here.  404 

In a predicted fault profile of displacement along fault strike (sensu Gupta et al., 405 

1998), the center of an isolated fault will experience more rapid footwall exhumation 406 

than the tip of a fault, as this is where displacement is greatest. Therefore, rocks in 407 

the center of the fault segment will begin vertical exhumation earlier and more rapidly 408 

than those at the fault tip (Figure 6 a and b; stages 1 and 2). 409 

Faults rarely grow in isolation, but interact along strike leading to a skew in the 410 

profile in such a way that the displacement (and exhumation) rate increases toward 411 

the overlapping fault and relay zone as the fault segments become linked and 412 

effectively become an integral part of the full length of the through-going structure. 413 

The central segment is today, mechanically linked to the southern segment across 414 

the relay zone. These two segments have interacted and experienced a skew in their 415 



displacement during Sequence 2 and Sequence 3 when depocenters adjacent to the 416 

central and southern fault segments moved toward one another and the relay 417 

breached toward the end of the time of deposition of Sequence 3 (Mortimer et al., 418 

2007; Figure 3).  Rocks being exhumed close to the former fault tips would 419 

experience a more rapid cooling later in their history as the new through-going 420 

mechanically linked fault develops that is under-displaced in its center (Figure 6 c to 421 

d, stages 3 to 4). The skew in displacement profile can also lead to a steepened 422 

displacement gradient toward the fault tip (e.g., Nicol et al., 1996). This might explain 423 

the different age and cooling paths of TAN 17 and TAN 18 (with TAN 18 located 424 

closer to the fault tip accelerating later) and why the fault tip (TAN 16) does not 425 

record any acceleration. This suggests that the fault was “under-displaced” (Figure 6 426 

c and d) sensu Cartwright et al. (1995). These data are more convincing when 427 

considered alongside the existing AFT data (for specific locations see Figure 2), 428 

where an anomalously old age for elevation (compared to their vertical profile) of 128 429 

Ma (sample DD485a) is recorded at the fault tip of the central segment. AFT ages 430 

from the central fault segment at similar elevations such as DD484 and DD480 431 

exhibit much younger AFT ages (66 and 50 Ma, respectively). This pattern mirrors 432 

that of the AHe ages presented here, further supporting the hypothesis that the fault 433 

tip (and the relay region) of the central fault segment is preserved in the cooling 434 

ages.  435 

The northern and central fault segments are also linked although we do not have 436 

the AHe data across this region for comparison. TAN 3 is located closer to the center 437 

of the fault segment than TAN 9. In this segment, TAN 9 cooled later and faster than 438 

TAN 3, suggesting there was interaction between the northern and central fault 439 

segments.  The difference in the gradient of the cooling path between TAN 9 and 3 440 



(12 km apart) 15 km from the fault tip, compared to TAN 18 and 17 (5 km apart) 441 

within 5 km of the fault tip, is possibly related to proximity to the fault tip, as 442 

displacement rates increase most rapidly closest to the fault tip during linkage (e.g., 443 

Gupta et al., 1998; Figure 6c).  444 

This pattern of increased displacement in the center of the through-going fault 445 

has continued along the Malawi Rift into Sequence 3 (Figure 3) where the current 446 

subsidence and exhumation are greatest. This region linked during the latest stages 447 

of basin evolution, revealed only in the final packages of deposition of Sequence 3, 448 

and likely within the past 1 Ma (Mortimer et al., 2007). The relay region remains 449 

‘under-displaced’ and rapidly accrues displacement, leading to a marked increase in 450 

exhumation of the footwall as the displacement profile adjusts to the new fault length 451 

(Figure 6 e and f; stages 5 and 6). 452 

The along-strike age distribution of rocks that have been exhumed to lake level 453 

does not reflect the present-day configuration but records earlier fault segmentation. 454 

This fault segmentation is preserved in the cumulative throw (time to basement; 455 

Figure 2 iv), but is no longer preserved in the footwall profile, or present-day lake 456 

bathymetry (Figure 2b). All of these are at their maximum toward the center of the 457 

through-going fault adjacent to the relay.  458 

Whether or not fault linkage and/or segmentation are likely to be recorded within 459 

the distribution of AHe ages along strike is most likely to be related to the timing of 460 

mechanical linkage (e.g.,Krugh, 2008), which in the Malawi Rift happened ca.2 Ma 461 

(Sequence 3) as demonstrated by the seismic data (Mortimer et al., 2007; Figure 3). 462 

Not only is the timing of linkage a factor in recording fault segmentation, but also 463 

whether there has been sufficient footwall exhumation to the surface (Figure 6 d-f; 464 



Stages 4-6). Of greatest importance is the appreciation of the lag time between the 465 

development of the fault-displacement profile and associated footwall topography 466 

and the exhumation of rocks to the surface that record the period of rapid cooling  467 

through the PRZ associated with this increased displacement rate.  468 

Our data in the Malawi Rift, preserve a snapshot of tectonically driven 469 

exhumation in which the segmentation is preserved.  Beneath the lake surface is an 470 

inaccessible 600 m fault scarp. Somewhere along this structure the rocks that record 471 

accelerated cooling associated with linkage at ~1.6 Ma have yet to be exhumed to 472 

lake level. Van der Beek et al. (1998) utilized a geothermal gradient of 25-30°C/km 473 

based on estimates of heat flow in a regional study by Nyblade et al. (1990).  Given 474 

this geothermal gradient, any samples experiencing a more rapid exhumation since 475 

~ 1.6 Ma would still be ~1 km below the surface; or, with a slightly greater gradient, 476 

at lake bed, but still >500m below lake level. Therefore, samples at or above lake-477 

level today should reflect the fault configuration from Sequence 1 and Sequence 2, 478 

as rocks cooled through the PRZ, from the later stages of Sequence 2 and 479 

Sequence 3 have not yet been exhumed to the surface (Figure 6e; stage 5).  Thus, 480 

our ages should reflect fault interaction but not the present-day, more rapid 481 

displacement accumulation adjacent to the relay, as is the case. AHe ages lower 482 

within the footwall would reflect the most recent cooling history and eventually ages 483 

along-strike would no longer record the fault segmentation but represent a single 484 

through-going structure (Figure 6f). This is perhaps the end-member scenario 485 

represented by the history of the Wasatch fault in Utah (Armstrong et al., 2004), 486 

where there is no record of separate segments preserved within AHe ages. As 487 

suggested by Krugh (2008), different cooling ages in relays along a fault array are 488 

determined by when mechanical linkage occurs. The exhumation or preservation of 489 



fault segmentation within the footwall rocks is controlled by the timing of mechanical 490 

linkage, the geothermal gradient, and rates of displacement across the fault. In the 491 

Malawi Rift, we are fortunate that the interplay of these parameters has led to the 492 

preservation of the record of segmentation. 493 

To thoroughly reveal the fault-segment history would require a rigorous series of 494 

horizontal and vertical transects across the footwall that mimic the type of 495 

investigation provided by stratigraphic interpretations of a hanging wall. Nonetheless, 496 

changes in the rate of vertical exhumation due to the pattern of fault growth and 497 

linkage should be thoroughly evaluated if a single vertical profile is being used to 498 

determine variations in external driving forces such as climate or the onset of rifting. 499 

 500 

6. Conclusions 501 

The age-elevation relationship of our data from the Livingstone fault, Malawi, 502 

shows that important, regional-scale cooling associated with Cenozoic rifting 503 

commenced at ~23 Ma, slightly later than the Rukwa Rift to the north. This is 504 

significantly earlier than the onset of volcanics (Ebinger et al., 1993) and previously 505 

proposed rift onset; but is in agreement with proposed rapid Cenozoic exhumation 506 

since ca. 20 Ma based upon existing AFT cooling ages (van der Beek et al., 1998).  507 

Our data show that low-temperature (AHe) thermochronology does record 508 

segmentation of the Livingstone border fault, Malawi. This fault segmentation is 509 

recorded by along-strike variations in AHe ages that show protracted cooling at 510 

palaeo-fault tips, and more rapid cooling toward the center of active fault segments.   511 



The AHe age distribution does not reflect the present-day fault configuration of 512 

the Livingstone fault, which experiences the maximum displacement in and close to 513 

the relay zone, but instead records the fault segmentation from earlier in the basin 514 

history.  515 

There is a significant lag between fault interaction, linkage, rapid uplift at any 516 

given location, and the vertical exhumation of rocks from the PRZ to lake-level that 517 

reflect that interaction. The relatively recent linkage (~1.6 Ma) of the central and 518 

southern segments of the Livingstone fault emphasizes that older fault segmentation 519 

is more likely to be preserved than in older linked systems. 520 

 521 
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Figure Captions 663 

Figure 1: Growth and linkage of normal-faults and the predicted corresponding along 664 

strike displacement accumulation. The displacement profile is the amount of 665 

displacement, D, measured along fault strike, X. The idealised displacement profile 666 

for a normal-fault is a bell shaped curve with maximum displacement in the center 667 

and zero at the fault tip, such as in A. As two faults propagate toward each other, 668 

their tips can overlap (overlapping faults, B), forming a relay ramp. Their stress fields 669 

interact and displacement on each fault segment is skewed toward the center of the 670 

overlap. Finally, the faults become linked as the relay ramp is breached (C) and the 671 

fault is initially under-displaced in the center (compared to an idealised profile). Post 672 

linkage displacement is, therefore, greatest in the center of the linked fault, where 673 

previously the tips overlapped (B and C are modified from Trudgill and Cartwright, 674 

1994). 675 

Figure 2: (a) Location of the North Basin, Malawi Rift (study area in red box) as the 676 

southernmost rift basin of the western branch of the EARS. The northern two thirds 677 

of the Malawi Rift are filled by Lake Nyasa, which reaches up to 800 m depth at its 678 

deepest portion. We investigate the northernmost basin, the Karonga Basin, of the 679 

Malawi Rift. (b) AHe samples (yellow circles) are from the northern segment (TAN03, 680 

07 and 09) and from central and southern segment relay zone (enlarged in d) by the 681 

village of Lupingu (red star). The present day bathymetry (cool colours deep and 682 

warm colours shallow) is deepest adjacent to the relay zone and the southern 683 

segment. (c) Enlargement of the relay zone showing the location of AFT samples of 684 

van der Beek et al., 1995 (blue circles), and their spatial relationship to our samples. 685 

Those labelled are referred to in the text.  d.) The Livingstone Escarpment looking 686 



from the north of the lake along the northern segment of the border fault system. 687 

Samples TAN03, 09, 07 are located along this segment. 688 

Figure 3: Known evolution of the border fault system (modified after Mortimer et al., 689 

2007). The locations of our samples (yellow circles), and the village of Lupingu (red 690 

star) within the relay zone are indicated. a. (i-iii) Isopach (thickness in ms two-way-691 

time) maps for sedimentary sequences and (iv) depth to basement, adjacent to the 692 

border fault. b. The evolution of the segmented border fault system with regions of 693 

greatest displacement rate, and therefore most likely to experience rapid exhumation 694 

indicated (yellow arrows with size reflecting envisaged difference in rates - large fast, 695 

small slower) along the segments. These patterns of exhumation and fault 696 

segmentation should be reflected in the thermal evolution of the footwall. 697 

 698 

(i) Sequence 1: the northern segment and northern portion of the central segment 699 

experienced the most displacement, in particular adjacent to TAN03, 07 and 09; 700 

while to the south along the central and southern segments there was significantly 701 

less displacement (TAN17, 18 and 20). The south segment fault tip had not 702 

propagated into the relay zone at this time.  703 

(ii) Sequence 2: the southern segment and central segment are more active, 704 

displacement increased adjacent to TAN17 and 18, as the depocenter moved toward 705 

the south and the fault tips had propagated past one another.  706 

(iii) Sequence 3: the most recent, is a thin succession with a delta entering the 707 

under-filled lake from the north, with much sedimentation focussed adjacent to the 708 

relay zone. TAN16 and 20 are within the region of overlap between these two fault 709 



segments. As the relay structure was breached by a fault (final stages of Sequence 710 

3; Mortimer et al., 2007) sediments accumulate in the hanging wall. TAN16 and 20 711 

are captured into the footwall of this breached relay as the fault tip of the central 712 

segment is abandoned, while TAN17 and 18 remain along the central segment 713 

footwall. 714 

(iv) two-way-time to basement: is the cumulative effect that encompasses all of the 715 

fault displacement that has occurred between rift onset and the present day. The 716 

cumulative throw is similar in distribution to Sequence 1 and preserves the fault 717 

segmentation. This shows that the greatest cumulative displacement is adjacent to 718 

the central fault segment. However, this does not reveal where displacement rates 719 

are greatest today - adjacent to the relay and southern segments, as shown by the 720 

bathymetry of the lake bed (see Figure 2). 721 

Figure 4:  Results of the modelled cooling path of each sample using the HeFTy 722 

computer program (Ketcham, 2005). Samples were modelled with each grain 723 

independently, and the cooling paths for individual grains are shown for each sample 724 

(solid black lines). Each different portion of the fault array investigated is represented 725 

separately to relate the cooling paths to the position of the sample both vertically and 726 

along fault strike.  727 

The location of samples are shown with (a.) the plateau region (purple); (b.) the 728 

northern segment of the Livingstone fault (green) and (c.) the central-south 729 

segments including the relay zone in (red for at or close to lake level; orange for 730 

escarpment samples). The distribution of AHe ages for each sample is shown in bold 731 

(2 sigma errors in brackets) adjacent to the sample location on the maps. 732 



Figure 5: Age-Elevation relationship (AER) of samples (weighted mean age) from 733 

the Livingstone escarpment (see Figure 1 for location). Samples may be considered 734 

relating to their position along strike and vertically within the fault array by the 735 

following: Livingstone plateau and summit (diamond); northern segment (squares); 736 

southern and central segments and the relay zone (triangles). Vertical AER (grey line 737 

on graph) and located on the inset (yellow line) through samples close to the fault tip 738 

(TAN20), the escarpment (TAN15) and plateau (TAN14). Summit sample TAN10 is 739 

considerably further along strike on the plateau (Figure 1). The wide range of ages at 740 

or close to lake level is likely to be associated with differing displacement rates along 741 

fault strike, see text for discussion. 742 

Figure 6: Envisaged tectonically driven vertical cooling paths of rocks through the 743 

Partial Retention Zone (PRZ) resulting from footwall uplift and exhumation (grey 744 

shading) associated with normal-fault displacement (D). Patterns of footwall 745 

exhumation change as two fault segment link to become a single through-going fault. 746 

Rocks that enter the PRZ at the same time are represented by dots of the same 747 

colour (t=0 to t=6; stages 1-6). Spatio-temporal variations in tectonically driven 748 

exhumation lead to rocks of the same cooling age reaching the surface at different 749 

times. Each figure shows the cooling path of rock through the PRZ corresponding to 750 

the evolution of the displacement profile along the fault. 751 

 The along-strike lake-level age distribution (coloured dots along lake-level; 752 

stages 4-6) will at times reflect earlier fault segmentation with older ages in the 753 

center of the linked array (stage 4 and 5), despite the footwall topography 754 

corresponding to a single through-going fault.  755 



 Eventually, sufficient exhumation occurs and segmentation is no longer 756 

recorded at lake-level, and rapid exhumation in the center corresponds to the 757 

youngest ages exhumed. We envisage a Stage 5 scenario for the Malawi Rift, where 758 

linkage occurred too recently (~2 Ma) for samples whose cooling path records the 759 

present day displacement to have been exhumed to lake-level.   760 
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Table 1: Analytical data for AHe 
samples along the rift shoulder 
of the North Basin, Malawi Rift. 
CT DUR and VU DUR are 
Durango standards obtained 
from Ken Farley at Caltec and 
from Tibor Dunai, Vrije 
Universiteit respectively. Amp 
Gneiss = amphibolites gneiss. 
Note for Tan 07: He contribution 
from the blank is significant 
(15%), however there is 
sufficient U and Th to include 
this age in the analyses. The 
low He contained in the sample 
is probably due to its young 
age.  

 

Sample name 

 
 
 
Northing 

 
 
 
Easting 

 
 
 
 

4He 
(ccSTP) 

238
U (ng) 

235
U (ng) 

232
Th (ng) Th/U error 

Uncorr. 
 He age (Ma) Ft 

Corr.  
He age (Ma) Error (Ma) Blank Used 

Livingstone summit and plateau. 

TAN 10-1 8942252 684162  6.048E-09 0.215 0.002 0.573 2.7 0.0 140.7 0.71 197.0 4.5 CT DUR 

TAN 10-2 8942252 684162  8.320E-09 0.298 0.002 0.576 1.9 0.0 155.9 0.80 195.9 4.4 CT DUR 

TAN 10-3 8942252 684162  2.043E-08 0.646 0.005 1.757 2.7 0.0 156.9 0.79 199.5 4.7 CT DUR 

TAN 14-1a 8881903 679108  7.858E-09 0.285 0.002 0.868 3.0 0.0 130.8 0.85 154.5 6.9 VU DUR 

TAN 14-1b 8881903 679108  4.251E-09 0.105 0.001 0.592 5.6 0.1 141.9 0.86 164.4 7.5 VU DUR 

TAN 14-1c 8881903 679108  5.120E-09 0.176 0.001 0.530 3.0 0.0 138.8 0.83 166.8 7.0 VU DUR 

TAN 14-2 8881903 679108  1.376E-08 0.633 0.005 1.161 1.8 0.0 123.7 0.82 150.0 6.6 VU DUR 

TAN 14-3 8881903 679108  3.957E-09 0.133 0.001 0.453 3.4 0.1 134.5 0.76 176.4 5.4 VU DUR 

Livingstone Fault escarpment (North  segment) 

TAN 03-A 8940289 626406  7.652E-11 0.029 0.000 0.094 3.3 0.1 12.4 0.87 14.2 0.3 VU DUR 

TAN 05 8946770 617979  1.074E-09 0.051 0.000 0.111 2.2 0.0 113.2 0.69 163.6 5.1 VU DUR 

TAN 07-A 8931423 634768  6.784E-12 0.056 0.000 0.267 4.8 0.1 0.5 0.67 0.7 0.0 VU DUR 

TAN 07-B 8931423 634768  1.609E-11 0.043 0.000 0.162 3.7 0.1 1.6 0.77 2.1 0.1 VU DUR 

TAN 07-C 8931423 634768  1.587E-11 0.062 0.000 0.287 4.6 0.1 1.0 0.66 1.5 0.0 VU DUR 

TAN 09-A 8933587 632621  3.647E-11 0.030 0.000 0.026 0.9 0.0 8.3 0.74 11.2 0.3 VU DUR 

TAN 09-C 8933587 632621  4.195E-11 0.030 0.000 0.016 0.5 0.0 10.1 0.69 14.7 0.5 VU DUR 

Livingstone Fault escarpment (North segment) 

TAN 15-A 8880090 676027  1.853E-10 0.073 0.001 0.058 0.8 0.0 17.5 0.82 21.5 0.5 VU DUR 

TAN 15-B 8880090 676027  1.714E-10 0.077 0.001 0.041 0.5 0.0 16.2 0.75 21.5 0.6 VU DUR 

TAN 15-C 8880090 676027  1.833E-10 0.065 0.000 0.048 0.7 0.0 19.7 0.77 25.6 0.7 VU DUR 

TAN 20-A 8885312 669333  7.835E-10 0.227 0.002 0.204 0.9 0.0 23.4 0.77 30.3 0.7 VU DUR 

TAN 20-B 8885312 669333  1.405E-09 0.610 0.004 0.344 0.6 0.0 16.7 0.85 19.6 0.4 VU DUR 

TAN 20-C 8885312 669333  1.649E-09 0.561 0.004 0.368 0.7 0.0 20.9 0.81 25.7 0.5 VU DUR 

TAN 20-D 8885312 669333  5.869E-10 0.295 0.002 0.234 0.8 0.0 13.8 0.77 18.0 0.4 VU DUR 

TAN 16-1 8885628 669212  1.041E-09 0.377 0.003 0.076 0.2 0.0 21.7 0.71 30.4 0.8 CT DUR 

TAN 16-2 8885628 669212  8.401E-10 0.308 0.002 0.066 0.2 0.0 21.4 0.73 29.2 0.7 CT DUR 

TAN 17-A 8892500 664893  2.102E-10 0.081 0.001 0.247 3.1 0.1 12.4 0.77 16.2 0.3 VU DUR 

TAN 17-C 8892500 664893  2.896E-11 0.016 0.000 0.067 4.3 0.1 7.6 0.88 8.7 0.3 VU DUR 

TAN 18-A 8890311 666454  2.653E-10 0.140 0.001 0.478 3.4 0.1 8.6 0.86 10.0 0.2 VU DUR 

TAN 18-B 8890311 666454  8.346E-11 0.068 0.000 0.172 2.5 0.0 6.3 0.83 7.6 0.1 VU DUR 

TAN 18-C 8890311 666454  1.157E-10 0.098 0.001 0.419 4.3 0.1 4.8 0.82 5.8 0.1 VU DUR 

Standards               

 
CT DUR 

   
 

9.567E-09 
 

0.431 
 

0.003 
 

8.492 
 

19.7 
 

0.3 
 

32.4 
    

CT DUR    5.844E-09 0.270 0.002 5.745 21.3 0.3 29.6     

VUDUR48    4.561E-09 0.172 0.001 3.998 23.3 0.4 33.6     

VUDUR49    3.048E-09 0.123 0.001 2.569 20.8 0.3 34.3     
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Table 2: Apatite He age and elevation data for samples from the North Basin, 
Malawi Rift. 
 
 Sample Age (Ma) † ± 2ı(Ma)  Elevation (m) 
Livingstone summit and plateau 
 TAN10 197.4 2.7 2194 
 TAN14 163.7 9.9 1569 

 
Livingstone Fault escarpment (North segment) 
 TAN3 14.2* 1.1 550 
 TAN7 2.1 1.3 489 
 TAN9 12.1 3.5 450 

 
Livingstone Fault escarpment (Central and South segments) 
 TAN15 22.5 3.4 1270 
 TAN20 21.6 9.2 673 
 TAN16 29.7 1.2 548 
 TAN17 12.5 7.5 538 
 TAN18 7.1 3.2 509 

† All ages calculated from weighted average of replicates following correction 
except those indicated by * where ages were not replicated. The location of 
samples is shown in Figure 1. 
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